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The optimal method to be used for tSNP selection, the applicability of a reference LD map to unassayed populations,
and the scalability of these methods to genome-wide analysis, all remain subjects of debate. We propose novel,
scalable matrix algorithms that address these issues and we evaluate them on genotypic data from 38 populations
and four genomic regions (248 SNPs typed for ∼2000 individuals). We also evaluate these algorithms on a second
data set consisting of genotypes available from the HapMap database (1336 SNPs for four populations) over the same
genomic regions. Furthermore, we test these methods in the setting of a real association study using a publicly
available family data set. The algorithms we use for tSNP selection and unassayed SNP reconstruction do not require
haplotype inference and they are, in principle, scalable even to genome-wide analysis. Moreover, they are greedy
variants of recently developed matrix algorithms with provable performance guarantees. Using a small set of
carefully selected tSNPs, we achieve very good reconstruction accuracy of “untyped” genotypes for most of the
populations studied. Additionally, we demonstrate in a quantitative manner that the chosen tSNPs exhibit substantial
transferability, both within and across different geographic regions. Finally, we show that reconstruction can be
applied to retrieve significant SNP associations with disease, with important genotyping savings.

[Supplemental material is available online at www.genome.org.]

The recent common ancestry of the human species provides a
tool for the identification of genes that are involved in the sus-
ceptibility to, or protection from, common disease. However, the
implementation cost of exhaustive genetic association studies
comparing all human genetic variation in a very large number of
cases and controls remains prohibitive. On the other hand, it has
become apparent that common genetic variants such as single
nucleotide polymorphisms (SNPs) contain a lot of redundant in-
formation due to the linkage disequilibrium (LD) structure of the
genome (Daly et al. 2001; Goldstein and Weale 2001; Jeffreys
et al. 2001; Patil et al. 2001; Stumpf 2002). This observation
suggests the possibility of identifying a small set of SNPs that
capture the genetic information within a specified genomic re-
gion and enables the design of cost-efficient genetic association
studies. Such SNPs are commonly designated as tagging SNPs or
tSNPs.

This notion motivated the HapMap project, which in phase
I has released a public database of 1,000,000 SNPs, typed in four
populations from three geographic regions (Africa, Europe, and
East Asia) (The International HapMap Consortium 2003, 2005).
It has been suggested that the populations studied in the Hap-
Map project will serve as reference populations that will guide
the selection of tSNPs for the design of genetic association studies
by investigators around the world. However, the extent to which

tSNPs selected in one of the HapMap populations will be predic-
tive of unassayed SNPs in individuals from an unstudied popu-
lation is an important question that has only recently been ad-
dressed by a number of studies (Ke et al. 2004; Mueller et al. 2005;
Ramirez-Soriano et al. 2005; De Bakker et al. 2006; Gonzalez-
Neira et al. 2006; Magi et al. 2006; Montpetit et al. 2006; Willer
et al. 2006).

At the same time, a large number of methods identifying an
“optimal” set of tSNPs has recently been introduced in the lit-
erature (for review, see Halldorsson et al. 2004b). Early methods
necessitate haplotype inference—which is, from a computational
time viewpoint, prohibitive for whole-genome studies for a large
number of individuals—or rely on definitions of haplotype block
boundaries, namely regions of high association between SNPs.
Such methods subsequently select tSNPs based on these blocks
(Johnson et al. 2001; Patil et al. 2001; Gabriel et al. 2002; Wang
et al. 2002; Zhang et al. 2002, 2005; Ke and Cardon 2003; Sebas-
tiani et al. 2003; Stram et al. 2003). No consensus “block” defi-
nition has been reached thus far, and recent studies have dem-
onstrated marked differences in the number and length of blocks
generated by different methods (Ding et al. 2005; Zeggini et al.
2005). Finally, no formal metric has been agreed upon for the
quantification of the coverage provided by existing approaches
and the tSNP selection problem in general (Schwartz et al. 2003;
Wall and Pritchard 2003a,b). In most recent studies in the litera-
ture, this is implemented by estimating the r2 coefficient between
tagging SNPs and tagged SNPs (Chapman et al. 2003; Weale et al.
2003; Carlson et al. 2004; De Bakker et al. 2005). Although a high
r2 relationship might be a good indicator that a genetic associa-
tion study will be effective, it is not clear whether such a rela-
tionship is sufficient. On the other hand, if tSNPs can be used to
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accurately reconstruct unassayed genotypes (or haplotypes),
then it will be possible to retrieve the information retained in the
data set, including r2 relationships. The reconstruction of geno-
types based on preselected tSNPs has received considerably less
attention, and there is currently a dearth in methods that can
efficiently address the reconstruction problem in a quantitative
manner (Evans et al. 2004; Halldorsson et al. 2004a; Lin and
Altman 2004).

In this study, we define the tSNPs selection problem as a
reconstruction problem. Within this framework, we study a
sample of ∼2000 individuals from 38 populations from around
the world typed for four genomic regions (Yale data set). To test
our methods on a denser marker map, HapMap data from the
four corresponding genomic regions were also included in our
study. The data may be viewed as a table (one for each genomic
region and each population) consisting of ∼2000 rows, one for
each individual, and a number of columns, one for each SNP site.
We use a simple linear algebraic algorithm to select columns
(and thus tSNPs) from this table, and we characterize the extent
to which major patterns of variation of the intrapopulation data
are captured by a small number of tSNPs. Next, we test the
accuracy of prediction of unknown SNPs within a single popula-
tion using only the tSNPs by splitting our sample into train-
ing and test sets for each of the populations. Next, we investigate
the transferability of tSNPs across populations in a quantita-
tive manner by testing the feasibility of reconstructing unknown
SNPs in a previously unstudied target population using tSNPs
determined in an available reference population. Finally, we test
the impact of these methods on an association study using a
publicly available data set (Daly et al. 2001; Rioux et al. 2001).
Our algorithms are greedy, heuristic variants of recently devel-
oped randomized algorithms for extracting structure from large
matrices. These randomized algorithms have provably good
computational-time performance, and they are, in principle,
scalable to whole-genome data analysis. Our analysis of the
worldwide SNP data with these novel algorithmic tools provides

an initial characterization of (1) the feasibility of intrapopulation
unassayed SNP reconstruction using tSNPs, and (2) the trans-
ferability of tSNP selection for the reconstruction of unassayed SNPs
for populations within and between diverse geographic regions.

Results

Data sets and characterization of linear structure
in the populations

We analyzed four different genomic regions, using data both
from 38 populations from around the world (Yale data set) as well
as the HapMap populations (HapMap data set). For our Yale data
set, a total of 248 SNPs were genotyped on ∼2000 unrelated in-
dividuals (Supplemental Fig. 1; Table 1). HapMap data from the
four corresponding genomic regions were also included in our
study (Table 1). This provided us with the opportunity to test our
methods on a denser marker map. We noticed that many of the
available HapMap SNPs were actually monomorphic in at least
one population. Since our aim was genotype prediction, we ex-
cluded from the analysis of the HapMap data set SNPs that were
fixed in any one of the HapMap populations in order to avoid
distortion of the reported errors. (Prediction for a monomorphic
site will always be accurate.) This reduced the data set substan-
tially from a total of 2731 SNPs to 1336 for all four populations,
Yoruba (YRI), Europeans (CEU), Chinese (CHB), and Japanese
(JPT) (Table 1).

Prior to applying our algorithms, we converted the SNP
genotype data for each population and region studied to numeric
data in order to process them with linear algebraic methods.
Since only genotypic and not haplotypic data were available,
each entry in the original data is a pair of bases that may be
assumed to be ordered alphabetically. The data are converted
without any information loss to numeric matrices. The (i, j)-th
entry of any of these matrices is set to �1, 0, or +1, depending on
whether, respectively, the i-th individual is homozygous (for one

Table 1. Yale data set and HapMap data set

Yale data set

Region Chromosome (absolute positions) SNPs Average density

SORCS3 10 53 7.94 Kb
(106,599,890–107,020,771)

PAH 12 36 5.60 Kb
(101,652,738–101,854,293)

HOXB 17 96 11.87 Kb
(43,337,796–44,477,524)

17q25 17 63 14.28 Kb
(77,751,614–78,651,254)

HapMap data set

Region Chromosome (absolute positions)
SNPs

(avail.)
SNPs

(used) Average density

SORCS3 10 734 307 1.36 Kb
(106,603,000–107,021,000)

PAH 12 224 88 2.3 Kb
(101,652,100–101,854,500)

HOXB 17 1097 571 2.03 Kb
(43,337,100–44,500,000)

17q25 17 764 370 2.43 Kb
(77,751,000–78,651,500)

(Avail) Includes only SNPs that have been typed in all four HapMap populations; (used) excludes SNPs that were fixed in any of the four HapMap
populations.

Genotype reconstruction from tSNPs

Genome Research 97
www.genome.org



allele arbitrarily chosen of the two alleles) in the j-th SNP site,
heterozygous at that site, or homozygous (for the other allele) at
that site. A careful implementation of our linear algebraic algo-
rithms allows the existence of missing entries. However, for sim-
plicity and clarity of presentation of our algorithmic techniques,
we chose to report results on matrices with no missing data. In
the Yale and HapMap data sets, a small number (�5%) of geno-
types were missing, and we filled them in using the technique
described in Alter et al. (2000); see Methods and the Supplemen-
tal material for details.

Linear structure in a data set is equivalent to the fact that the
columns (rows) of the matrix can be expressed as linear combi-
nations of a small number of left (resp. right) singular vectors
with a small loss in accuracy (Golub and VanLoan 1989). We
shall call these vectors eigenSNPs (Lin and Altman 2004). Recent
results in the computer science and applied mathematics litera-
ture (Frieze et al. 2004; Drineas and Mahoney 2005, 2007; Drin-
eas et al. 2006a,b,c) demonstrate that instead of using left (right)
singular vectors, which are linear superpositions of all the col-
umns (rows) of the matrix, a small number of actual columns
(rows) might be used without any significant loss in accuracy.
Since we hope to identify a small number of tSNPs that efficiently
describe most of the data and also rely on a small number of
individuals to do so (i.e., the HapMap subjects), this is precisely
the type of structure that we hope to identify.

For each of the populations and the regions studied we com-
puted the Singular Value Decomposition in order to determine
the number of left singular vectors (eigenSNPs) that were needed
to capture 90% and 99% of the spectral variance of the SNP data
matrix for that population; see Methods for details. Results for
each of the four genomic regions targeting 90% of the popula-
tion’s spectral variance are presented in Table 2 for the HapMap
data set and Figure 1 for our sample of worldwide populations.
(See Supplemental Table 1 and Supplemental Fig. 2 for the re-
spective results targeting 99% of the population’s spectral vari-
ance.) These data demonstrate that there exists a substantial
amount of linear structure within each of the studied popula-
tions and data sets. Analysis of the HapMap genotypes in all four
regions shows, as expected, that the Yoruban sample requires the
highest number of eigenSNPs to capture the data, followed by the
European and East Asian samples (Chinese and Japanese). For
example, for the HOXB region (571 SNPs spanning ∼1 Mb), only
11 eigenSNPs are enough to capture 90% of the spectral variance
in the Yoruba and as few as six eigenSNPs suffice for the Japanese.
When targeting 99% of the spectral variance of each data set, the
number of eigenSNPs needed to capture the structure of the data
increases on average two to three times, but still remains quite
low.

The Yale data set, including 38 worldwide populations, has
considerable linear structure as well. Five of our 38 populations
correspond to the HapMap populations (Yoruba, European
Americans, Chinese from San Francisco and Taiwan, and Japa-
nese). Interestingly, although the four genomic regions we stud-
ied were typed at a much lower density for the 38 populations,
almost the same number of eigenSNPs is needed in each case for
the HapMap and our own “HapMap corresponding” populations
(Table 2; Supplemental Table 1). This seems to suggest that the
fundamental structure of the studied regions is accurately cap-
tured by the SNPs assayed for the Yale data set. However, testing
such hypotheses further is difficult, mainly due to the fact that
there is very little overlap between the SNPs typed in the Yale and
HapMap samples.

In general, the amount of linear structure, as measured by
the (decreasing) number of left singular vectors (eigenSNPs) re-
quired to capture the spectral variance within a population, in-
creases as we move out of Africa to Europe, East Asia, and finally,
the Americas. This is more pronounced for the two longest re-
gions that we studied, HOXB and 17q25. The African Americans
appear to be the most diverse population for all of the regions
studied, requiring the greatest number of eigenSNPs.

Selecting tSNPs from a single population

We demonstrated that the major axes of variation in the SNP
data matrices for each population could be covered with a small
number of left singular vectors or eigenSNPs, which are linear
combinations of the actual SNPs. We now seek to identify within
each population a set of nonredundant real SNPs (tSNPs) that can
retain most of the information contained in the original data
matrix. Toward that end, we use the TSNPSMULTIPASSGREEDY Al-
gorithm (see Methods), which selects tSNPs by performing mul-
tiple passes over the data. In a pass, the “most informative” SNP
(in a linear algebraic projection sense) is selected, its contribution

Table 2. Linear structure statistics targeting 90% of the spectral
variance in HapMap populations and their corresponding
populations in the Yale data set

SORCS3

HapMap Yale

EigenSNPs ActualSNPs EigenSNPs ActualSNPs

YRI 6 10 Yor 6 8
CEU 5 6 Eur 5 7
CHB 3 4 SFC 3 5

TWC 3 5
JPT 4 5 Jap 3 4

PAH

HapMap Yale

EigenSNPs ActualSNPs EigenSNPs ActualSNPs

YRI 6 10 Yor 7 9
CEU 5 6 Eur 4 6
CHB 3 4 SFC 3 5

TWC 3 4
JPT 3 5 Jap 3 4

HOXB

HapMap Yale

EigenSNPs ActualSNPs EigenSNPs ActualSNPs

YRI 11 17 Yor 10 14
CEU 8 12 Eur 9 13
CHB 7 9 SFC 6 9

TWC 6 7
JPT 6 8 Jap 5 8

17q25

HapMap Yale

EigenSNPs ActualSNPs EigenSNPs ActualSNPs

YRI 15 21 Yor 13 18
CEU 12 17 Eur 12 17
CHB 9 12 SFC 10 13

TWC 8 12
JPT 9 12 Jap 9 13

Paschou et al.

98 Genome Research
www.genome.org



to data is extracted, and the procedure is repeated. This algorithm
is a greedy variant of a provably accurate randomized algorithm
(Drineas and Mahoney 2007).

Results are presented in Table 2 and Supplemental Table 1
for the HapMap data and Figure 1 and Supplemental Figure 2 for
our 38 populations. In our linear algebraic framework, the num-
ber of eigenSNPs determined by SVD corresponds to a lower
bound for the number of actual tSNPs that capture the same
spectral variance in the data. We emphasize that this lower
bound may not be achievable. Nevertheless, our results demon-
strate that for most populations in both the HapMap and Yale
data sets, a large fraction of their spectral variance can be covered

by a number of actual SNPs that is not much larger than the
number of eigenSNPs. We also found that the data sets that could
be reconstructed from the selected tSNPs using standard least
squares regression manage to retain the LD properties of each
region as well as the allele frequencies for the common “tagged”
SNPs (see Supplemental note and Supplemental Tables 2 and 3).
We did notice, however, that in general rare SNPs appeared even
less polymorphic in the reconstructed data set (data not shown).
The difficulty in capturing rare variation may prove to be a gen-
eral limitation of the tSNPs approach.

It is important to emphasize that at this stage tSNPs have
been selected after having seen all of the genotypes for all indi-

Figure 1. Number of eigenSNPs (computed with the SVD) and actual SNPs (computed with the TSNPSMULTIPASSGREEDY algorithm) explaining 90% of
each population’s spectral variance. The number of individuals in each population sample is denoted next to the population’s abbreviation. Populations
are ordered (bottom to top) based on geographic regions (abbreviations used are shown in parentheses). Africa: Biaka (Bia), Mbuti (Mbu), Yoruba (Yor),
Ibo (Ibo), Hausa (Hau), Chagga (Cha), Ethiopian Jews (Eth), African Americans (Afr), South-west Asia and Europe: Yemenites (Yem), Druze (Dru),
Samaritans (Sam), Adygei (Ady), Chuvash (Chu), Russians (Rus), Ashkenazi Jews (Ash), Finns (Fin), Danes (Dan), Irish (Iri), European Americans (Eur),
Asia: Komi (Kom), Khanty (Kha), Chinese Han-San Francisco (SFC), Chinese-Taiwan (TWC), Hakka (Hak), Japanese (Jap), Ami (Ami), Atayal (Ata),
Cambodians (Cam), Yakut (Yak), Pacific: Nasioi (Nas), Micronesians (Mic), America: Cheyenne (Che), Pima-Arizona (AZP), Pima-Mexico (MXP), Maya
(May), Ticuna (Tic), Rondonian Surui (Ron), Karitiana (Kar).
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viduals in each population. We have not performed any actual
prediction in “unknown” samples, but simply established the
fact that, in principle, redundancy does exist in the data, and
thus it is possible to pick tSNPs that cover a certain percentage of
the variance of the data.

Using tSNPs to reconstruct unassayed SNPs within a single
population
We now address whether it is possible to reconstruct untyped
genotypic information in individuals within a population given
only a few tSNPs. For each of the populations and for each re-
gion, we split the data into training sets and test sets of three
different sizes. The different training set sizes corresponded to
90%, 70%, and 50% of the population size, and the remainder of
the population was used as a test set. (To get statistically signifi-
cant results, 100 random splits were performed for each denomi-
nation and the results were averaged over all repetitions.) We
then selected different numbers of tSNPs using the TSNPSMULTI-
PASSGREEDY algorithm on the training sets. We considered these
tSNPs to be assayed (known) in the training sets and recon-
structed the unassayed (unknown) SNPs on the test set using the
RECONSTRUCTUNASSAYEDSNPS algorithm (see Methods for details).

The reconstruction error curve for the HapMap populations,
using 10–60 tSNPs (in increments of 10) is shown in Figure 2. We
would have expected the HapMap East Asian samples to be the

easiest to predict. However, in all four regions, the highest recon-
struction accuracy is achieved for the European sample. This may
be due to the fact that the European sample consists of trios,
while the Chinese and Japanese HapMap samples consist of un-
related individuals. As shown later in this section, in the Yale
data set, where all populations consist of unrelated individuals,
prediction is generally more accurate for the East Asian samples
than the European samples. In most cases, the HapMap Yoruban
sample is the most resistant to prediction. We discuss here our
results (Fig. 2) using 70% of each population as the training set
and trying to reconstruct the remaining 30%; see Supplemental
Figure 3 for results using 90% of each population as the training
set and trying to reconstruct the remaining 10% (results using
50% of the population as the training set were similar and are not
shown). For the relatively short regions studied, PAH and
SORCS3, the reconstruction error quickly drops below 10% using
information from as few as 20 tSNPs of 88 and 307 SNPs, respec-
tively. At around 40 tSNPs, in each case, the curve levels off and
continues to drop with a slower rate. More tSNPs are needed for
the 1-Mb regions we studied, HOXB and 17q25. The data set for
the 17q25 region appears to be the least structured one. This may
be due to the LD structure of the region or the lower density of
the reference map used.

For clarity of presentation, we only show here reconstruc-
tion errors when keeping 10 or 20 SNPs for the 38 populations of

Figure 2. Intrapopulation reconstruction error (ratio of erroneously predicted entries over total number of predicted entries) for each of the four
HapMap populations. The training set size is 70% of the total population size.
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the Yale data set (Fig. 3, using 70% of each population as the
training set, and Supplemental Fig. 4 using 90%). A gradient is
again observed, with the smallest reconstruction errors achieved
for the same number of tSNPs in the American Indian popula-
tions (<5%–10%) and the error increasing as we move through
Asia and Europe back to Africa. This seems to follow the general
pattern of migrations during human expansion out of Africa and
the increasing amount of LD toward the Americas. In general, we
achieve higher reconstruction accuracy in PAH and SORCS3, the
shorter and more densely typed regions that we studied (recon-
struction error around 10% or less for most populations, using 20
tSNPs), while 17q25, the longest and more sparsely typed region,
proves to be the most difficult to reconstruct. In all four regions,
the African populations show a high degree of heterogeneity and
are more resistant to prediction than other populations.

Using tSNPs to reconstruct unassayed SNPs across populations

Finally, we explore the feasibility of predicting untyped SNPs in
one population based on tSNPs selected on another population.

Consider the following situation. We are given individuals from
a reference population, typed over n SNPs. Now, a new, previ-
ously unstudied target population becomes of interest, and we
seek to type a small number (say c K n) of tSNPs for this new
target population and reconstruct the unassayed n � c SNPs.
We seek (1) tSNP selection algorithms to pick the SNPs to be
assayed on the target population, given only the genotypes of all
n SNPs in the reference population, and (2) tSNP reconstruction
algorithms to reconstruct the unassayed SNPs, given only the
genotypes of the c tSNPs in the target population and the geno-
types of all n SNPs in the reference population (see Supplemental
Fig. 5).

This situation represents the realistic scenario of an investi-
gator designing a study based only on a reference population,
e.g., a population studied in the HapMap project. To address this
question in the Yale data set, we first assigned each of the 38
populations in turn as a reference. We then identified a set of
tSNPs using the TSNPSMULTIPASSGREEDY algorithm targeting 90%
and 99% of the spectral variance of the reference population and

Figure 3. Intrapopulation reconstruction error (ratio of erroneously predicted entries over total number of predicted entries) for each of the 38 Yale
data set populations. The training set size is 70% of the total population size. Populations are ordered (bottom to top) based on geographic regions
(Africa, Europe, Asia, Micronesia, Americas).
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assumed that (for each of the remaining 37 populations) these
tSNPs were known. Finally, we reconstructed the unknown SNPs
for all available individuals in each of the remaining 37 popula-
tions by using the RECONSTRUCTUNASSAYEDSNPS algorithm. The
same experiment was performed using the HapMap populations
in the four regions that we studied. Transferability between the
HapMap populations and the ones in the Yale data set could not
be evaluated due to the very small overlap of the assayed SNPs in
the two data sets.

Our findings for the Yale data set (Fig. 4A,B, targeting 99% of
the reference population spectral variance and Supplemental Fig.

6a,b targeting 90%) suggest that there exists considerable trans-
ferability of tSNPs, mainly within the geographic boundaries of
continents, but to a great extent also across them. What is par-
ticularly striking is the fact that the European populations in all
four regions can be used here to predict, often with an error
<10%, the majority of the Asian, Pacific, and American Indian
populations. In general, moving out of Africa from West to East,
populations can be used as a reasonably good reference for their
more eastern neighbors, with the exception of those that are
known to have remained isolated for many years, like the Sa-
maritans or the Pacific Islanders. Interestingly, our very diverse

Figure 4. (A,B) Interpopulation reconstruction error (ratio of erroneously predicted entries over total number of predicted entries) for all pairs of
populations. Populations are ordered (bottom to top and left to right) based on geographic regions (Africa, Europe, Asia, Micronesia, Americas). The (i,
j)-th entry in the plot (i-th row, j-th column) corresponds to the reconstruction error for the j-th population, using the i-th population as reference. The
SNPs to be assayed in the j-th population are determined by running the TSNPSMULTIPASSGREEDY algorithm on the i-th population, seeking to explain 99%
of the population’s spectral variance. Blank entries correspond to reconstruction errors larger than 30%. The five geographic regions of our study are
delimited by the blue boxes. (A) PAH and SORCS3; (B) 17q25 and HOXB.

Paschou et al.

102 Genome Research
www.genome.org



sample of African Americans is the only one that can be used to
predict unknown SNPs in almost all other populations in this
study. This does not seem to be an artifact of the large number of
selected tSNPs, since our analysis shows that even when the same
number of tSNPs is selected in two reference populations from
different continents, different populations will be captured in
each case.

Although similar patterns are observed in all four genomic
regions that we studied, the portability of tSNPs seems to be more
pronounced in the short and more densely typed regions (PAH
and SORCS3). The SORCS3 region is 200 Kb longer than PAH.
However, the structure of the region appears to be extremely
homogeneous around the world. On the other hand, the 17q25
region has the least amount of tSNP transferability among popu-
lations. It has approximately the same length as the HOXB region
that we analyzed (1 Mb), but was typed at a lower density (14.3
Kb vs. 11.9 Kb). It is not clear whether our results reflect the
relatively poor marker resolution that we have for this region or
the LD structure. As discussed in the next paragraph, our analysis
of the HapMap genotypes for the same regions seems to support
the first hypothesis.

The transferability of tSNPs among the HapMap populations
(Table 3; Supplemental Table 4) seems to follow the same general
principles as those shown from the analysis of the 38 popula-
tions. All four regions have been typed with markers at compa-
rable spacing (between, on average, 1.3–2.4 Kb) and the recon-
struction errors are also comparable for the same population
pairs across the four regions. This depicts the effect of marker
density on reconstruction accuracy.

Searching for association in a reconstructed data set

In order to further validate our methods and investigate their
impact on the outcome of a real association study we used a
publicly available data set previously studied for association with
Crohn disease (Daly et al. 2001; Rioux et al. 2001). The data set
consisted of 103 SNPs typed over 500 Kb on 5q31 for 139 family
trios with one child affected with Crohn disease. First, we repro-
duced the results of the original study using the transmission test
for linkage disequilibrium (TDT) as implemented by Haploview
(Barrett et al. 2005). We chose P � 2 � 10�4 as the threshold of
significance, to conform to the results reported in the original
study. Eight markers were found to be associated with the disease
in the original data set (see Supplemental material for association
study). We then performed 100 random splits of the data in the
training set (50% of the families) and the test set (the remaining
families). In each trial, the training set was used as a reference for
the selection of tSNPs targeting 90%–99% of its spectral variance
in increments of 1%. The selected tSNPs were subsequently used
to reconstruct the “unassayed” set of genotypes in the test set.
We then performed the TDT for each of the reconstructed data
sets, and we report here the average results over 100 runs for each
target spectral variance.

As it is shown in Figure 5, using only eight of 103 SNPs, we
achieve 90% reconstruction accuracy, while 41 SNPs are needed
to reach 2.5% reconstruction error. As a reference for our savings
success, we note here that an LD-based tSNP method, as imple-
mented in Tagger (De Bakker et al. 2005), chooses 43 tSNPs for
the same data set (capturing SNPs with r2 threshold �0.8). We
considered the eight markers found to be associated with Crohn
disease in the original data set (P � 2 � 10�4) as ground truth,
and we compared the results of our association experiments with
this set of markers. Figure 5 shows the number of SNPs for which
the TDT on the reconstructed data set erroneously exceeded
(false positives, precision curve) or failed to reach the set thresh-
old of significance (false negatives, recall curve). Remarkably, us-
ing only eight SNPs of 103 (10% reconstruction error) only two of
the eight significant markers are missed and less than two (on
average) erroneously exceed the set threshold of significance.
When choosing 30 or 40 tSNPs (4% and 2.5% reconstruction
error, respectively) one false negative and virtually no false posi-
tive results are found. It is true that some power is lost, however,
the “false negative” SNPs of our test runs miss the mark only by
very little, as revealed when plotting the TDT P-values for each of
the eight significant SNPs using the original and the recon-
structed data sets (Fig. 5). Interestingly, in almost every case, the
P-values from the analysis of the reconstructed data sets are very
close to those produced in the original tests. Furthermore, the
one or two SNPs that appear as “false positives” are actually cor-
related to the SNPs reported in the original paper as significantly
associated with the disease (data not shown). In any case, even
with a 10% reconstruction error, which translates to 90% geno-
typing savings, the investigator would (in this example) retrieve
the significant association in this chromosomal region, and
could proceed to more focused genotyping in order to refine the
findings of the analysis on the reconstructed data set.

Discussion

Most existing tSNP selection methods are either based on the
arbitrary definition of haplotype block boundaries, or in the cur-
rently most common block-free approaches; tSNPs are picked

Table 3. Interpopulation reconstruction error targeting 99% of
the spectral variance of the reference population

SORCS3

YRI CEU CHB JPT

YRI (26 SNPs) 21.98 26.41 25.68
CEU (16 SNPs) 31.48 10.85 11.31
CHB (12 SNPs) 46.05 30.00 8.86
JPT (14 SNPs) 36.23 20.05 7.06

PAH

YRI CEU CHB JPT

YRI (27 SNPs) 35.20 63.11 60.01
CEU (18 SNPs) 28.75 6.30 8.34
CHB (14 SNPs) 55.51 32.66 10.62
JPT (14 SNPs) 42.00 24.96 8.20

HOXB

YRI CEU CHB JPT

YRI (41 SNPs) 30.99 35.17 33.77
CEU (32 SNPs) 35.75 14.67 13.84
CHB (23 SNPs) 42.08 28.04 11.98
JPT (22 SNPs) 50.57 34.91 13.58

17q25

YRI CEU CHB JPT

YRI (46 SNPs) 33.74 30.67 35.31
CEU (40 SNPs) 37.85 16.39 16.74
CHB (27 SNPs) 52.25 30.21 19.00
JPT (26 SNPs) 46.97 31.17 16.23

The entries in boldface represent reconstruction error <30%.
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based on correlations using the r2 metric. A block-free method
like the one we are using circumvents problems such as the ar-
bitrary nature of block-length definitions and takes advantage of
all existing associations, even across rigid block boundaries. If the
occurrence of haplotype blocks is solely due to recombination
hotspots, then SNP correlations will exist only within blocks
(Goldstein and Weale 2001; Jeffreys et al. 2001). However, the
formation of blocks may also be the result of the concurrent
acting forces of recombination and population-specific demo-
graphic history (Wang et al. 2002; Zhang et al. 2002, 2004). On
the other hand, methods that rely on r2 estimations in order to
set some SNPs (tSNPs) as proxies for others also depend on the
inherent assumption that if SNP A is in LD with SNP B and SNP
B is associated with a disease-causing variant, then SNP A will
also be associated with the disease variant. This may not always
be the case because of heterogeneity and confounding factors
(Pritchard and Cox 2002; Montpetit et al. 2006; Terwilliger and
Hiekkalinna 2006). Therefore, we suggest that instead of per-
forming analysis on a set of tSNPs, one can use the next best
alternative to actually having the entire data set available: an
accurately reconstructed data set.

A few results (Evans et al. 2004; Halldorsson et al. 2004a; Lin
and Altman 2004) in the genetics literature make an explicit at-
tempt to evaluate their algorithms by reconstructing the “un-

known” SNPs. Building upon recent results in the Computer Sci-
ence and Applied Mathematics literature (Drineas and Mahoney
2005, 2007; Drineas et al. 2006a,b,c), we propose novel, scalable,
linear algebraic algorithms that are useful in this context. In do-
ing so, we show in a very large and diverse population sample
that genotype reconstruction based on tSNPs is feasible and, even
more interestingly, that it is possible to select tSNPs in one popu-
lation in order to accurately predict unknown SNPs in a different
population. Furthermore, we test the use of these algorithms in
the setting of a real association study and find that significant
associations with disease can be recovered in a reconstructed data
set with important genotyping savings. An interesting direction
for future research is to use LD tSNP selection methods and at-
tempt reconstruction using these SNPs. Nevertheless, with this
study we attempt to set the general mathematical framework for
principled genotype reconstruction.

Our algorithm for tSNP selection can be readily applied to
the genotypic data that current SNP typing technologies gener-
ate, without the need for the intermediate step of haplotype in-
ference. Algorithms for tSNP selection that rely on EM-based al-
gorithms (Excoffier and Slatkin 1995) or other haplotype infer-
ence techniques (Clark 1990; Hawley and Kidd 1995; Stephens et
al. 2001; Niu et al. 2002) are computationally expensive and
unlikely to be scalable to very large or whole-genome data sets.

Figure 5. Genotype reconstruction for association analysis (50% training set). (Top, left) Number of SNPs for which the TDT on the reconstructed data
set erroneously exceeded (false positives, precision curve) or failed to reach (false negatives, recall curve) the set threshold of significance P � 2 � 10�4.
(Top, right) P-values for each of the SNPs that were significantly associated with the disease in the original data set (SNP id 1: IGR2063b_1, 2:
IGR2060a_1, 3: IGR2055a_1, 4: IGR2096a_1, 5: IGR3081a_1, 6: IGR3096a_1, 7: IGR2198a_1, 8: IGR3236a_1), and the corresponding TDT P-values in
reconstructed data sets targeting 90%, 95%, and 99% of the training set spectral variance (log10 2 � 10�4 ≈ �3.7). (bottom left, right) Number of tSNPs
selected targeting 90%–99% of the training set spectral variance and reconstruction error in the test set.
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On the contrary, given n SNPs and m individuals, our algorithm
for tSNP selection scales linearly with the number of SNPs and
individuals in the data. Using standard Computer Science nota-
tion, the running time of our algorithms is O(mn). For reference,
our algorithms ran in under 30 sec in a 2.5-GHz Pentium with 1
GB of RAM for each of the largest runs presented here, thus
suggesting that extensions to much larger genome-wide SNP data
sets are possible.

A few other methods motivated by linear algebra consider-
ations, and in particular the SVD and the related Principle Com-
ponents Analysis (PCA), have been previously applied to the
tSNP selection problem (Meng et al. 2003; Horne and Camp
2004; Lin and Altman 2004). Lin and Altman claimed that PCA-
based methods will likely be very difficult to apply on whole-
genome data sets. Recent approximation algorithm results (Dri-
neas et al. 2006b) suggest otherwise if the data are very large and
if approximate solutions are adequate for the particular applica-
tion.

The transferability of tSNPs among populations is a question
that is beginning to be addressed by recent studies, which have
either studied only a few populations or a single genomic region.
Common sets of tSNPs have been defined based on the evalua-
tion of correlations between “known” SNPs and “unassayed”
ones (Ke et al. 2004; Mueller et al. 2005; Ramirez-Soriano et al.
2005; De Bakker et al. 2006; Gonzalez-Neira et al. 2006; Magi et
al. 2006; Montpetit et al. 2006; Willer et al. 2006). Gonzalez-
Neira et al. (2006) have recently presented a study of a worldwide
sample of populations (1055 individuals) and one genomic re-
gion (1 Mb at ≈ 7 Kb density) and concluded, like we do in this
study, that portability of tSNPs does exist among populations
within each continental group and that tSNPs defined in Euro-
peans are often efficient for Middle/Eastern and Central/South
Asian populations. We take this kind of study one step further by
studying a much larger worldwide sample (2000 individuals) and
four genomic regions. Furthermore, by attempting to reconstruct
untyped genotypes in our very large and diverse set of popula-
tions, we are able to quantify the amount of tSNP transferability
that exists within geographic boundaries of continents, but also
across them. The observed patterns of tSNP transferability reflect
population relationships, histories, and migrations of ancient
populations.

Even at the cost of typing extra SNPs, our study indicates
that the populations used in the HapMap project will most likely
serve as a good reference for extrapolation of results in other
populations, especially Europeans and East Asians. Our results
quantify the rather intuitive observation that given a target un-
studied population, it is always better to pick a reference popu-
lation from the same geographic region, since the transferability
of tSNPs is significantly higher. However, we would like to note
that although the tSNP selection concept in general will likely be
very efficient for the analysis of common SNPs, rare variants will
most probably be overlooked and different approaches should
perhaps be pursued if such variants are of interest. To the extent
that the common disease/common variant (Lander 1996;
Chakravarti 1999) hypothesis is valid, the HapMap project and
tSNP selection will prove to be powerful tools for the design of
association studies.

In conclusion, we explored the extent of linear algebraic
structure of genotypic data in four regions of the genome and
illustrated the value of linear structure extrapolation tech-
niques for the selection of tSNPs and reconstruction of untyped
SNPs. A MatLab implementation of our algorithms and the data

studied here are available at http://www.cs.rpi.edu/∼javeda/
CUR_ tSNPs.htm. Our results indicate that reconstruction accu-
racy increases with reference map density and LD of the studied
region. The pattern of linear structure in our sample of worldwide
populations is reminiscent of the observed LD patterns around
the world and it seems possible that similar forces may have
acted to shape both the LD and linear structure in such data.
Further study should shed more light on the degree of correlation
between the linear structure observed in a data set and the un-
derlying LD patterns and haplotype structures. It is also possible
that nonlinear structure extraction techniques will prove to be
the most promising in order to elucidate in a more refined man-
ner the genomic architecture of extremely diverse or richly struc-
tured populations.

Methods

Data sets
We present data on a total of 1979 unrelated individuals from 38
populations from around the world (Supplemental Fig. 1).
ALFRED (http://alfred.med.yale.edu/), the allele frequency data-
base, contains descriptive information and literature citations for
these population samples. A total of 248 SNPs in four genomic
regions were typed in all 38 populations. We also investigated the
same four genomic regions (SORCS3, PAH, HOXB, and 17q25)
using the available genotypes from the HapMap database on the
four HapMap populations. We only included in our analysis data
from SNPs that were polymorphic in all four populations (a total
of 1336 SNPs; see Table 1 for details). Since we had selected the
SNPs to be typed in the Yale samples well before the publication
of the HapMap results, there was little to no overlap between the
SNPs that we studied in the Yale samples and those typed in the
HapMap populations. Finally, the data set that we used for vali-
dation of our algorithms in an association study is publicly avail-
able at http://www.broad.mit.edu/humgen/IBD5/ and has been
described in detail (Daly et al. 2001; Rioux et al. 2001).

Encoding our data and evaluating linear structure
We transformed the raw data to numeric values, without any loss
of information, in order to apply our linear algebraic algorithms.
See Algorithm Encode in the Supplemental material for a precise
statement of this procedure. For clarity of presentation, we filled
in a (very small) number of missing entries in the Yale and Hap-
Map data sets using the procedure described in Alter et al. (2000);
for the association study data set, we did not fill in the missing
data.

Our algorithms for tSNP selection and tSNP transferability
take advantage of and extract linear structure in the SNP data
matrix. In order to determine the extent to which the SNP data
matrix has this structure, we shall use the Singular Value Decom-
position (SVD) (Horn and Johnson 1985; Golub and VanLoan
1989). The SVD is a commonly used tool from Linear Algebra to
extract linear or low-rank structure in data represented by a ma-
trix. For example, it provides the mathematical foundation for
the commonly used method of Principal Components Analysis
(PCA). We emphasize that the SVD is used in this work only to
determine the extent of linear structure in the data matrix. Our
algorithms for tSNP selection and tSNP transferability will extract
linear structure, but will not use the SVD.

Given an m � n matrix A, the SVD returns m pairwise
orthogonal unit vectors ui that form a complete basis for the
m-dimensional Euclidean space, n pairwise orthogonal unit vec-
tors vi that form a complete basis for the n-dimensional Euclidean
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space, and � = min{m,n} singular values � i such that
�1 � �2 � . . . �� � 0. The matrix A may be written as a sum of
outer products (rank-one components) as A = ∑�

i=1�iu
iviT. We no-

tice that when applied to a SNP data matrix the ui are associated
with the columns (SNPs) of this matrix and are called eigenSNPs
(Lin and Altman 2004). Notice that the i-th singular vector cor-
responds to the i-th singular value, and thus, there exists a natu-
ral ordering of the singular vectors. One interpretation of the
SVD is that keeping the top k � � left singular vectors we can
express all of the columns of the matrix A as linear combinations
of these k left singular vectors with a small loss in accuracy. More
precisely, for all i = 1, . . . , n, A(i) ≈ �k

j=1 ziju
j; where A(i) denotes

the i-th column of A as a column vector and the zij are real
numbers. The zij are computed by solving least squares regression
problems to minimize the Euclidean norm of the difference vec-
tor A(i) – �k

j=1 ziju
j. Overall, using the top k left singular vectors we

can approximate A by A ≈ Ak = UkZ; where Z is the k � n matrix
whose entries are the zij. Standard methods from Linear Algebra
can be used to show that Z = Uk

TA. If the difference A – Ak is small,
then we say that A is well-approximated by a rank- k matrix, and
if k K min{m, n}, then we say that A is approximately low-rank or
has good linear structure. Intuitively, this means that there is
significant redundancy of information in the columns of A. Al-
gorithm 2 in the Supplemental material describes in detail how
we evaluate the linear structure in our populations.

Selecting tSNPs and reconstructing genotypes
Via the SVD, we can compute a set of vectors u1, . . . , uk such that
every column of AX (the matrix encoding SNP data from popu-
lation X) may be expressed as a linear combination of these k
vectors with a small, fixed loss in accuracy. Since the columns of
AX are the SNPs that were assayed on X, one might be tempted to
call the u1, . . . , uk tSNPs for population X. Unfortunately, the
u1, . . . , uk are not actual SNPs (columns of AX). Instead, they are
linear combinations of actual SNPs, and in general, have no bio-
logical interpretation.

An obvious next step is to wonder whether we can find a
small number of columns of AX (namely, actual SNPs) such that
expressing every column of AX as a linear combination of these
columns by solving least squares regression problems and subse-
quently rounding the result would return an approximation to
AX with a small number of erroneous entries. Toward that end,
we slightly modified the SELECTCOLUMNSMULTIPASS algorithm of Dri-
neas and Mahoney (2007). The resulting TSNPSMULTIPASSGREEDY

algorithm does not come with a provable performance guaran-
tee, but differs from most algorithms in current genetics litera-
ture in that it is guided by strong theoretical evidence regarding
its performance. See the Supplemental material for an exact de-
scription of the algorithm.

We now describe our interpopulation reconstruction algo-
rithm. Consider the matrix AX corresponding to the m1 subjects of
population X, and assume that we seek to predict the SNPs for all
m2 subjects of a different population Y. Assume that the subjects
of X are fully assayed. We will assay a small number (say c K n) of
SNPs for the subjects in Y and predict the remaining n � c SNPs
for every subject in Y. In order to determine which c SNPs to assay
for the subjects in Y we use the TSNPSMULTIPASSGREEDY algorithm
on AX. After assaying the selected SNPs for the subjects of Y we
will get an m2 � c matrix CY. The RECONSTRUCTUNASSAYEDSNPS

algorithm (which implements a CUR-type decomposition of a
matrix) essentially performs a least-squares regression fit for the
subjects of Y (Drineas et al. 2006c). See the Supplemental mate-
rial for an exact description of the algorithm. The same algorithm
may be used to reconstruct unassayed SNPs of individuals within

a population. More specifically, given a population X, we split
the individuals into two sets: a training set X1 and a test set X2.
The ReconstructUnassayedSNPs algorithm is used with X1 in-
stead of X and X2 instead of Y.
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