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Homology search is one of the most ubiquitous bioinformatic tasks, yet it is unknown how effective the currently
available tools are for identifying noncoding RNAs (ncRNAs). In this work, we use reliable ncRNA data sets to
assess the effectiveness of methods such as BLAST, FASTA, HMMer, and Infernal. Surprisingly, the most popular
homology search methods are often the least accurate. As a result, many studies have used inappropriate tools for
their analyses. On the basis of our results, we suggest homology search strategies using the currently available tools
and some directions for future development.

[Supplemental material is available online at www.genome.org and http://www.binf.ku.dk/∼pgardner/bralibase/
bralibase3/.]

Compared with the relatively trivial task of protein homol-
ogy search, ncRNA homology search is more challenging be-
cause of the fact that intra- and intermolecular base pairs are, in
evolutionary terms, preserved to a higher degree than the se-
quence. The wobble GU and other noncanonical base pairs
allow RNA sequences to evolve seemingly unrelated sequences
along nearly neutral paths through structure space (e.g.,
A · U ↔ G · U ↔ G · C). Thus, specialized homology search tech-
niques, such as nucleotide specific scoring schemes (States et al.
1991), profile hidden Markov model (profile HMMs) (Haussler et
al. 1993; Krogh et al. 1994), and covariance models (CMs) (Eddy
and Durbin 1994), are necessary for accurate ncRNA homology
search.

The goal of this study is to identify programs that balance
sensitivity (true predictions) and specificity (false predictions) for
practical ncRNA homology search situations. We use large high-
quality ncRNA data sets and randomized control data sets to test
the 12 homology search programs summarized in Table 1.
Briefly, sequences are sampled from each ncRNA data set and
then used as input sequences for each algorithm against the origi-
nal (true homologs) and randomized data sets. Our test data sets
are composed of a subclass of ncRNAs that tend to be highly
structured, and therefore there is more information for homol-
ogy detection than for unconstrained ncRNAs. The algorithms
that do not perform well on these data sets are not likely to
perform better on more challenging classes of ncRNAs. To ensure
our results reflect practical scenarios, we have used both pre-
dicted alignments and secondary structures to generate input
data for the alignment and structure-based methods.

Homology search programs fall into one of three classes:
sequence based methods, profile HMM methods, and structure
enhanced methods (Fig. 1). In addition to evaluating homology

search programs, we extend the use of ancestral sequence recon-
structions (ASR) and introduce the novel phylogeny-based pre-
dictive sequence reconstruction (PSR) method for use in homol-
ogy searches (Collins et al. 2003; McCormack 2003; Qian and
Goldstein 2003; Cai et al. 2004) to the RNA homology search
problem (see Supplemental Fig. 1). Briefly, we discuss each of
these in turn.

The most popular homology search methods are sequence
based. The local matching of two sequences has been solved by
Smith and Waterman (1981) in a mathematically optimal fash-
ion using a dynamic programming procedure. However, this
method is too slow for most practical homology search situa-
tions, where the database length is large. Hence, heuristic meth-
ods such as BLAST and FASTA, which speed the search procedure
but at a cost to accuracy, are often used.

Profile HMMs have been used for detecting patterns in mul-
tiple sequences (Haussler et al. 1993; Krogh et al. 1994); assess-
ments of profile HMMs on protein data sets have proven that
these are more accurate than sequence methods alone (Brenner
et al. 1998; Park et al. 1998; Lindahl and Elofsson 2000; Madera
and Gough 2002). The basic usage of a profile HMM is to convert
an input alignment into a probabilistic model, which is used to
scan a database for homologous sequences. The fundamental
concept of profile HMMs can be understood by considering
nucleotide frequencies in each column of an alignment. In the
absence of gaps, the probability that a given sequence is gener-
ated by the same evolutionary processes as those in the align-
ment can be estimated by the product of position specific nucleo-
tide frequencies. The architecture proposed by Krogh et al. (1994)
(see Supplemental Fig. 2) allows for insertions and deletions in
the model, and, in addition, deletions can be modeled in a po-
sition-dependent manner. To account for overrepresented se-
quences in the input alignment, tree-weighting schemes can be
used (Durbin et al. 1998), and there are schemes to avoiding
over-fitting and to account for unobserved data in the input
(Sjölander et al. 1996).
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Structure-enhanced methods are frequently based on CMs,
which are an analog of profile HMMs that include pairwise in-
teractions due to RNA secondary structure. Whereas profile
HMMs consist of a linear HMM architecture suitable for model-
ing linear protein sequences, tree-like CMs model tree-like RNA
secondary structures that allow for base-pairing interactions.
States within the CM capture paired and unpaired regions while
allowing insertions and deletions. To picture this, imagine the
profile HMM model in Supplemental Figure 2 with base pairs
between distant sites. Several new states need to be added to the

model to accommodate this more complex structure. In the
paired sites, deletions now include either a single 5� or 3� base or
the entire base pair, and insertions can now be between either
the 5� or 3� ends of a base pair. Bifurcation states are also included
in the CM to allow for multiloops. The basic CM search proce-
dure is analogous to the use of profile HMMs. An alignment
replete with a structure annotation is provided by the user; this is
used to train a CM that is specific to the input data, which can
then be used to search a query database (Eddy and Durbin 1994;
Durbin et al. 1998).

Table 1. Program descriptions, URLs, and references for each of the 12 programs used in this study

Program Description and URL Version Reference

Sequence-based methods
NCBI-BLAST

WU-BLAST
The query database is tabulated as short sequences (seeds), which are

scanned during the initial search phase; short matches are
subsequently extended and scored.
URLS: NCBI, www.ncbi.nlm.nih.gov/BLAST
WU, blast.wustl.edu

NCBI: 2.2.10
WU: 2.0

(Altschul et al. 1990),
(Gish 2005)

FASTA FASTA employs a lookup table to identify all matching words of length
ktup. Diagonals of mutually supporting matches are located, linked,
and extended. High-scoring matches are finally realigned using a
local banded Smith-Waterman algorithm (Chao et al. 1992).
URL: fasta.bioch.virginia.edu

3.4 (Pearson and Lipman 1988)

ParAlign A parallel computing technology, SIMD (Single Instruction Multiple
Data), is used to compute exact ungapped alignments. A novel
heuristic is used to compute gapped alignments for high scoring
ungapped hits. The highest scoring database matches are realigned
using a rigorous SIMD-based Smith-Waterman algorithm.
URL: www.paralign.org

3.4.3 (Saebø et al. 2005)

SSEARCH Implements the Smith-Waterman local alignment algorithm (Smith and
Waterman 1981).
URL: fasta.bioch.virginia.edu

3.4 (Pearson 1991)

Profile HMM methods

HMMer
A profile HMM approach with a novel “Plan 7” architecture that

distinguishes between global and local alignments probabilistically
and excludes transitions from insert to delete states and vice versa.
URL: hmmer.wustl.edu

1.8.4 & 2.3.2 (Eddy 1998)

SAM This package uses the original profile HMM architecture (Krogh et al.
1994) discussed in the text and displayed in Supplemental Figure 2.
URL: www.cse.ucsc.edu/research/compbio/sam.html

3.5 (Hughey and Krogh 1996),
(Karplus et al. 1998)

Structure-based methods
ERPIN An input alignment with structure annotation is converted into a

combination of single sequence and helical lod-score based weight
matrices. These profiles can then be used to rapidly screen a
database for matching helical profiles and classical dynamic
programming for the alignment of single-stranded regions.
URL: tagc.univ-mrs.fr/erpin

4.2.5 (Gautheret and Lambert 2001)

Infernal Implements a covariance model (CM) as discussed in the text and
illustrated in Supplemental Figure 2. Additional features added
during this investigation are an “effective sequence number”
weighting scheme and Dirichlet mixture priors (Sjölander et al.
1996).
URL: infernal.janelia.org

0.7 (Eddy 2002)

RaveNnA Converts a CM generated by Infernal into a profile HMM. This is used
to rapidly filter the database for high-scoring matches, which can be
aligned using the slower but more accurate Infernal package.
URL: bio.cs.washington.edu/supplements/zasha-ravenna

0.2f (Weinberg and Ruzzo 2006)

RSEARCH Implements a CM for a single input sequence and structure.
BLOSUM-like score matrices (Henikoff and Henikoff 1992) called
RIBOSUM matrices are used to score database sequence matches to
helical or single-stranded regions of the query.
URL: http://selab.janelia.org/software.html#rsearch

1.1 (Klein and Eddy 2003)

RSmatch Input and database sequences are folded using RNAfold (Hofacker et
al. 1994) (or similar). The structures are decomposed into
subcomponents, which are organized into a tree model, and the
database is screened for significant hits using a tree alignment
procedure. The alignment is scored using a combination of base-pair
and single-strand score matrices.
URL: exon.umdnj.edu/software/RSmatch

1.2 (Liu et al. 2005)
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Nearly all of the current homology search algorithms, with
the exception of some profile HMM tree-weighting schemes
(Durbin et al. 1998), ignore important evolutionary information
contained in the underlying phylogenetic relationships among
the input sequences. For example, the branching order and dis-
tance between sequences is largely ignored. To address these
shortcomings and aid the phylogenetically naive algorithms, we
employ two probabilistic phylogenetic approaches: ASR and PSR.
Briefly, each of these methods sample high-probability ancestral
sequences that are added to the query sequences. In this way, ad-
ditional information derived from the phylogenetic relationships is
added to the search, in theory boosting remote homolog detection.

Caveats to algorithm assessments

There are several limitations to any algorithm assessment. We
outline the most important issues below.

Test data sets

We take for granted the accuracy of structural alignments taken
from the literature, many of which have been constructed using
the programs we are studying. However, given this limitation,
the analysis of a large and diverse data set should outweigh any
possible errors due to data set inaccuracies. We make one final

point regarding the nature of our test data sets; the data sets used
here are conserved “ideal” ncRNAs and may not be representative
of other ncRNAs. Although it is likely that other families of
ncRNAs will be less conserved and less “ideal,” it seems clear that
if a method fails under “ideal” circumstances, its performance is
unlikely to improve in more challenging circumstances.

Tool abuse

Frequently, researchers may apply a tool to a task for which it is
not designed. For example, in this study we have applied se-
quence-based tools to structured ncRNAs, assuming that sites are
independent. This is a common but poor assumption.

Tools improve

Many of the tools tested here are recent developments and are
still under active development. Hence, not all observations will
remain reproducible. In fact, we hope this study helps improve
future performance.

Parameter settings

The performance of some of the programs may benefit from op-
timizing program parameters. Here, we have attempted to cap-
ture the essential features of each algorithm by using as many
parameter combinations as was practical.

During the course of this investigation, we contacted the
authors of each of the programs included in this study (see Ac-
knowledgments). We provided access to the data sets, scripts, and
a preprint of the article for the authors from the BRaliBase Web
site (www.binf.ku.dk/∼pgardner/bralibase). We found the com-
ments we received invaluable for minimizing the costs of the
above caveats.

Results

The following discussion contains a detailed summary of the
results presented in Figures 2–4 and the Supplemental Tables 1–4
and Supplemental Figures 5–7. We begin by outlining the results

Figure 1. An overview of homology search methods. A Venn diagram
illustrating an overview of the methods used in this study. Different meth-
ods are classified as heuristic, single sequence, profile HMM, stochastic
context-free grammar (SCFG), and/or RNA specific.

Figure 2. A comparison of the accuracy and efficiencies of homology search methods showing only the highest-ranking parameter settings for each
algorithm from Supplemental Table 1. These were NCBI-BLAST (W7, 65%), WU-BLAST (W3), FASTA, ParAlign (65%), SSEARCH, HMMer (2.3.2, local),
SAM (3.5, local), ERPIN, Infernal (0.7, local), RaveNnA, RSEARCH, and RSmatch. (A,B) Boxplots of algorithm ranks for the 5 and 20 sequence subsets,
respectively. The blue curves show the median sensitivity, the green curve the median specificity, and the red curve the median MCC for each of the
12 programs. These accuracy values were computed by sampling either 5 or 20 sequences from the reference databases; these were used as input(s)
to each algorithm for screening both the reference and a shuffled database. (C) Boxplots of algorithm speeds in nucleotides per second. The red curve
shows median initialization times for the different programs. The single sequence, profile HMM, and RNA methods are displayed in unshaded, dark
shaded, and lightly shaded boxes, respectively.
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for each method with the parameter settings that had the opti-
mal ranking. Unless stated otherwise, we focus on the results for
the smaller query subsets with just 5 sequences because the re-
sults do not differ significantly from the analysis using larger
query subsets (20 sequences). Secondly, we outline the results for
our secondary tests, which include a comparison of the se-
quence-based methods (NCBI-BLAST, WU-BLAST, FASTA,
ParAlign, and SSEARCH) with identical scoring parameters. These
scoring parameters are optimized for sequence identities ranging
from 65%–100% (States et al. 1991) and are referred to as the 65%
scoring scheme throughout this section. The other secondary
tests we present are of RNA-centric scoring schemes for sequence-
based methods, the application of phylogenetic sequence recon-
struction to homology searching, and a scan of a section of the
human genome.

Sequence-based searches

The accuracies of WU-BLAST and NCBI-BLAST were unsurpris-
ingly similar when similar parameters were used, yet WU-BLAST
was significantly faster (Fig. 3). The default scoring scheme used
for NCBI-BLAST is tailored for sequences with 99% sequence ho-
mology, whereas WU-BLAST defaults are tailored for sequences
with 65% sequence homology (States et al. 1991), which is more
appropriate for our diverse ncRNA data sets (see Supplemental
Tables 1 and 2). WU-BLAST has a more diverse array of options,
including allowing a minimum seed length of 3 (W3) (compared
with 7 [W7] for NCBI-BLAST). Hence, the parameter settings pro-
ducing the best accuracy for WU-BLAST are not implemented in
NCBI-BLAST. However, shorter seed lengths did come at a sig-
nificant cost to program speed.

Figure 4. A comparison of the accuracy of methods using RNA-centric scoring matrices, phylogenetic sequence reconstructions, and the genome scan
results. (A) A comparison of the accuracy of sequence-based methods with score matrices optimized for ncRNA. These boxplots show the distributions
of the ranks on MCC for each of the homology search methods when using one of WU-BLAST (W7), WU-BLAST (W7, PUPY), FASTA, FASTA (U), FASTA
(RIBOSUM), or FASTA (FOLDALIGN). These matrices are discussed in more detail in the text. (B) A comparison of FASTA, SSEARCH, and ERPIN with and
without phylogenetic sequence reconstructions included in the input. Ancestral sequence reconstruction was used in the case of FASTA and SSEARCH
and posterior predictive sequences in the case of ERPIN. Both A and B show results using 5 query sequences. (C) A set of representative programs from
each category were run on human chromosome 12 (coordinates 90,000,000–130,000,000; ver NCBI35). The boxplot displays algorithm ranks;
additionally, median nMCC, median nSensitivity, and median nSpecificity for each algorithm are displayed using the y-axis on the right. The single
sequence, profile HMM, and RNA methods are displayed in unshaded, dark shaded, and lightly shaded boxes, respectively.

Figure 3. A comparison of the accuracy of sequence-based methods with the 65% scoring scheme and identical scoring parameters. These boxplots
show the distributions of the ranks on MCC and timing data for each of the homology search methods when using a scoring scheme optimized for
nucleotide sequences with 65% identity (match = +5, mismatch = �4, gapopen = 10, gapextension = 10). (A,B) Boxplots of algorithm ranks for the 5
and 20 sequence subsets, respectively. The blue curves show the median sensitivity, the green curve the median specificity, and the red curve the median
MCC for each of the 12 programs. (C) Boxplots of algorithm speeds in nucleotides per second. The red curve shows median initialization times for the
different programs.
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A comparison of FASTA and WU-BLAST (W3) is complicated
given that the median ranking of WU-BLAST (W3) was higher
than that of FASTA for the 5 sequence input data, but the lower
quartile of the WU-BLAST (W3) ranks was much lower than that
of FASTA (Fig. 3). Hence, most of the time WU-BLAST (W3) out-
performed FASTA (the rankings reversed on the 20 sequence data
sets). Yet, FASTA was significantly faster than WU-BLAST (W3)
and compared well with NCBI-BLAST (W7, 65%) in terms of
speed.

ParAlign was the fastest of the homology search tools in this
study. However, ParAlign had low sensitivity compared with
both FASTA and BLAST; this was true also for the 65% scoring test
(see Methods and Fig. 3 for results).

SSEARCH generally outperformed the other sequence-based
methods in terms of accuracy. However, SSEARCH performance
was very closely correlated with WU-BLAST (W3), but WU-BLAST
(W3) was significantly slower (see Supplemental Fig. 9). This ob-
servation was surprising given that SSEARCH employs no heuris-
tics to improve speed whereas WU-BLAST (W3) demands seeds
matching of at least three consecutive nucleotide positions; one
would have expected the opposite to the results presented here.

Profile HMMs

The profile HMM programs evaluated here, SAM and HMMer,
always outperformed the sequence-based methods. SAM usually
outperformed HMMer in terms of accuracy, yet HMMer was sig-
nificantly faster (Fig. 2). The results for HMMer show that version
2.3.2 is slightly better than v.1.8.4; this is in contrast to the
HMMer documentation, which suggests the opposite for nucleo-
tide sequences (because of protein-specific optimization). Earlier
results based on protein data sets (Madera and Gough 2002)
showed that profile searches could be improved by using SAM
models and HMMer searches. We observed no such improve-
ment on our ncRNA data sets (see Supplemental Tables 1 and 2).

Structure-enhanced homology search

The CM-based methods Infernal and RSEARCH both performed
extremely well on these ncRNA data sets, providing predictions
with very high sensitivity and specificity. These methods gener-
ally ranked either first or second in terms of the Matthews cor-
relations coefficient (MCC) (see Methods for a definition) for
every search. However, there was a significant cost in terms of
CPU: Both take ∼1 sec to search a kilobase using a 900-MHz
processor. This is about 2 orders of magnitude slower than the
profile HMM and sequence-based methods.

The Infernal package was upgraded during the course of this
study to version 0.7. Sean Eddy and collaborators added Dirichlet
mixtures (Sjölander et al. 1996) and effective sequence number
scalings to the algorithm, which resulted in a significant perfor-
mance boost for both the 5 and 20 sequence data sets (see Supple-
mental Tables 1 and 2).

ERPIN predictions are generally very conservative, especially
for the small data set or when sequence identity is high (fre-
quently only the input data set was recovered), resulting in high-
specificity yet low-sensitivity predictions. However, the speed of
ERPIN was comparable with that of the sequence-based methods.

The results for RaveNnA were also good, with the algo-
rithm ranking third after Infernal and RSEARCH in terms of ac-
curacy. The accuracy of RaveNnA when compared with the
other profile HMM methods, HMMer and SAM, was excellent.
The speed of RaveNnA was about the same magnitude as SAM,

which is in good agreement with theory. However, RaveNnA
requires a significant initialization time (∼25 min, see Supple-
mental Fig. 5) from the overhead for calibrating the HMM to
determining an appropriate threshold; therefore, it is only eco-
nomical to use RaveNnA on larger databases.

The speed of RSmatch was nearly an order of magnitude
greater than that of the structure-enhanced methods Infernal,
RaveNnA, and RSEARCH; however, the accuracy was much
lower.

Five versus twenty input sequences

Overall, the results were rather constant between using 5 or 20
input sequences. RSEARCH and Infernal exchanged first place;
Infernal explicitly uses covariation information and hence is
likely to be more powerful with larger input data sets. The per-
formance of WU-BLAST dropped relative to the other programs.

The CM and profile HMM methods benefit from models
derived from more sequences, resulting in improved specificity.
The single-sequence methods, however, suffer from problems
due to multiple testing, resulting in improved sensitivity at a cost
to specificity.

65% scoring scheme

This study showed that the sequence-based methods perform
rather similarly when using comparable parameter settings (Fig.
3; the results labeled “65%” in Supplemental Table 3; Supple-
mental Fig. 6). The nonheuristic method, SSEARCH, outranked
the other methods in all cases. This was followed by FASTA. The
two incarnations of BLAST performed almost identically; how-
ever, WU-BLAST was significantly faster than NCBI-BLAST.

RNA-centric scoring schemes

Each of the RNA-centric scoring schemes mentioned in the Meth-
ods section was given a trial (Fig. 4; Supplemental Table 4;
Supplemental Fig. 7). The scoring schemes we tested are the
PUPY matrix that ships with WU-BLAST, the “-U” option for
FASTA, and the single-sequence components of the score matri-
ces used by RSEARCH (Klein and Eddy 2003) and FoldAlign
(Havgaard et al. 2005). These results were generally disappoint-
ing: None of the methods showed any improvement over less-
specific schemes when the RNA-centric scores were used. In the
case of the FoldAlign and RSEARCH score matrices, this is justi-
fied as these matrices were built specifically for structural meth-
ods rather than the sequence-based methods we have used here.
We also tested a transition/transversion scoring scheme opti-
mized for 65% sequence identity (States et al. 1991) (data not
shown); the results of this test were also disappointing. This in-
dicates that a great deal more work is required before such scor-
ing schemes can be used for practical RNA homology search.

Application of phylogenetic sequence reconstruction
to homology search

In general, the inclusion of ancestral information did not in-
crease the performance of the more advanced methods. How-
ever, a number of methods did benefit from this approach. First,
a significant improvement in the performance of ERPIN was ob-
served for both the ASR and PSR approaches; the median sensi-
tivity improved by a factor of 17 when PSR sequences were in-
cluded in the search. One difficulty with this approach is the use
of a prior on the length of the branch leading to the recon-
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structed sequence. We found the best results with very long prior
branch lengths (≈20 expected substitutions per site). In addition
to improving ERPIN, we found that the inclusion of ASRs im-
proved the sensitivities of the sequence-based methods. This im-
provement, unfortunately, comes at a cost to specificity, but in
the cases of FASTA and particularly SSEARCH, an overall increase
in accuracy was observed (Fig. 4). Our approach for including
phylogenetic information did not improve the accuracy of the
profile HMM or Infernal searches where tree-weighting schemes
and Dirichlet priors are used. Since these search algorithms al-
ready incorporate information similar to that obtained from the
ancestral sequences, a failure to see an increase in these methods
is perhaps not surprising. Our results do suggest that future work
may benefit from incorporating directly phylogenetic informa-
tion along with the use of improved models of RNA sequence
evolution. However, further work will be required to determine
whether improvements in accuracy are due to additional infor-
mation from the phylogeny or to noise injection (Krogh et al.
1994).

Genome scan

To test a representative set of algorithms in a realistic usage sce-
nario, we scanned a 40-Mb section of the human genome. This
test had the additional advantage of providing a more accurate
estimate of algorithm specificity. The results of the genome scan
were in general agreement with the earlier results. This was a
much harder test than those presented earlier. This was
compounded by the fact that the genome annotation we rely on
may not be completely accurate. However, HMMer performed
surprisingly well on this test compared with both Infernal and
SAM. Infernal had the highest median MCC, yet had a slightly
lower specificity than HMMer. This behavior may be due to un-
annotated homologs residing within the genomic region, which
would cause false false-positives for the more sensitive methods
such as Infernal and SAM. Of the single-sequence methods, both
WU-BLAST and FASTA performed well. WU-BLAST had a higher
sensitivity but a lower specificity (Fig. 4; Supplemental Fig. 8).

Discussion

The most popular homology search methods did not necessarily
perform the best in our study. These programs are optimized for
rapid database searches with few false positives (high specificity),
which is not always what the user requires. As a consequence
many estimates of the amount of conserved DNA (Hillier et al.
2004) and number of conserved ncRNAs (Washietl et al. 2005;
Pedersen et al. 2006) and nonconserved ncRNAs (Pang et al.
2006) are based on suboptimal homology search tools and hence
likely to be inaccurate.

One of the most important issues for homology searching is
to develop scoring schemes that discriminate signal from noise.
It is clear that the popular single sequence methods do not do
this, although some modest improvements may be possible. The
scorings implemented in the RNA-specific probabilistic methods
Infernal, RSEARCH, and RaveNnA, however, do a good job of
discriminating signal from noise. The Infernal CM method was
surprisingly robust to the predicted (and therefore potentially
inaccurate) input alignments and secondary structures. A com-
parison of Infernal with predicted and reference input data shows
that the only time the predictions caused a drop in performance
was when the input sequences were highly similar and the sec-

ondary structure prediction was poor. This meant that there was
limited covariation information from the alignment for either
the secondary structure prediction tool (RNAalifold) or the co-
variance model to use (see Supplemental Fig. 10).

As researchers are usually likely to favor speed over accuracy,
it is necessary that FASTA and BLAST have accurate scoring
schemes available that such researchers can utilize. For this, RNA-
optimized PAM (Dayhoff et al. 1978) and/or BLOSUM (Henikoff
and Henikoff 1992) style score matrices are needed. There are
sufficient data for computing these matrices from freely available
sources such as the Rfam (Griffiths-Jones et al. 2003) and the
rRNA databases (Cannone et al. 2002; Wuyts et al. 2002) and the
statistical methods for estimating these are well established. Ad-
ditionally, given that base-pair stacking is important for RNA
structure, this signal may prove useful for RNA homology search
and could be exploited by incorporating a dinucleotide scoring
scheme into the alignment procedure (Lunter and Hein 2004).

There are few heuristics at present for rapid profile HMM
and CM-based homology searches. One could, for example, ap-
ply the BLAST concept of a seed match to profile HMMs and
CMs. A database could be rapidly scanned for short, ungapped
high-scoring matches to the model, which could then be ex-
tended using the full profile HMM architecture, this should result
in significant gains in speed at moderate costs to sensitivity.

The specificity of homology search algorithms is an impor-
tant issue when scanning large amounts of (genomic) data. If the
specificity is not extremely high when scanning large databases
the relatively small number of true homologs may be lost in a
flood of false positives. The relatively small amounts of shuffled
data we were forced to use in this study (because of the glacial
speeds of some of the test algorithms) meant that we did not get
an accurate measure of this value. The genome scan test we ran
was meant to alleviate this problem; however, it is likely that
unannotated homologs also affected the determination of algo-
rithm specificity.

The use of phylogenetic information to enhance homology
search of ncRNAs on the surface seems a bit dissatisfying. Our
results do clearly indicate that there is valuable information in
the phylogeny that should not be ignored as a number of the
methods did benefit from our simple approach. We believe this
suggests that future method development will benefit from con-
sidering the phylogeny when multiple sequences are available.
For example, the use of mutational maps along the phylogeny
(Nielsen 2002) could be used to create a stochastic profile for
profile HMM methods (Durbin et al. 1998). Alternatively, when
scanning newly sequenced genomes we often know the phylo-
genetic relationships between the search sequences and the
query genome and may also have information on how divergent
they are. Using this information, one could use the PSR approach
described here to add information to the search sequences with-
out relying on arbitrary priors about the process of evolution.
Our results do hold promise for those researchers who want the
set of putative homologs to include all true homologs at the cost
of including a larger number of false positives.

The RSmatch algorithm relies on MFE structure predictions
on a single sequence, which are known to be frequently inaccu-
rate (Gardner and Giegerich 2004). If the structure prediction
phase for both the database and input sequences were based on
comparative predictions, such as RNAalifold (Hofacker et al. 2002),
the accuracy of this approach is likely to improve. In addition,
RSmatch could be used to cluster genome-wide structure-based
ncRNA predictions (Washietl et al. 2005; Pedersen et al. 2006).
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Practical recommendations

On the basis of our assessment of the currently available homol-
ogy search tools, we recommend a scheme for one or more input
sequences that uses iterative rounds of the rapid sequence-based
methods, such as WU-BLAST, FASTA, or SSEARCH, with sensible
scoring schemes and a high threshold to build a training data set.
These results can then be used to train CM models for Infernal
searches to obtain more divergent sequences from within the
lower-scoring sequence-based matches or, if possible, the original
database. Profile HMMs, particularly RaveNnA, could be used
instead when CMs are not practical, for example, when the se-
quence length is greater than 200 nucleotides or the database is
large.

Throughout this work, we have focused almost entirely on
method accuracy; however, of frequent concern is the computa-
tion time for a search. For example, on the basis of our timings
with tRNA queries, Infernal would take ∼96 d to search the hu-
man genome on a single processor, RaveNnA would take 40 h,
HMMer would take 9 h, SSEARCH would take 4 h, and WU-
BLAST (W7) just 4 min. Given the ready access many groups have
to computing clusters, it is reasonable to expect the more accu-
rate methods to become more popular in the future.

Many of the currently available tools for ncRNA homology
search tools are not yet performing as well as one would hope
based on the results we have presented. Improvements in terms
of accuracy and speed are needed. This is extremely important
given the explosion of interest in ncRNAs generated by recently
discovered ncRNAs such as miRNAs. Additionally, a current
theory suggests that much of the apparent organism complexity
not accounted for by corresponding expansions in the proteome
can be attributed to regulation from the ncRNAome (Mattick
2001).

This study has implications for evolutionary studies that
rely on programs tuned for high-similarity sequences. First, since
the most popular programs are biased toward identifying only
highly conserved homologs, the diversity of particular ncRNAs
will be underestimated perhaps more severely than previously
thought. Second, and particularly irksome, is that many of the
most interesting homologs will be those that are or have experi-
enced strong positive directional or diversifying selection, caus-
ing them to have diverged beyond the detection limits of the
search algorithms, and will fail to be identified. By establishing
how the currently available methods perform, we can gather
more high-quality databases that will allow further development
of our understanding as to how different families of ncRNAs
evolve. With new models in hand, we can improve the search
algorithms increasing the discovery of interesting homologs,
otherwise unidentified, and gain better estimates of the diversity
of ncRNAs across the spectrum of life.

Methods

In the following section, we outline the data sets we used for this
study and the approaches we used to compare sequence-based,
profile HMM, and structure-enhanced methods.

Data sets
To test homology search tools, we have obtained hand-curated
databases of 602 5S rRNAs, 1114 tRNAs, and 235 U5 spliceosomal
RNAs. Sequences in the databases have mean lengths of 117, 73,
and 119 nucleotides, respectively (Zwieb 1997; Sprinzl et al.

1998; Szymanski et al. 2002; Griffiths-Jones et al. 2003). Nonho-
mologs were generated by shuffling sequences from each data-
base to generate a new database that was 10 times larger. The
shuffling process preserved dinucleotide frequencies to avoid cre-
ating artificially dissimilar sequences (Workman and Krogh
1999). Sets of 5 and 20 search sequences were sampled from the
databases. These were used to scan the original and a shuffled
database. A total of 583 5-sequence sets and 360 20-sequence sets
were generated.

Performance measures
Three measures of performance were used to evaluate each algo-
rithm: sensitivity, specificity, and MCC. Sensitivity measures the
fraction of the positive control data set that is recovered by an
algorithm and is calculated from the number of matches to the
unshuffled database for both 5 and 20 sequence sets as inputs.
Specificity measures the fraction of the randomized sequences
that were correctly rejected when scanning the shuffled data-
bases with the input sequence sets of 5 and 20. The third mea-
sure, MCC, combines both sensitivity and specificity to measure
the overall discriminative power of each algorithm.

Thresholds
Thresholds are used to provide a cutoff for determining whether
a query sequence matches the search sequence(s). Score thresh-
olds for each algorithm are optimized based on scans of the cu-
rated and shuffled databases with a small group of query se-
quences that uniformly covers the different RNA families and
identity ranges. Example distributions and ROC plots are illus-
trated in Supplemental Figures 3 and 4. Raw scores rather than
e-values are used here as there are a diverse number of methods
implemented for computing e-values and these are not com-
puted at all by some methods. In this study, we are more con-
cerned with the scores used by specific programs than the accu-
racy of the different e-value computations.

65% scoring scheme
To compare the sequence-based methods on an equal footing, we
have included a comparison of these using parameters optimized
for data sets with 65%–100% homology (States et al. 1991)
(match = +5, mismatch = �4, gapopen = 10, gapextension = 10).
Where a seed was required, this was made as similar as possible,
W = 7 for BLAST and ktup = 6 for FASTA.

RNA-centric scoring schemes
Several of the sequence-based methods have associated scoring
schemes that are designed for the unique problem of RNA ho-
mology search. Generally, these distinguish between transitions
(A ↔ G and C ↔ U), which are relatively frequent during RNA
evolution, and transversions (the remaining mismatch types),
which are relatively infrequent. WU-BLAST has a PUPY (purine–
pyrimidine) score matrix (match = +4, transition = +2, transver-
sion = �8). By default, FASTA and SSEARCH score a +5 for
matches and �4 for mismatches, yet these tools have a “�U”
scoring option that tolerates G · U wobble base pairs by scoring
G/A and U/C mismatches as one less than a G/G match in a
strand-specific manner. In addition, RSEARCH’s RIBOSUM (Klein
and Eddy 2003) and the more recent FoldAlign (Havgaard et al.
2005) score matrices use parameters estimated directly from the
loop regions of large curated ncRNA alignments. We have tested
these as an alternative scoring scheme for FASTA homology
searches.
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Genome scan
A ncRNA-enriched region of the human genome was selected for
further testing of representative homology search programs from
each category. We identified a 40-Mb region on chromosome 12
(coordinates 90,000,000–130,000,000; genome assembly
NCBI35) that contains 5 5S rRNAs, 10 tRNAs (and 26 pseudo-
tRNAs predicted by tRNAscan-SE), and 1 U5 spliceosomal RNA.
We used input data sets containing ten sequences, each with a
sequence identity to the associated target RNA in one of the
following ranges 40%–60%, 50%–70%, 60%–80%, and 70%–
85%. The pairwise sequence identities within the data sets are
between 60% and 90%.

Timing
For the timing studies, two databases of 166 Mb and 332Mb,
respectively, were used. Both databases contain 1114 tRNA se-
quences; the smaller database has one shuffled version of each of
these, whereas the larger database has three. A single tRNA subset
was used as a query for the timing study. The times for scanning
the 2 databases are computed on (or calibrated to) a Sun Sparc v9
and 900 MHz CPU for each algorithm. From these values, the
algorithm speed (nts/s) and initialization times are computed.

Phylogenetic information
The phylogenetic relationships among the search sequences in-
clude information on the branching order and their evolutionary
divergence. It has been previously suggested that ancestral recon-
struction of the sequences can be used to aid homology searches
by supplementing the search set with reconstructed sequences
(Collins et al. 2003; McCormack 2003; Qian and Goldstein 2003;
Cai et al. 2004). To test whether this type of phylogenetic infor-
mation will aid in identifying homologous ncRNAs, we used an
empirical Bayesian approach (Huelsenbeck and Bollback 2001) to
stochastically sample ancestral sequences (ASR) (details of the
sampling can be found in the Supplemental Methods). The
Bayesian approach has been proven (in the case of proteins) to be
the most accurate method (Hall 2006). The phylogenetic tree and
model parameters were estimated using MrBayes v3 (Huelsen-
beck and Ronquist 2001). To accommodate the nonindepen-
dence among sites arising from secondary structure, an RNA dou-
blet model was used to model substitutions in stem regions
(Schöniger and von Haeseler 1994; Huelsenbeck and Ronquist
2001), while loop regions were modeled using the method of
Hasegawa et al. (1985). In addition to reconstructing ancestral
sequences at the internal nodes of the phylogeny, a novel simple
method was employed to sample ancestral sequences from un-
observed lineages radiating from the internal nodes of the phy-
logeny using a Bayesian posterior predictive (PSR) approach
(Bollback 2005) (see Supplemental Methods).

Alignment and structure prediction
We used automatic structure prediction and alignment methods
that previous studies have identified as being accurate for ncRNA
analyses (Gardner and Giegerich 2004; Gardner et al. 2005). The
alignments are computed using ProAlign (Löytynoja and Mil-
inkovitch 2003) and consensus structures are computed from
these alignments using RNAalifold (Hofacker et al. 2002).

Performance measures
Sensitivity and specificity are common measures for determining
the accuracy of homology search methods.

Sensitivity =
TP

TP + FN
Specificity =

TN
TN + FP

where TP is the number of “true positives,” TN is the number of
“true negatives,” FN is the number of “false negatives,” and FP is
the number of “false positives.” Sensitivity measures the fraction
of the positive control data set that is recovered by the program
in question; the specificity measures what fraction of the random-
ized sequences that were correctly rejected.

A measure combining both specificity and sensitivity is use-
ful for ranking programs. In previous studies, the

error rate =
FP + FN

TP + TN + FP + FN

(Klein and Eddy 2003) has been used; we, however, favor the
more discriminative Matthews’ correlation coefficient (MCC) as
defined below:

MCC =
�TP × TN� − �FP × FN�

��TP + FP��TP + FN��TN + FP��TN + FN�

The MCC ranges from �1 for extremely inaccurate (TP = TN = 0)
to 1 for very accurate predictions (FP = FN = 0).

In general, we measure TP as the number of unique se-
quences in the hand-curated databases that were accepted by the
algorithm in question using each of the 5 or 20 input sequences.
For the genome scan, TP is instead measured as the number of
nucleotides that are in both a known and a predicted RNA se-
quence. From this it follows how TN, FP, and FN are computed in
each case. To make a distinction between the regular perfor-
mance measures defined here and the ones used for the genome
scan, we call the latter nSensitivity, nSpecificity, and nMCC.

To ease the comparison of the different measures, we have
computed the rank of each program with representative param-
eter settings against the other programs using MCC values for
each subset of query sequences. The rank distributions are plot-
ted in Figures 2–4.

Acknowledgments
We thank Sam Griffiths-Jones, David Ardell, Anders Krogh, Ras-
mus Nielsen, Zasha Weinberg, and Jeppe Vinther for useful dis-
cussions. We also thank the homology-search algorithm devel-
opers Torbjørn Rognes, Bin Tian, William R. Pearson, Robert J.
Klein, Zasha Weinberg, Stephen Altschul, Daniel Gautheret, and
Sean Eddy for taking the time to make useful comments on an
early draft of this manuscript. Any remaining flaws are solely our
responsibility. The high-performance computer clusters at
UPPMAX and the University of Copenhagen Bioinformatics Cen-
tre were used to compute many of the results presented here.
P.P.G. is supported by a Carlsberg Foundation Grant (21-00-0680).
J.P.B. was supported by a grant from the Danish FNU.

References

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990.
Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

Bollback, J.P. 2005. Posterior mapping and predictive distributions. In
Statistical Methods in Molecular Evolution (ed. R. Nielsen), pp.
189–203. Springer Verlag, New York.

Brenner, S., Chothia, C., and Hubbard, T. 1998. Assessing sequence
comparison methods with reliable structurally identified distant
evolutionary relationships. Proc. Natl. Acad. Sci. 95: 6073–6078.

Cai, W., Pei, J., and Grishin, N.V. 2004. Reconstruction of ancestral
protein sequences and its applications. BMC Evol. Biol. 4: 33.

Cannone, J., Subramanian, S., Schnare, M., Collett, J., D’Souza, L., Du,
Y., Feng, B., Lin, N., Madabusi, L., Muller, K., et al. 2002. The
comparative RNA web (CRW) site: An online database of
comparative sequence and structure information for ribosomal,
intron, and other RNAs. BMC Bioinformatics 3: 2.

Freyhult et al.

124 Genome Research
www.genome.org



Chao, K.M., Pearson, W.R., and Miller, W. 1992. Aligning two sequences
within a specified diagonal band. Comput. Appl. Biosci. 8: 481–487.

Collins, L.J., Poole, A.M., and Penny, D. 2003. Using ancestral sequences
to uncover potential gene homologues. Appl. Bioinformatics 2: 85–95.

Dayhoff, M., Schwartz, R., and Orcutt, B. 1978. A model of evolutionary
change in proteins. In Atlas of Protein Sequence and Structure, vol. 5,
pp. 345–352. National Biomedical Research Foundation,
Washington, D.C.

Durbin, R., Eddy, S.R., Krogh, A., and Mitchison, G. 1998. Biological
sequence analysis: Probabilistic models of protein and nucleic acids.
Cambridge University Press, Cambridge, UK.

Eddy, S.R. 1998. Profile hidden Markov models. Bioinformatics
14: 755–763.

Eddy, S.R. 2002. A memory efficient dynamic programming algorithm
for optimal structural alignment of a sequence to an RNA secondary
structure. BMC Bioinformatics 3: 18.

Eddy, S.R. and Durbin, R. 1994. RNA sequence analysis using covariance
models. Nucleic Acids Res. 22: 2079–2088.

Gardner, P.P. and Giegerich, R. 2004. A comprehensive comparison of
comparative RNA structure prediction approaches. BMC
Bioinformatics 5: 140.

Gardner, P.P., Wilm, A., and Washietl, S. 2005. A benchmark of
multiple sequence alignment programs upon structural RNAs.
Nucleic Acids Res. 33: 2433–2439.

Gautheret, D. and Lambert, A. 2001. Direct RNA definition and
identification from multiple sequence alignments using secondary
structure profiles. J. Mol. Biol. 313: 1003–1011.

Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., and Eddy, S.R.
2003. Rfam: An RNA family database. Nucleic Acids Res. 31: 439–441.

Hall, B.G. 2006. Simple and accurate estimation of ancestral protein
sequences. Proc. Natl. Acad. Sci. 103: 5431–5436.

Hasegawa, M., Kishino, H., and Yano, T. 1985. Dating of the
human–ape splitting by molecular clock of mitochondrial DNA. J.
Mol. Evol. 21: 160–174.

Havgaard, J.H., Lyngsø, R., Stormo, G.D., and Gorodkin, J. 2005.
Pairwise local structural alignment of RNA sequences with sequence
similarity less than 40%. Bioinformatics 21: 1815–1824.

Haussler, D., Krogh, A., Mian, I.S., and Sjölander, K. 1993. Protein
modeling using hidden Markov models: Analysis of globins. In
Proceedings of the Hawaii International Conference on System Sciences,
pp. 792–802. IEEE Computer Society Press, Los Alimitos, CA.

Henikoff, S. and Henikoff, J.G. 1992. Amino acid substitution matrices
from protein blocks. Proc. Natl. Acad. Sci. 89: 10915–10919.

Hillier, L.W., Miller, W., Birney, E., Warren, W., Hardison, R.C.,
Ponting, C.P., Bork, P., Burt, D.W., Groenen, M.A., Delany, M.E., et
al. 2004. Sequence and comparative analysis of the chicken genome
provide unique perspectives on vertebrate evolution. Nature
432: 695–716.

Hofacker, I.L., Fontana, W., Bonhoeffer, S., and Stadler, P.F. 1994. Fast
folding and comparison of RNA secondary structures. Monatsh.
Chem. 125: 167–188.

Hofacker, I., Fekete, M., and Stadler, P. 2002. Secondary structure
prediction for aligned RNA sequences. J. Mol. Biol. 319: 1059–1066.

Huelsenbeck, J.P. and Bollback, J.P. 2001. Empirical and hierarchical
Bayesian estimation of ancestral states. Syst. Biol. 50: 351–366.

Huelsenbeck, J.P. and Ronquist, F. 2001. MRBAYES: Bayesian inference
of phylogenetic trees. Bioinformatics 17: 754–755.

Hughey, R. and Krogh, A. 1996. Hidden Markov models for sequence
analysis: Extension and analysis of the basic method. Comput. Appl.
Biosci. 12: 95–107.

Karplus, K., Barrett, C., and Hughey, R. 1998. Hidden Markov models
for detecting remote protein homologies. Bioinformatics 14: 846–856.

Klein, R.J. and Eddy, S.R. 2003. RSEARCH: Finding homologs of single
structured RNA sequences. BMC Bioinformatics 4: 44.

Krogh, A., Brown, M., Mian, I.S., Sjölander, K., and Haussler, D. 1994.
Hidden Markov models in computational biology. Applications to
protein modeling. J. Mol. Biol. 235: 1501–1531.

Lindahl, E. and Elofsson, A. 2000. Identification of related proteins on
family, superfamily and fold level. J. Mol. Biol. 295: 613–625.

Liu, J., Wang, J.T., Hu, J., and Tian, B. 2005. A method for aligning RNA
secondary structures and its application to RNA motif detection.

BMC Bioinformatics 6: 89.
Löytynoja, A. and Milinkovitch, M.C. 2003. A hidden Markov model for

progressive multiple alignment. Bioinformatics 19: 1505–1513.
Lunter, G. and Hein, J. 2004. A nucleotide substitution model with

nearest-neighbour interactions. Bioinformatics 20: I216–I223.
Madera, M. and Gough, J. 2002. A comparison of profile hidden Markov

model procedures for remote homology detection. Nucleic Acids Res.
30: 4321–4328.

Mattick, J. 2001. Non-coding RNAs: The architects of eukaryotic
complexity. EMBO Rep. 2: 986–991.

McCormack, T.J., 2003. Comparison of K+-channel genes within the
genomes of Anopheles gambiae and Drosophila melanogaster. Genome
Biol. 4: R58.

Nielsen, R. 2002. Mapping mutations on phylogenies. Syst. Biol.
51: 729–732.

Pang, K.C., Frith, M.C., and Mattick, J.S. 2006. Rapid evolution of
noncoding RNAs: Lack of conservation does not mean lack of
function. Trends Genet. 22: 1–5.

Park, J., Karplus, K., Barrett, C., Hughey, R., Haussler, D., Hubbard, T.,
and Chothia, C. 1998. Sequence comparisons using multiple
sequences detect three times as many remote homologues as
pairwise methods. J. Mol. Biol. 284: 1201–1210.

Pearson, W.R. 1991. Searching protein sequence libraries: Comparison of
the sensitivity and selectivity of the Smith-Waterman and FASTA
algorithms. Genomics 11: 635–650.

Pearson, W.R. and Lipman, D.J. 1988. Improved tools for biological
sequence comparison. Proc. Natl. Acad. Sci. 85: 2444–2448.

Pedersen, J.S., Bejerano, G., Siepel, A., Rosenbloom, K., Lindblad-Toh,
K., Lander, E.S., Kent, J., Miller, W., and Haussler, D. 2006.
Identification and classification of conserved RNA secondary
structures in the human genome. PLoS Comput. Biol. 2: 251–262.

Qian, B. and Goldstein, R.A. 2003. Detecting distant homologs using
phylogenetic tree-based hmms. Proteins 52: 446–453.

Saebø, P.E., Andersen, S.M., Myrseth, J., Laerdahl, J.K., and Rognes, T.
2005. PARALIGN: Rapid and sensitive sequence similarity searches
powered by parallel computing technology. Nucleic Acids Res.
33: 535–539.

Schöniger, M. and von Haeseler, A. 1994. A stochastic model for the
evolution of autocorrelated DNA sequences. Mol. Phylogenet. Evol.
3: 240–247.

Sjölander, K., Karplus, K., Brown, M., Hughey, R., Krogh, A., Mian, I.S.,
and Haussler, D. 1996. Dirich-let mixtures: A method for improved
detection of weak but significant protein sequence homology.
Comput. Appl. Biosci. 12: 327–345.

Smith, T. and Waterman, M. 1981. Identification of common molecular
subsequences. J. Mol. Biol. 147: 195–197.

Sprinzl, M., Horn, C., Brown, M., Ioudovitch, A., and Steinberg, S. 1998.
Compilation of trna sequences and sequences of trna genes. Nucleic
Acids Res. 26: 148–153.

States, D.J., Gish, W., and Altschul, S.F. 1991. Improved sensitivity of
nucleic acid database searches using application-specific scoring
matrices. Methods Enzymol. 3: 66–70.

Szymanski, M., Barciszewska, M.Z., Erdmann, V.A., and Barciszewski, J.
2002. 5S Ribosomal RNA Database. Nucleic Acids Res. 30: 176–178.

Washietl, S., Hofacker, I.L., Lukasser, M., Hüttenhofer, A., and Stadler,
P.F. 2005. Mapping of conserved RNA secondary structures predicts
thousands of functional noncoding RNAs in the human genome.
Nat. Biotechnol. 23: 1383–1390.

Weinberg, Z. and Ruzzo, W.L. 2006. Sequence-based heuristics for faster
annotation of non-coding RNA families. Bioinformatics 22: 445–452.

Workman, C. and Krogh, A. 1999. No evidence that mRNAs have lower
folding free energies than random sequences with the same
dinucleotide distribution. Nucleic Acids Res. 27: 4816–4822.

Wuyts, J., Van de Peer, Y., Winkelmans, T., and De Wachter, R. 2002.
The European database on small subunit ribosomal RNA. Nucleic
Acids Res. 30: 183–185.

Zwieb, C. 1997. The uRNA database. Nucleic Acids Res. 25: 102–103.

Received August 23, 2006; accepted in revised form October 19, 2006.

Exploring genomic dark matter

Genome Research 125
www.genome.org




