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Genome-wide association studies are still constrained by the cost of genotyping. For this reason, the selection of a
reduced set of markers or tags able to capture a significant proportion of the genetic variation is an important
aspect of these studies. Most tagging SNP selection methods have been successful in capturing the genetic variation of
the data from which the tags have been chosen. However, when these tags are used in an independent data set, a
significant proportion of the remaining SNPs (non-tags) are not captured and, in most cases, there is no information
on which SNPs are captured. We propose to use a probabilistic model to predict the non-tags based on a set of tags,
as a way to capture genetic variation. An important advantage of this method is that it directly predicts the
genotype of the non-tags with which we can test for association with the phenotype and which could help to
elucidate the location of genes responsible for increasing disease susceptibility. Additionally, this method provides an
estimate of the probabilities with which the predictions are made, which reflects the confidence of the probabilistic
model. We also propose new methods to select the tagging SNPs. We empirically show by using HapMap data that
our approach is able to capture significantly more genetic variation than methods based solely on a pairwise LD
measure.

[Supplemental material is available online at www.genome.org.]

Much of the variation between people in phenotypic traits such
as eye or hair color, size, and disease susceptibility is heritable
and has a genetic basis. Most of the genetic differences between
individuals are single nucleotide polymorphisms (SNPs), which
are differences in chromosomes at a nucleotide base. It has been
estimated that there are about 10 million common SNPs (fre-
quency of each allele >1%) across the genome (The International
HapMap Consortium 2003) that account for ∼90% of the human
genetic variation. Moreover, McCarroll et al. (2005) show that
other forms of genetic variation such as common deletion poly-
morphisms are well captured by SNPs.

One approach to identifying the SNPs responsible for par-
ticular phenotypic traits is via association studies, in which the
allele frequencies of different SNPs are compared in case and
control samples. A difficulty that association studies encounter is
that the disease susceptibility loci are unknown and there are
millions of possible sites to genotype. Even though the cost of
genotyping is rapidly decreasing, it is still impractical to geno-
type every SNP or even a large proportion of them. Fortunately,
nearby SNPs are often strongly correlated with each other or, in
other words, are in strong Linkage Disequilibrium (LD). There-
fore, it might be possible to define a subset of the SNPs that “tag”
a large proportion of the remaining variants in the genome, so
that the latter would give redundant information in an associa-
tion study.

There are several algorithms and methods that have been

developed in the last few years that try to select the best set of
tagging SNPs (e.g., Johnson et al. 2001; Weale et al. 2003; Zhang
et al. 2004). Carlson et al. (2004) proposed an algorithm (known
as ldSelect) that aims to select a set of SNPs, the set of tagging
SNPs that ensure r2 values larger than a given threshold between
SNPs in the tagging SNP set and those outside of the set. r2 is the
square of the coefficient of correlation and is one of many scores
that measure the level of LD between two SNPs (for a comparison
of many such measures, see Devlin and Risch 1995). Among the
various measures, r2 is particularly popular since Kruglyak (1999)
(see also Pritchard and Przeworski 2001) showed that there is a
direct relationship between the power of a particular test for as-
sociation and the r2 value. Suppose that to achieve a given power
one needs n individuals in a test that measures the association
between the disease susceptibility locus and the case and control
status of the n individuals genotyped. If the same individuals
were genotyped at a linked marker instead of the disease suscep-
tibility locus, one would need n / r2 individuals to achieve the
same power, where r is the coefficient of correlation between the
linked marker and the disease susceptibility locus. Therefore, the
number of individuals that need to be genotyped to achieve a
given power in a test for association is closer to n for r2 values
close to one. Power in a test for association, based on a specific
disease model, has been utilized as an evaluation criterion for the
performance of tagging SNPs (e.g., Chapman et al. 2003). Hu et
al. (2004) proposed to use power as a direct metric for selecting
tagging SNPs.

It should be noted that r2 values between a marker and the
disease susceptibility locus is just one of several parameters that
determine power. For the same r2 value, the power of a test for
association that depends on a SNP can range from very low to
very high values depending on the allele frequency and the un-
derlying disease model. Among the other parameters that influ-
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ence the power of an association study are: the disease suscepti-
bility allele frequency, the penetrance of the disease suscepti-
bility locus, and the frequency of the alleles of the markers (see
Schork 2002 for a thorough description of power calculation in
association studies; also Zondervan and Cardon 2004; Wang
et al. 2005).

A drawback of pairwise measures of LD is that they do not
capture the full correlation structure of the sequence variation.
For this reason, researchers are now also investigating the prop-
erties of sets of SNPs or haplotypes. For example, Clayton (2001)
defines haplotype diversity as a way to find the optimal choice of
tagging SNPs. Li and Stephens (2003) proposed a hidden Markov
model (HMM) to fit haplotype data that incorporates genetic
factors such as recombination rates, probability of mutation, and
the distance between SNPs in the model.

Much effort has been put into methods that reduce the
number of tagging SNPs required to capture genomic variation.
For instance, deBakker et al. (2005) propose a haplotype-based
tagging method that requires significantly fewer SNPs than the
algorithm ldSelect of Carlson et al. (2004), while achieving the
same coverage in the training set used to define those tags. De-
spite the improvement obtained with these approaches, the key
aim is to find a method that will give the most efficient coverage
not only for the training set but also in future association studies.
The purpose of all tagging SNPs selection methods is essentially
to choose tags that allow reconstruction of the non-tags in such
studies.

In view of this, in this work we propose a method to directly
predict the non-tags as a way to capture genetic variation. Addi-
tionally, we propose an approach to select tagging SNPs that
provides a list of sorted SNPs from which to choose the tags. We
show that the new methods are able to capture more of the ge-
netic variation in a new data set than ldSelect (and therefore also
more than the de Bakker et al. 2005 approach) given the same
number of tags, as measured by three criteria and Fisher’s exact
test. We choose to compare our methods with ldSelect due to its
popularity, effectiveness, and fast implementation. The compari-
son will be used to illustrate the features of the method we pro-
pose in this work. The algorithms that we propose use the PAC
(product of approximate conditionals) likelihood of Li and Ste-
phens (2003).

Other methods have been proposed that predict the non-
tags based on a set of tags (e.g., Goldstein et al. 2003; Sebastiani
et al. 2003), but none of these methods incorporate genetic fac-
tors in the model and these methods do not assess the perfor-
mance of the tags in a future study.

Methods

ldSelect

Carlson et al. (2004) developed a greedy algorithm that identifies
subsets of tagging SNPs for genotyping, selected from the set of
all SNPs exceeding a specified minor allele frequency (MAF)
threshold. The aim of the algorithm is to construct a set of tag-
ging SNPs such that every SNP has a value of r2 above a given
threshold with at least one SNP that belongs to the tagging SNP
set. Starting with all SNPs that are above the MAF threshold, the
single site exceeding the r2 threshold with the maximum number
of other sites above the MAF threshold is identified. This maxi-
mally informative site and all associated sites are grouped as a bin
of associated sites and removed from the set of SNPs still to be

tagged. The binning process is iterated, analyzing all SNPs that
have not yet been assigned to a bin until every SNP belongs to a
bin. Then, all of the pairwise values of r2 within each bin are
re-evaluated, and any SNP exceeding the r2 threshold with all of
the other sites in the bin is specified as a tagging SNP for that bin.
Thus, one or more SNPs within each bin are specified as tagging
SNPs, and only one tagging SNP would need to be genotyped per
bin.

The number of SNPs that ldSelect finds depends on the
adopted threshold. Large thresholds require a larger number of
SNPs. The number of SNPs found depends additionally on the
initial set of SNPs and their LD structure. It is harder for rare
SNPs, i.e., SNPs with MAF <1%, to find surrogate SNPs linked
with them. Thus, the algorithm tends to include many rare SNPs
in the final set of tagging SNPs.

In ldSelect, no underlying model attempts to explain how
the SNP data might have been generated. The next section de-
scribes a model introduced by Li and Stephens (2003) that at-
tempts to reproduce important aspects of the underlying process
that generates the data.

PAC likelihood and prediction of non-tags

Li and Stephens (2003) proposed a hidden Markov model for
haplotype data that incorporates both recombination and muta-
tion. The properties that this model aims to capture are the fol-
lowing: Given a set of observed haplotypes, a new haplotype
should be more likely to be equal to a haplotype that has been
observed many times than to a haplotype that has been observed
less frequently; a new haplotype should differ from an existing
one in only a few loci; a new haplotype should be similar to an
existing haplotype over contiguous regions. Additionally, the
probability of observing a novel haplotype should increase as the
probability of mutation increases and should decrease as the
number of observed haplotypes increases.

We use this model and the forward algorithm for hidden
Markov models to compute the likelihood of a set of haplotypes.
In the context of the tagging SNP selection problem, we use this
likelihood to predict the value of the non-tagging SNPs based on
the tags and the genotypes of non-tags in some reference indi-
viduals.

More precisely, assume that we have observed n haplotypes
h1, . . . , hn evaluated at S biallelic loci, so that hij corresponds to
the ith haplotype evaluated at the jth SNP. Assume that the next
haplotype hn+1 has some missing components, so that hn+1 =
(hn+1

obs , hn+1
miss). hn+1

miss is the vector of missing components and hn+1
obs is

the vector of observed components. We use the forward algo-
rithm to compute at each missing component jm the probability
of each allele (denoted by 0 and 1) given the haplotypes
h1, . . . , hn and the observed components hn+1

obs , i.e., we compute
Pr(hn+1,jm

miss = 1|h1, . . . , hn, hn+1
obs ). We infer the missing components

using the following rule:

ĥ n+1, jm
miss = �1 if Pr �hn+1, jm

miss = 1 |h1, . . . , hn, hn+1
obs , �� � 0.5

0 if Pr �hn+1, jm
miss = 1 |h1, . . . , hn, hn+1

obs , �� < 0.5
(1)

where � is a given vector of recombination rates (which are esti-
mated following the approach in McVean et al. (2002).

In the context of the tagging SNP selection problem, the (n + 1)th
haplotype hn+1 corresponds to a haplotype from a new data set,
different from the one we use to choose the tags. The missing com-
ponents correspond to the non-tagging SNPs, the observed
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components to tagging SNPs, and h1, . . . , hn correspond to the
haplotypes in the training set. For instance, hn+1 could be a hap-
lotype in a future disease association study in which individuals
have been genotyped only at the tags positions. Such studies aim
to uncover associations between genotypes and a particular dis-
ease. The genetic variation in untyped loci can then be predicted
using the rule in equation 1 and previously genotyped data
h1, . . . , hn (e.g., HapMap). In the following, we describe what
motivates the development of new methods to choose tagging
SNPs.

Motivation to new approaches that select tagging SNPs

Before setting out the optimization problem that motivates our
tagging SNPs selection scheme, we introduce some notation.
Consider n haplotypes h1, . . . , hn evaluated at S biallelic loci.
Denote by hi = (hi1, . . . , hiS) the ith haplotype and by D =
{h1, . . . , hn} the set of n haplotypes. Assume that each haplotype
hi can be decomposed in two vectors hi = (hi

T,hi
NT), where hi

T

corresponds to the components of the tagging SNPs in the ith
haplotypes and hi

NT corresponds to the components of the non-
tagging SNPs. Accordingly, DT = {h1

T, . . . , hn
T} consists of the set

of n haplotypes evaluated at the tagging SNPs and DNT =
{h1

NT, . . . , hn
NT} the same set of haplotypes evaluated at non-

tagging SNPs.
There are various ways in which the tagging SNPs can be

chosen. A natural choice is to select the SNPs that maximize our
ability to predict the non-tags. In other words, one wants to find
the set T*1 where

T*1 = arg maxTPr �DNT |DT�.

For a given probability model, if it were possible to find the exact
solution for T*1, then this would be a desirable tagging SNP set.
Unfortunately, an exact solution for T*1 would imply selecting all
subsets SNPs, which becomes computationally unfeasible for the
situations of interest with current genomic data. For this reason,
we will look also at other tagging SNP sets with desirable prop-
erties, but whose constructions are computationally tractable.

Another way to choose the tags is to identify the SNPs that
appear to be redundant, i.e., the SNPs that find other SNPs from
the data set with similar information for the model. A possible
approach to select these tags could then be to use the value of the
likelihood to measure the relevance of the SNPs in the model. For
example, if one deletes or considers missing some of the SNPs
from the data set and recomputes the likelihood of the data set
without these SNPs, then one could argue that the set of SNPs
that keeps the value of the incomplete likelihood as close as
possible to the value of the full likelihood could approximate the
desirable tag set.

More explicitly, consider the set that satisfies the following
condition

T*2 = arg minT

Pr�D�

Pr�DNT�
subject to r hi,hj∈T

2 < 0.8.

or equivalently,

T*2 = arg minTPr�DT |DNT� subject to r hi,hj∈T
2 < 0.8.

While there are other possible motivations for SNP selection, in
this work we limit ourselves to the exploration of the possibilities
mentioned above.

We describe algorithms that find the set of tagging SNPs that

attempts to capture the properties of T*1 and T*2 in the Supple-
mental material.

In the following we present the results of comparing these
two approaches with ldSelect for selecting tagging SNPs.

Results

It has been suggested that the populations genotyped in the Hap-
Map project may serve as reference populations for the selection
of tagging SNPs in association studies. In addition to surveying
variation genome-wide, the HapMap Project focused on 10
ENCODE regions for comprehensive genotyping as part of an
in-depth study of human genetic variation. The regions were
chosen to represent a range of conservation with the mouse ge-
nome and of gene density according to the strata identified dur-
ing the ENCODE target selection process.

We measure the performance of our approach and compare
it with ldSelect in the 10 ENCODE regions, which are each
roughly 500 kb in length. Individuals from three populations
were genotyped: 60 unrelated Europeans from Utah (CEU), 60
unrelated Africans from Nigeria (YRI), and 89 unrelated Asians
(Han Chinese [HCB] and Japanese from Tokyo [JPT]). We con-
sider only common SNPs within each population.

The comparison of the three algorithms tries to assess the
performance of a set of tagging SNPs in a future association study
by randomly assigning haplotypes from each of the three popu-
lations into equally sized training and test data sets. The training
data set is used to perform the tagging SNP selection, while the
test data set is not used to define the tagging SNPs, and thus is a
proxy for the the genotypes obtained in the future study.

We measure the performance of the various algorithms us-
ing three criteria: proportion of non-tagging SNPs “captured,”
misclassification rate, and the Brier score (Brier 1950).

Misclassification is an overall measure that is independent
of the MAF of the SNPs. In the context of the tagging SNP selec-
tion problem, misclassification is the number of mismatches be-
tween the predicted non-tags and their actual values. Statisti-
cally, it is also an appealing quantity. It is a well-known statistical
procedure to use an independent data set, different from the one
used to estimate the parameters of a probabilistic model, to assess
the performance of the model. In this context, the performance
of a model refers to the ability of the model to predict a response
variable. Specifically, it is desirable to minimize the expected
prediction error E(L(Y, f (X; �̂))). Here Y denotes the response
variable, X a set of covariates, and L the loss function, which is
usually the squared error loss for continuous response variables
and the 0–1 loss when the response variable is categorical, and f
is a rule that links the response variable with the covariates and
the parameters estimated with the data, �̂. Assessing the perfor-
mance or prediction error of a model using the same data with
which the parameters of the model were estimated does not give
an accurate estimate of the performance. Usually the prediction
error can be dropped to zero by increasing the model complexity.
A model with prediction error equal to zero is unrealistic and
captures mainly features that are specific to the data used to build
the model and will typically generalize poorly to other data sets
(see Hastie et al. 2001 for more details).

In the context of tagging SNPs selection, for a fixed number
of tags, we want to find the set of SNPs that minimize the ex-
pected prediction error when the 0–1 loss is considered and all
non-tagging SNPs are predicted. By mimicking the statistical pro-
cedure mentioned in the above paragraph, we estimated the ex-
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pected prediction error using an indepen-
dent data set from the one used to choose
the tagging SNPs. Misclassification rate is an
estimate of the expected future prediction
error of a model when a 0–1 loss of function
is considered.

The Brier score is similar to the mean
squared error (MSE), measuring the differ-
ence between the prediction probability of
an event and its occurrence, expressed as 0
or 1 depending on whether a particular al-
lele has occurred or not. It is also indepen-
dent of the MAF of the SNPs.

Henceforth, we say that a non-tagging
SNP is “captured” if the prediction of the
non-tag has r2 > 0.8 with the actual value of
the non-tag in the test data set. Recall that
by using the rule given by equation 1 and
we can predict every non-tagging SNP.
Therefore, for each non-tagging SNP, there
is a predicted SNP that represents our “best”
guess for that SNP. In a similar way, the
“best” guess for each non-tag in the test
data that ldSelect provides is the tag in the test data with which
the non-tag has the highest r2 value. The proportion of SNPs
captured is given by the sum of the number of tagging SNPs and
the number of non-tags captured divided by the total number of
SNPs. Misclassification, for each SNP, is computed as the number
of mismatches between the true SNP and its predicted SNP. The
overall misclassification rate is given by the sum of the misclas-
sifications given by each non-tag divided by the total number of
SNPs and the total number of haplotypes in the test data. If the
probabilities in the rule given by equation 1 are used to make the
predictions, the Brier score is computed in the following way:

�
i=n+1

2n

�
j∈NT

�Pr�hij = hij
obs |h1, . . . , hn, �� − hij

obs�2

2
,

where NT corresponds to the set of non-tagging SNPs and the
sum is over the haplotypes in test data.

If, instead, we use ldSelect to predict the non-tags, then we
replace the probability Pr(hij = h ij

obs |h1, . . . , hn, �) in the above
expression by either 1 or 0 depending on the value of the tag,
evaluated at haplotype j, that has the highest r2 value with the
non-tag that we are trying to predict. In this case, the Brier score
is proportional to the misclassification rate.

Generalization performance

It is well recognized that point estimators of r2 have a high sam-
pling variance (e.g., Ewen 1979) and therefore might indicate
that one SNP captures another, when in fact it does not. Carlson
et al. (2004) used simulated data to empirically test the reliability
of the proportion of SNPs captured using r2 values and different
thresholds and concluded that thresholds >0.5 appear to yield
more reliable results for the particular sample size that they used.
We use ldSelect on the training set to choose the tags, using a
cutoff of 0.8, and then assess its performance in capturing varia-
tion in the test data set.

We stopped the ldSelect algorithm after 50 and 100 SNPs
were selected as tagging SNPs and measured the percentage of
SNPs captured by these sets of SNPs and compared it with what
is expected from training data (Table 1, first 6 rows). For example,

with 50 tags, ldSelect tags capture 84% of the total number of
SNPs in the combined Asian populations. When the same SNPs
are considered in test data, 73% of the SNPs are captured. We
note that regardless of the number of tagging SNPs chosen, when
considering a new data set, ∼12% of the SNPs captured in training
data are not captured in a new data set. Note also that the African
population (YRI) requires more SNPs to capture the same propor-
tion on non-tags than the European (CEU) or combined Asian
populations (JPT+HCB). This agrees well with the evidence for
slightly higher genetic diversity in the African populations, a fact
that has been taken as evidence for the “out of Africa” model
(see, e.g., Reich et al. 2001).

ldSelect tagging SNPs vs. ldSelect tagging SNPs together
with a model

To assess whether we could gain information from a probabilistic
model in capturing non-tagging SNPs, we use the same set of
tagging SNPs that ldSelect finds to predict all SNPs outside of the
tagging SNP set using the Li and Stephens (2003) likelihood as
explained above. In this case, the tagging SNPs correspond to the
observed components of the haplotype and the remaining SNPs
correspond to the missing components. The missing compo-
nents are predicted using the rule given by equation 1. We esti-
mate the r2 value between all SNPs outside of the tagging SNP set
with their predicted values using test data.

The difference in the percentage of SNPs captured by
ldSelect compared with the ones captured by predicting the non-
tags using the Li and Stephens’ (2003) model is more noticeable
when the number of tagging SNPs is smaller. Using the Li and
Stephens’ (2003) model to predict non-tagging SNPs allows an
increase of 11% in the captured SNPs in the YRI population when
50 and 100 SNPs are in the tagging SNP set and between 6% and
8% in the JPT+HCB and CEU populations for the same number of
SNPs (Table 1). If resources are limited in an association study
and one is restricted to genotyping only a small fraction of the
SNPs, then the gain obtained by predicting SNPs based on the Li
and Stephens’ (2003) model can be important.

Another way to assess the performance of the tagging SNPs

Table 1. Proportion of SNPs captured averaged over the 10 ENCODE regions and 10
training-test splits

Proportion of SNPs captured

Population Data Tag set
Prediction
method

No. tags

50 sd 100 sd

CEU tr ldselect ldSelect 0.82 (0.05) 0.94 (0.03)
JPT + HCB tr ldselect ldSelect 0.84 (0.08) 0.95 (0.06)
YRI tr ldselect ldSelect 0.55 (0.09) 0.72 (0.08)
CEU te ldselect ldSelect 0.70 (0.04) 0.82 (0.03)
JPT + HCB te ldselect ldSelect 0.73 (0.07) 0.84 (0.06)
YRI te ldselect ldSelect 0.44 (0.08) 0.59 (0.07)
CEU te ldselect L + S 0.78 (0.05) 0.88 (0.03)
JPT + HCB te ldselect L + S 0.80 (0.07) 0.90 (0.06)
YRI te ldselect L + S 0.53 (0.09) 0.70 (0.06)
CEU te T̂1 L + S 0.74 (0.065) 0.88 (0.024)
JPT + HCB te T̂1 L + S 0.74 (0.127) 0.91 (0.066)
YRI te T̂1 L + S 0.52 (0.100) 0.71 (0.061)
CEU te T̂2 L + S 0.79 (0.067) 0.90 (0.023)
JPT + HCB te T̂2 L + S 0.81 (0.086) 0.93 (0.080)
YRI te T̂2 L + S 0.53 (0.093) 0.71 (0.062)

The numbers in parentheses correspond to the standard error.
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is the misclassification rate, which reflects the overall error in
prediction. The results for ldSelect in training and test data are
shown in Table 2. The performance of tagging SNPs chosen by
ldSelect between training and testing data decreases slightly, and
again we can see that the gain is about 2%–4% when we predict
the non-tags using LS.

We have described a way in which we can capture more
of the genetic variation by using the tagging SNPs chosen by
ldSelect algorithm and predicting the non-tagging SNPs using
the Li and Stephens’ (2003) model. The next section shows that
if we additionally use the Li and Stephens’ (2003) model to
choose the tags as described above, we are able to capture even
more of the genetic variation.

Performance of ldSelect tags vs performance of T̂*1 and T̂*2
We now compare the performance of the sets T̂*1 and T̂*2 of tag-
ging SNPs that approximate the exact solution of T*1 and T*2,
respectively. These sets of tags are used to predict the non-tags
using the rule given by equation 1. We use 10 training-test splits
of the data to provide error estimates in the evaluation of per-
formance.

The results of the Brier scores, misclassification, and propor-
tion of SNPs captured, averaged over the 10 ENCODE regions and
the 10 training-test splits, are shown in Tables 3, 2, and 1, re-
spectively, for T̂ *1, T̂ *2 and ldSelect tags.
Table 1 shows a slight improvement of 1%–
3% in the proportion of SNPs captured by
the tags when these have been chosen, us-
ing T̂ *2 compared with the performance
when the tags have been chosen using ldS-
elect. The Brier score is shown for T̂*1, T̂*2
and ldSelect in Table 3. Our approach using
T̂ *1 shows the smaller Brier scores in the
three populations, which reflects better
confidence in the predictions. Misclassifica-
tion remains roughly the same in the three
algorithms (Table 2).

Another way of assessing how much of
the genetic variation is captured by predict-

ing the non-tags is through a statistical test that computes the
non-random association between the predicted non-tag and its
true value. In particular, the P-values of such tests provide a mea-
sure of how likely it is to observe data at least as extreme as the
sample data when the predicted non-tag and its true value are
independent. In the following section we applied one such test to
our predicted data.

Fisher’s exact test

Fisher’s exact test is a statistical test used to determine whether
there are nonrandom associations between two categorical vari-
ables (see Agresti 1990 for details). When one or more of the
expected numbers in a 2 � 2 table is less than five, and when the
overall sample size is small, it is commonly believed that Fisher’s
test remains a reliable test. We consider three sets of 50 tags given
by ldSelect, T̂1, and T̂2, and assume one by one that each non-tag
is the causal SNP. We want to test whether one would be able to
capture this causal SNP in individuals where one has observed
the tags and has a predicted estimate of the causal SNPs. We
perform Fisher’s exact test between each non-tag SNP and its
predicted SNP obtained using the rule given by equation 1 in test
data in the 10 ENCODE regions. Figure 1 shows the sorted P-
values obtained in this test that we denote by test1. Each panel
contains the P-values of a different population. From left to right,
the panels contain the P-values in the European population
(CEU), in the combined Asian populations (JPT+HCB), and in the
African population (YRI), respectively. The black lines (continu-
ous line), green (dotted), and blue (dot-line) represent the sorted
P-values for the test performed using ldSelect tags, T̂1 and T̂2,
respectively. Consistently, the P-values are smaller in the three
populations when T̂1 tags have been used. T̂2 does slightly worse
than the other two sets in the CEU population, and in the YRI
population, the performance of ldSelect is slightly lower than for
the other two sets.

To compute the P-values, we first calculate the probability of
the 2�2 table given a particular row and column sums in the
following way:

pobs =
R1!R2!C1!C2

N!a11!a12!a21!a22!

where Ci and Rj denote the row and column sums, respectively,
and N = ∑2

i=1 ∑2
j=1 aij = ∑i Ci = ∑j Rj = number of haplotypes in the

test data. Then the P-value of test1 is the sum of the probabilities
of all of the possible tables of non-negative integers, consistent
with the row and column sums that have probability less than or
equal to Pobs.

Table 2. Misclassification rate averaged over the 10 ENCODE
regions and 10 training-test splits

Misclassification rate of predicted SNPs

Population Data Tag
Prediction
method

No. tags

50 sd 100 sd

CEU tr ldSelect ldSelect 0.04 (0.010) 0.02 (0.004)
JPT + HCB tr ldSelect ldSelect 0.03 (0.016) 0.02 (0.009)
YRI tr ldSelect ldSelect 0.07 (0.024) 0.04 (0.019)
CEU te ldSelect ldSelect 0.04 (0.010) 0.02 (0.005)
JPT + HCB te ldSelect ldSelect 0.04 (0.010) 0.02 (0.009)
YRI te ldSelect ldSelect 0.08 (0.020) 0.05 (0.020)
CEU te ldSelect L + S 0.02 (0.007) 0.01 (0.004)
JPT + HCB te ldSelect L + S 0.02 (0.008) 0.01 (0.006)
YRI te ldSelect L + S 0.04 (0.017) 0.03 (0.009)
CEU te T̂1 L + S 0.02 (0.005) 0.01 (0.002)
JPT + HCB te T̂1 L + S 0.02 (0.008) 0.01 (0.004)
YRI te T̂1 L + S 0.03 (0.009) 0.02 (0.004)
CEU te T̂2 L + S 0.02 (0.008) 0.01 (0.003)
JPT + HCB te T̂2 L + S 0.02 (0.008) 0.01 (0.005)
YRI te T̂2 L + S 0.04 (0.013) 0.02 (0.007)

The numbers in parentheses correspond to the standard error.

Table 3. Brier score when tagLS and ldSelect tags (respectively) are used and the
non-tags are predicted using the rule given by equation 1 (L+S)

Brier score of predicted SNPs

T̂1 T̂2 ldSelect

50 100 50 100 50 100

CEU 258.11 121.92 259.91 136.32 285.20 155.64
(100.992) (49.52) (157.52) (52.90) (135.37) (61.43)

JPT + HCB 342.76 138.13 330.76 173.47 357.55 194.83
(167.697) (82.809) (164.34) (100.71) (175.84) (98.15)

YRI 551.12 308.56 680.24 382.17 727.80 415.25
(257.153) (136.725) (299.29) (154.27) (314.57) (176.71)

The numbers in parentheses correspond to the standard error.
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Figure 1. Sorted P-values of Fisher’s exact test (test1) in the three populations CEU (left), JPT+HCB (middle), and YRI (right) evaluated in test data in
the 10 ENCODE regions.
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To assess the prediction performance of the ldSelect tags
when the probabilistic model is not used to predict the non-tags,
we compute a second test denoted by test2. Again, each non-tag
is assumed to be the causal SNP one by one. To compute the
P-values of test2 for each causal SNP, we first calculate the P-value
of Fisher’s test between the causal SNP and each tag and obtain
the minimum value (denoted Pobs

min). Then, we permute the causal
SNP status 1000 times, and each time we compute the minimum
P-value of Fisher’s test over all of the tags and count how many
times this minimum value is smaller than Pobs

min. The P-value for
test2 is then this count divided by 1000. In Figure 1 the sorted
P-values are depicted by the red dashed lines in the three panels.
It can be seen that the P-values for test2 are considerably higher
than the P-values for test1. This fact illustrates another advantage
of the method that predicts the non-tags using an informative
probabilistic model as opposed to just using the tags to capture
the genetic variation of the region.

Rare SNPs

Rare SNPs are in general difficult to be captured by other SNPs. It
is therefore of interest to assess the performance of the various set
of tags considered here on rare SNPs. To assess the performance
of these methods on rare SNPs, we compute the frequency of
captured and uncaptured SNPs for values of the frequency of the
MAF between 2 and 7. The results are illustrated in Figure 1 in the
Supplemental material, in which we plot a set of barplots above
the frequency of the MAF. These barplots are made up of eight
bars that correspond to the following: The first two bars corre-
spond to the number of non-tags captured by T̂1 tags and our
method for predicting non-tags, followed by the number of non-
tags uncaptured; the third and fourth correspond to the number
of non-tags captured by T̂2 tags and our method for predicting
non-tags, followed by the number of non-tags uncaptured; the
fifth and sixth bars correspond to the number of non-tags cap-
tured by ldSelect tags and our method for predicting non-tags,
followed by the number of non-tags uncaptured; the last two
columns correspond to the the number of non-tags captured by
ldSelect tags, followed by the number of non-tags uncaptured.
The upper panel shows the performance of the algorithms using
50 tags and the lower panel the performance of the algorithms
using 100 tags. Note that each method chooses a different set of
tags; therefore, the sums of the totals in the first and second bars,
second and third, forth and fifth, and sixth and eighth should be
similar but not necessarily equal.

It is apparent from Figure 1 (in Supplemental material) that
pure ldSelect tags are consistently worst performers. On the other
hand, the other three methods perform roughly similarly. We
conclude from this exercise that using our method for predicting
non-tags is the most important factor in increasing the capture of
rare SNPs by the tags, with the actual algorithm used to choose
the tags being of lesser importance.

Is there a better tagging SNP set?

How much better can a tagging SNP set perform if one is not
constrained by computational costs? Is there another tagging
SNP set that could capture significantly more genetic variation?
In this section we briefly address these questions. We argue using
a data set where we are not constrained by computational feasi-
bility that a more desirable set of tags, maxT, is one that maxi-
mizes the predictive probability of the non-tags given the tags

and some reference data set. As described above, our set T̂1 at-
tempts to approximate this set.

In order to illustrate the performance of the set maxT, we
consider three genes with few SNPs in the CEU population of
HapMap data, in which it is computationally feasible to look at
all possible sets of tags of a given size. We compute the Li and
Stephens (2003) likelihood at each set of tags using training data
and choose the set that maximizes the probability of the non-
tags given the tags and some reference data D, Pr(DNT|DT,D) in
the notation of the previous section (or, equivalently, we choose
the set of tags that minimizes the probability of the tags Pr(DT,D)
together with D. In this case, we consider D to be a subset of the
haplotypes from training data (in our experiments we use a third
of the haplotype of training data for this purpose) and evaluate
the remaining haplotype only at the components where the tags
are and compute the likelihood Pr (h1, . . . , hn1

, hn1
+ 1T , . . . , hn

T).
We then evaluate the performance of the tags in the test data.

The results are shown in Table 4. In column 1 we show the
three genes considered. ADD1 is a gene in chromosome 4 with
86,180 bp length, and contains 20 SNPs in HapMap data, ADD2
is located in chromosome 2 with 106,067 bp length with 31
SNPs, and WNK1 is in chromosome 12 with 155,227 bp length
with 46 SNPs in HapMap data. In columns 3–5 we show the
performance of ldSelect, T̂1 and maxT, respectively, using the
number of tags indicated in column 2. The performance is as-
sessed by the proportion of non-tags that are captured by the
tags. It is apparent that overall maxT is a better performer than
either of T1 or ldSelect, showing that it is indeed a more desirable
set of tags when computational limitations are not an issue. Note
that maxT is not always the best performer, but this is to be
expected due to the intrinsic uncertainty of predicting tags in a
set different from the training one.

Discussion

We have proposed a method to predict non-tags using the tags
and the PAC likelihood of the Li and Stephens’ (2003) model.
The PAC likelihood fits haplotype data that incorporates genetic
factors such as distance between SNPs, recombination rates, and
probability of mutations. When the tagging SNPs have been se-
lected based on the ldSelect algorithm, we show that by predict-
ing the non-tagging SNPs with our method we can capture sig-

Table 4. Proportion of SNPs captured by ldSelect, T̂1, and maxT
(columns 3–5) for the genes indicated in column 1 when using the
number of tags indicated in column 2

Genes No. of tags ldSelect T̂1 maxT

3 0.7 0.85 0.8
4 0.75 0.85 0.85

ADD1 5 0.75 0.85 0.85
6 0.80 0.85 0.85
7 0.85 0.85 0.85
3 0.57 0.54 0.83
4 0.78 0.87 0.87

WNK1 5 0.78 0.89 0.80
6 0.78 0.87 0.96
3 0.58 0.45 0.45
4 0.67 0.48 0.71

ADD2 5 0.70 0.71 0.74
6 0.77 0.74 0.77
7 0.80 0.74 0.84

It is apparent that maxT is a better performer in the case that all subsets
of a given size can be explored.
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nificantly more of the genetic variation in a region than by cap-
turing the variation based solely on the tagging SNPs and a
pairwise LD measure as prescribed by ldSelect. Our novel method
suggests a way to use the markers in order to capture more ge-
netic variation.

We also developed new algorithms to select tagging SNPs
that include the PAC likelihood of Li and Stephens (2003) in the
selection process itself. We measure the performance of two ap-
proaches for selecting tags together with the method for predict-
ing non-tags and compare it with the performance of ldSelect
using three criteria: Brier score, misclassification, and proportion
of non-tagging SNPs captured in independent data, i.e., different
haplotype data from the one used to choose the tagging SNPs. In
this way, we assess the performance of the algorithms in future
association studies. We show that the set of tags T̂2 always out-
perform ldSelect based on three criteria, and the set of tags T̂1

outperforms ldSelect according to the Brier score, but ldSelect
performs better when the number of SNPs captured is measured
and 50 tags have been used to predict the non-tags.

The ability to predict the non-tags offers several advantages.
The most obvious one is that it provides an extra SNP, beside the
tagging SNPs, with which we can test for association with the
phenotype. Additionally, it provides an estimate of the probabili-
ties with which the prediction of the non-tags are made that
reflects the confidence of the probabilistic model. Another ad-
vantage occurs when independent sets are considered to choose
the tagging SNPs and to genotype individuals for an association
study. For example, if the reference data set comes from an older
population with more genetic variation than the population con-
sidered in the association study, then it might happen that a SNP
appears to be monomorphic in a group of individuals considered
for an association study. A monomorphic SNP in test data is not
able to find any surrogate SNP in the tagging SNP set, because the
r2 value between itself and any other SNP does not exist unless
the other SNP considered is also monomorphic, in which case,
r2 = 1. Our approach has the advantage that a monomorphic SNP
can be predicted perfectly, whereas methods based on r2 will
never be able to capture such a SNP.

We computed P-values for Fisher’s exact test (test1) between
each non-tag and its predicted SNP, assuming that all non-tags
are one by one the causal SNPs. We also computed the minimum
P-values for Fisher’s exact test between each non-tag and the tags
(test2). We show that there are a considerably larger proportion
of smaller P-values in test1 compared with test2, reflecting an ad-
vantage of the probabilistic model in capturing genetic variation.

Our methods were developed favoring ease of computation
and fast implementation rather than exact calculations, which
are unfeasible for large data sets such as current genomic data.
There are still possible directions that could lead to improvement
of the methods proposed. One possibility is to optimize the al-
gorithm that searches for the best tagging SNP set, i.e., finding a
better approximation to maxTPr(DNT |DT). Another possibility is
to do the prediction of the non-tags taking into account the
dependence between the SNPs, which we are not considering in
this work. These possibilities will be explored in future work.

The code of these algorithms is written in Perl and C++
programming languages and is available at http://www.
statistik.lmu.de/∼eyheram/software/genecap/.
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