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A new Monte Carlo algorithm is presented for the efficient sam-
pling of the Boltzmann distribution of configurations of systems
with rough energy landscapes. The method is based on the intro-
duction of a fictitious coordinate y so that the dimensionality of the
system is increased by one. This augmented system has a potential
surface and a temperature that is made to depend on the new
coordinate y in such a way that for a small strip of the y space,
called the “normal region,” the temperature is set equal to the
temperature desired and the potential is the original rough energy
potential. To enhance barrier crossing outside the ‘normal region,”
the energy barriers are reduced by truncation (with preservation of
the potential minima) and the temperature is made to increase
with |y|. The method, called catalytic tempering or CAT, is found to
greatly improve the rate of convergence of Monte Carlo sampling
in model systems and to eliminate the quasi-ergodic behavior
often found in the sampling of rough energy landscapes.

simulated tempering | simulated annealing | enhanced sampling
techniques | rough energy landscapes

In the Monte Carlo sampling of the conformation space of
complex systems, one often encounters the problem of quasi-
ergodicity. This problem arises from the roughness of the
potential energy landscape where local energy minima are
separated by large energy barriers. In such systems, a trajectory
arising in one basin of attraction only infrequently crosses
neighboring high energy barriers to explore a new thermally
accessible basin. Although theoretically ergodic, the ordinary
Metropolis algorithm fails to sample barrier crossings frequently
enough to explore the accessible configuration space and thus
evinces practical quasi-ergodicity. In proteins, for example, the
energy barriers arise from at least two classes of interactions:
first, local barriers separate stable torsion angle states; second,
barriers arise from strong repulsive interactions between neigh-
boring atoms on different side-chains. These strong repulsive
forces lead to frustration when the side-chains become densely
packed.

Many methods have been proposed to enhance the confor-
mation space sampling (1-17). These methods include multica-
nonical sampling, simulated tempering, parallel tempering, and
the method of expanded ensembles, including strategies based
on increased dimensionalization.

Enzymes accelerate reactions in small molecular substrates by
reducing the free energy barriers separating reactants from
products without changing the relative positions of the potential
minima. Can we use this strategy to accelerate the sampling of
configuration space in simulations of complex systems? We
propose a new method based on this idea which we call catalytic
tempering or CAT. CAT is based in part on a barrier reducing
strategy that does not change the location or values of the
potential minima (4), thereby accelerating barrier crossing while
keeping the equilibrium properties of the system unchanged, as
in the action of a catalyst or enzyme.

In the CAT method, the dimensionality of the system is
increased by the introduction of a fictitious coordinate y. This
augmented system is given a potential energy function,
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where x designates the coordinates of the protein or other systems
of interest, y is the new dimension whose domain is —ymax <y =
Ymax, and y is said to be in the normal region (n.r.) when —yo =
y = yo for yo = ymax. The function A(y) is unity when y is in the
n.r. and goes to zero (either smoothly or discontinuously) outside
this region. The region outside the normal region will henceforth
be called the “catalytic region” (c.r.). U(x) is the potential
energy surface for the system to be sampled and Ur(x) is the
potential energy function with truncated barriers that we call the
catalytic potential landscape. The constant V) modifies the zero
of both U and U7 in a similar fashion. In Eq. 1, the function &(y)
is taken to be &(y) = 1 ify is in the n.r. and &(y) is a decreasing
function of ly| if y in the c.r. &y) can be (but need not be)
interpreted as the ratio of two temperatures, &) = To/T(y),
where the temperature 7(y) is set equal to the desired temper-
ature 7Ty in the n.r. but is allowed to increase with y in the
catalytic region. In the simulations to be presented later, we take

&(y) to be:

1 if [y| = yo
Ty

§y) = [2]
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Monte Carlo methods can then be used to sample the joint
distribution function of x and y in this higher dimensional space,

expi—BoV(x,y;Vo)}
Z (YQV(J)

where Z(y; Vo) = [ dxexp {—BoV (x,y; Vo) }, Bo = 1/kgTy, and
Q(y) is the normalized distribution function of the y-coordinate,
which can be chosen arbitrarily. Notice that the term containing
Vp cancels in Eq. 3. In the n.r. this distribution reduces to aQ(y)
exp {—BoU(x)}, where « is a proportionality constant. Monte
Carlo sampling of the joint distribution function Py (X, y; Vj) in
the n.r. can thus be used to determine the desired distribution
function

PQ(Xay;VO) = Q(Y)’ [3]

P(x) = exp{—BoU(x)} . [4]

J dx exp{—BoU(x)}
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It should be noted that V' (x, y; V) was defined so that in the
catalytic region c.r. the temperature can be interpreted as an
increasing function of |y| and the energy barriers are reduced by
truncation. It is expected that CAT Monte Carlo sampling
should lead to very efficient barrier crossings when y lies in the
c.r. When y returns to the n.r., the system will be on the correct
potential surface whose zero is calibrated with V. The constant
Vo can be used to control the sampling distribution of y as will
be discussed in Methods. If we eliminate the catalysis by taking
Ur(x) = U(x) in Eq. 1 our method becomes similar to simulated
tempering (10), with a continuous temperature and with a more
general weighting. Introduction of the catalytic potential surface
leads to considerable improvements over simulated tempering,
greatly improves the rate of convergence of Monte Carlo sam-
pling and eliminates quasi-ergodic behavior often found in the
sampling of rough energy landscapes.

This paper is organized as follows. The method is described in the
next section and is followed by applications to illustrative problems.
The first system studied is that of a single particle moving on a
one-dimensional random potential constructed from Gaussians.
This represents a frustrated system and helps to clearly show how
CAT is to be optimized. The second system is a one-dimensional
Lennard—Jones mixture consisting of eight equal-length rods con-
fined to a one-dimensional box and interacting through Lennard-
Jones potentials with different well depths for each pair of particles.
The repulsive core of each Lennard—Jones potential is softened by
cutting it off at energies large compared with the thermal energy to
make the system metrically indecomposable. The activation energy
for two particles to pass through each other is now large but finite
as oppposed to being infinite for the Lennard—Jones potential. The
multidimensional potential energy surface will consist of basins of
attraction corresponding to different rod orderings separated by
large barriers with each basin consisting of wells separated by
smaller barriers. This system will behave like a glass. Starting in one
basin, Monte Carlo sampling will be quasi-ergodic so that at low
temperatures one will not be able to move from one basin to
another and land in the lowest energy basin let alone the lowest
energy well within the lowest energy basin. We show that CAT very
effectively samples this landscape and finds the lowest energies in
the system.

Methods

Simply stated, CAT is a method to sample the Boltzmann
distribution corresponding to the potential U(x) at temperature
Ty. Its implementation requires the specification of a number of
parameters and functions, described next.

To implement CAT, we need the following ingredients: (i) a
truncated version Uz(x) of U(x); (if) a maximum value ymax for
the fictitious coordinate y; (iii) a range [ —yo, yo] to define the n.r.
in the y space; (iv) a choice of the function &(y). If we interpret
&y) = To/T(y), then the choice of ¢ reduces to the choice of
temperature, which may be more intuitive. 7(y) is chosen such
that T(y) = T, in the n.r., and increasing from T up to a chosen
maximum value T(Ymax) = Tmax in the c.r. (v) A choice of the
switching function 4 (y). Here we choose it to be 1 in the n.r. and
0 in the c.r. (vi) A choice of the y-coordinate distribution Q(y),
with which the y space is going to be sampled. (vii) The
specification of the step sizes A, and A, for the Monte Carlo
moves in the x and y directions, respectively.

With the above prescriptions, we apply the standard Metrop-
olis algorithm to sample the distribution of Eq. 3. We implement
our Monte Carlo scheme with two different kinds of local moves:

* Moves x; — x/ in the configuration space, with uniform
transition probability within the interval [x; — A,/2, x; +
A, /2], and acceptance ratio

acc(x/lx;) = min(1,exp{—Bo[V(x/y) — Vx;»)1}).  [5]
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* Moves y — y' with uniform transition probabilities in [y —
A,/2,y + A,/2], and acceptance ratio

acc(y’ly) = min<1,e><p{ —BolV(x,y"; Vo)

" Z(y;V
—V(x,y;Vo)]}Q(y)M>. [61

QW) Z(y';Vo)

In the description of the Monte Carlo moves above, we must
determine Z(y;Vp) to within a constant (see Eq. 6). We now
describe an iterative procedure for accomplishing this.

Assume we have the nth approximation Z,(y;Vy) to Z(y;Vo). A
run using Z, instead of the exact Z in Eq. 6 would yield a
y-probability density function that we shall call Q,,+ (). On the
other hand, integration of Eq. 3 over xyields that Z(y;Vo) = Z,(y;
V0)O0n+1(y)/QO). Given that the run from which Q, 1 was
computed was finite, the previous relation can only be an
approximation: the n+ 1 approximation Z,+; to Z. Thus we
obtain the recursive relation.”

Qn+l(y)
o)

Assuming a limit exists, this relation converges (up to fluctu-
ations due to the finiteness of the run) to the theoretical Z(y;V).
Along with Z, — Z, we also have that O, — Q. That is the y
distribution ends up being the one we chose. This allows us to
schedule the protocol of tempering and catalysis.

When the recursion of Eq. 7 is started using Zo(y;Vo) = Z(Vo)
Q(y) (where Z(V)) is the overall partition function, but here it
only plays the role of a proportionality constant), the first
iteration yields a y-probability density which is proportional to
Z1(y;V0): 0100) = Z1(v;V0)/Z(Vo). To make its relationship with
the partition function explicit, we shall denote Q; by QO
Therefore,

Z,1(viVo) = Z,(y;Vo) [71

Z1(y;Vo)

QZ(Y7VO) = Z(Vo)

(8]

In some cases, for example for small systems, the first iteration
is all that will be necessary to achieve convergence. Often,
however, the first iteration will generate a distribution function
Qz(y;Vo) for which certain regions in y-space will have a very
small probability. Then transitions across these regions will be
very rare and CAT will break down. It will then be necessary to
make many iterations to get convergence to the desired Q(y).
There are many ways to implement this strategy. One way to
generate the first iterate above is to determine that value of V)
that will make Qz(y;Vy) as uniform as possible. This can be
achieved by finding the V{ that maximizes the entropy of
0z(y;Vo), following the method prescribed in the Appendix. This
special value of V, will be denoted by V§ hereafter. The Qz(y;V§)
thus determined can then be used as the starting point for the
next iteration. In the following, we test the adequacy of using the
first iterate determined in this way to sample several simple
systems with rough energy landscapes, leaving for a more
extensive paper the application of the full iterative scheme to the
problem of protein folding.

Let us recapitulate. The reason to find the optimal V§j was to
sample the y-coordinate as homogeneously as possible. Thus we
can trust that the resulting numerical Q(y;V%) is close to the one
given in 8, and solve for the partition function Z(y;V5) =

TThis iterative scheme is similar in spirit to one proposed in the literature (17) for simulated
tempering. This equivalence can be understood if we define Zx(y) = exp(gn(y)). Then our
iterative scheme is gn-+1(y) = gn(y) + In[Qn(y)/QY)].
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The decay of the square deviation given by Eq. 11 as a function of the number of Monte Carlo (MC) steps for the one-dimensional random potential

of Eqg. 10 and different Monte Carlo schemes (CAT, ZST, UST and classical Monte Carlo). The random potential is plotted in the inset for various values of k which
controls the level of truncation of the barriers. The other parameters of the Monte Carlo run are detailed above the figure. For the most severe truncation, CAT

samples this potential 100 times faster than the simulated tempering methods.

0z(y;V$)Z(V1). Using this, the acceptance probability can be
computed from Eq. 6 as

acc(y'ly) = min(LﬁXp{—Bo[V(x,y’;V’S)

0" Qz(y;V’S)> 9]
) 020";V%)

Our CAT scheme would be very inefficient if it were to make
our system spend most of the time in the n.r., i.e., if Q(y) had
most of its mass in the n.r. In such an event, no catalysis or
tempering would take place. Likewise, if Q(y) had most of its
mass outside of the n.r., then we would only rarely probe the
potential U(x) that we actually wish to sample. We can choose
Q(y) arbitrarily very much as we can choose the annealing
schedule in an implementation of simulated annealing. Which
Q(y) is “the best” is very much problem dependent. In particular
implementations, one may wish to test various alternatives and
choose the Q(y) that gives the best results. In this paper, the CAT
scheme will be implemented with Q(y) = Qz(y;V6).

In the original papers of Marinari and Parisi (10) and
Lyubartsev et al. (13) (who discovered ST independently
calling it the method of extended ensembles), as well as in
other studies using ST (12), the temperature distribution is
taken to be uniform. The optimal temperature distribution is
probably problem dependent and thus should be chosen by
trial and error on a case-by-case basis. It should be noted that
if we wish to impose a particular temperature distribution
P(T), we must choose Q(y) = P(T(»))|T’ (). If we chose to have
a uniform temperature distribution, we could then choose 7(y)
to be a linear function of y and the resulting Q(y) will then be
uniform as well.

In the subsequent sections, when we compare CAT with ST,
we use two implementations of ST. In one of them, called UST,
the temperature distribution is made uniform [as in the original
formulations of ST (10, 13)] by taking a uniform Q(y) and a

= Vxy; Vol

11166 | www.pnas.org

linear dependence of T(y) withy. We also explore a nonuniform
temperature distribution by taking 7(y) to be a linear function
of y and a nonuniform Q(y) given by Q(y) = Zsr(v;Vo)/ [ dy
Zs1(y;V0), where Zsr(v;Vo) = [ dx exp {—BoVsr(x, y;Vo)} and
Vsr(x,y;Vo) = [U(x) — Vo]é(y) is the potential used for ST. We
shall refer to this implementation of ST as ZST.

Sampling a Random Potential

In this section, we consider the following one-dimensional
potential:

Ulx) = [Ea io Ciexp{—(x — w)?/207} if [¢[ <1

® ithl=1" [10]

where the C; were chosen randomly between 0 and 1, the u; lay
on an equispaced grid whose lattice size is 1/6, and the o; were
chosen randomly between 0 and 0.2. The resulting potential for
E, = 50 can be seen in the inset of Fig. 1 (solid line). Truncated
versions of this potential were chosen by replacing the Gaussian
functions by min (k, exp { —(x — w;)2/207}) (dashed lines in the
inset of Fig. 1), where k = 1 is the truncation parameter.

The reason for studying the potential given in Eq. 10 is that it
is a one-dimensional approximation of the energy landscape of
glassy systems with barriers of different heights, where some of
the barriers are high enough relative to the thermal energy to
create quasi-ergodicity. The one-dimensional nature of this
potential allows for an easy comparison between the numeric
distribution being sampled with ST (both ZST and UST), CAT
or regular Monte Carlo, and the theoretical one. For any of these
sampling techniques, the numerical distribution corresponding
to initial condition i, after ¢ Monte Carlo steps shall be denoted
bY puum(x; t, i). The exact distribution, is obviously pgpeo(x) =
Z V' exp{—U(x)/kgTo}. If we have N initial conditions (in the
simulation to be shown below N = 10), the quantity (1)

Stolovitzky and Berne
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N oo o .
Xz(t) = ! E f dx[pnum(x,t,l) pfheo(x)]
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1
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z|

is a normalized global measure of the degree to which the
numerical simulation approximates the exact distribution after a
time ¢. In Fig. 1 we have plotted x? for classical Monte Carlo
(open circles), for ZST (squares), for UST (diamonds), and for
CAT (filled circles). We can see that classical Monte Carlo
sampling is unable to sample the potential even after a billion
iterations. This means that each of the 10 initial conditions
(chosen randomly between [—1, 1]) got trapped in a well, and
may be visiting other wells, but not fast enough to get a good
sampling of the Boltzmann distribution even after this many
iterations. The contrast with any of the other techniques, ZST,
UST, and CAT, is remarkable. After a short run of 108 moves,
both UST and ZST sampled the Boltzmann distribution with a
relative error of less than 1%. ZST performs marginally better
than UST. CAT, on the other hand, samples the desired distri-
bution with a relative error of 1% in about 4 X 10° Monte Carlo
steps for the truncation parameter k = 0.5, and 10° Monte Carlo
steps for k = 0.25, i.e., 25 to 100 times faster than the ST schemes.
This can mean the difference between a simulation taking an
hour or several days!

Linear Array of Lennard-Jones Rods

In this section, we apply CAT to the problem of sampling an
infinitely frustrated system of rods of length o confined to a
one-dimensional box of length L = 2. We assign energy param-
eters g; to each rod i so that the Lennard-Jones interaction
between rods i and j is

o\ 12 o\ 6
Uij("ij) = 48ij|:(rij> - (”U) } > [12]

where we take g; = Vg;g;. Each ordering of the particles will
have an associated energy basin with several maxima and
minima. The (degenerate) global minimum energy configuration
of the system will correspond to specific orderings of the
particles. Neither ordinary Monte Carlo nor ST starting from a
given ordering will ever be able to sample any other ordering
because none of the rods can pass through each other in these
methods. Of course, this is an artifact of the Lennard-Jones
potential and the one-dimensional nature of the system. How-
ever, this system is a good “straw man” to show where the
strengths of CAT lay. CAT, on the other hand, should be able to
sample the minimum energy configuration because it can gen-
erate paths that can pass over the truncated barriers. Thus we
expect CAT to generate an efficient sampling of the thermal
distribution. We shall see that such is the case.

For simplicity, we study a system of N = 8 particles and assign
particles labeled 1, 2, 3, and 4 the same value eg = 0.1¢ and
particles labeled 5, 6, 7, and 8 the value g, = ¢. We call the first
set of particles “small particles” (S) and the second set “large
particles” (L) even though all of the particles have the same
Lennard-Jones o-parameter, that is, they have the same lengths.
For this simple system we have 6 (4 choose 2) symmetric
configurations (LLSSSSLL, LSLSSLSL, SLLSSLLS, LSS-
LLSSL, SLSLLSLS, and SSLLLLSS), each contributing its own
basin energy minimum. Each of these energy minima has
degeneracy 4!X4! = 576. With the remaining 64 (8 choose 4
minus 4 choose 2) assymetric configurations we can form pairs,
by grouping the mirror image arrangements (e.g., LSSSSLLL
and LLLSSSSL, etc.). It is clear that mirror image configurations
will share the same energy minimum. Thus there will be 32
distinct energies corresponding to the assymetric pairs, and each

Stolovitzky and Berne

of these energies has degeneracy 2X4!X4! = 1,152. The ordering
corresponding to the global minimum energy is SSLLLLSS.
Because this is a symmetric arrangement, there are 576 degen-
erate particle orderings corresponding to this global energy
minimum which should be found among the 8! = 40,320 possible
permutations. How well does CAT do?

In applying CAT we take for U(x) in Eq. 1 the full Lennard-
Jones potential U(xy, ..., xn) = Zj<j Uy(ry) where Uj(ry) is
Lennard-Jones potential given in Eq. 12. We define the trun-
cated Lennard-Jones potential to be

T L0y Uij(ri]-) if Uij(ri]») = S?j
Uj(ryse;) = {82 if Uy(ry) > 8?]_ ) [13]
where e?j is a parameter that defines the finite energy barrier. For
N particles the total truncated potential to be used in Eq. 1 is
Ur(xi, ..., xy) = Zigj Ug (r;7). Note that this truncation is
making an infinite energy barrier become finite.

The simulations to be discussed below were performed using
the following parameters: kgTy = 1, ¢ = SkpTy, es = 0.1 & and
er, = e. The function & was chosen as in Eq. 2, with kgT . = 10
and ymax = 1. The length o of the rods was taken to be 1/32,
which gives sufficient free volume to the rods within the box of
size 2. The scale of the local y-moves is A, = 0.1, and the scale
of the local x-moves is A, = o/2. Because of the considerable
free volume, the acceptance probability for these A, is around
90%. The energy at which the Lennard-Jones potentials are
truncated (see Eq. 13) is taken as s?j = gj.

As mentioned earlier, the point in the eight-dimensional
space that represents the configuration of this system could not
possibly visit different particle orderings in either the ordinary
Monte Carlo or ST scheme. The different orderings in this
eight-dimensional space form closed compartments, separated
by infinite energy barriers. The state space is then metrically
decomposable and the Monte Carlo will be strictly non-
ergodic. Each of the decomposed subregions will have an
energy surface characterized be many wells and barriers due to
the attractive interactions between the particles. We call these
subregions corresponding to each particle ordering an “energy
basin.” This system can be made quasi-ergodic if one trans-
forms the energy surface by cutting off the infinite barriers into
finite but large barriers (compared to the thermal energy). In
this way, the energy surface will be characterized by sizeable
basins of attraction corresponding to different particle order-
ings separated by finite-albeit-large energy barriers. Ordinary
Monte Carlo sampling on this surface for temperatures small
compared to these large barriers will now be quasi-ergodic.
The system will behave like a glass with similar structural
frustration. This system has many of the characteristics of a
“one-dimensional protein.” CAT adds one more coordinate to
the system, and in the c.r. of this nine-dimensional space, the
basins (strict compartments in the case of the infinite barriers)
will be connected by much smaller barriers (instead of infinite
or very high barriers) in the catalytic region. Thus a way to
measure how well CAT deconfines the configuration-space
point and facilitates its wandering in the configuration space,
is to plot the number of distinct new orderings in the n.r. as a
function of the number of iterations.

The potential we will be considering below is the Lennard—
Jones potential whose repulsive region sampled by both CAT
and ST is cut off at 50 g;; to create the quasi-ergodic behavior.
In CAT we have in addition truncated this potential at 88- =1.0
g;; in the c.r. For ST we have made no additional truncation in
this region. Fig. 2a shows the number of different configurations
that the system has adopted vs. the number of iterations, where
each configuration counted is in the n.r. for CAT (where V =
—2.4 has been optimized by the maximum entropy technique,
see Appendix). This is compared with ST by turning off the

PNAS | October 10,2000 | vol.97 | no.21 | 11167

BIOPHYSICS

CHEMISTRY



" e=5,V;=-2.4, T, =10, T,=1,y,.=1,A=0.1, 6=1/32, A =c/2

------ v — Trunc at 50
- Truncat 1

—
[9)]

Lennard Jones

-
[=)

Distinct Configs Visited [10%]
(e}
n

0.0

0.0 0.2 0.4 0.8 1.0

0.66
MC Steps [107]

Fig. 2.

t
050 - CAT, run A !
- — CAT,runB 'l
2 040 | — - ZST,runA ,'|
o — ZST,runB y (b)
[}
a B
> 0.30
= i
8 020 F
e
2 i
0.10 |
0.00
-20 -15 -10 -5 0
Energy

(a) Time course of the number of distinct rod-orderings in the linear array of Lennard-Jones rods for CAT (solid circles) and ZST (open squares). We used

atruncated Lennard-Jones potential at 50¢, and for CAT further truncated in the c.r. at & (see Inset). ZST visited only four different orderings after 10¢ iterations.
For CAT the different orderings grows linearly with time. (b) Probability density functions of the energy surface for the linear array of Lennard-Jones rods in
two independent runs of CAT (solid line and dotted line) and two independent runs of ZST (dashed line and dot dashed lines), after 106 Monte Carlo passes. The
two distributions from the CAT runs are almost identical. The two distributions from the ZST are quite different. Energy in units of To.

truncation of the potential. We observe for CAT a linear
increase in the number of distinct configurations visited, with
slightly over 1,600 configurations visited in total (solid circles)
after a million iterations. The linear regime should eventually
saturate, given that there are a finite number of possible
configurations (40,320), but the asymptotic regime has not been
reached yet. By comparison, ZST only generates four configu-
rations (open squares in Fig. 2a) in an equivalent time and is thus
more than two orders of magnitude less efficient than CAT.
Obviously if we had not softened the infinite repulsion of the
Lennard-Jones potential in the n.r., ST would never have
generated a particle ordering different from its initial ordering
but CAT would. In addition, we could have made CAT even
more efficient by truncating at lower repulsive energies in the c.r.

As discussed above, CAT provides a means to sample different
configurations quickly. How well does it generate the energy
distribution? In Fig. 2b we plot the probability density function
(PDF) of the energies visited by the linear array of Lennard-
Jones rods in two independent runs of CAT (solid line and
dotted line) and two independent runs of ZST (dashed line and
dot dashed lines). In each of these runs, the two initial config-
urations of the rods was chosen randomly and are distinctly
different. The four runs are the result of 1 million Monte Carlo
passes. Only 5-10% of these steps (those for whichyy is in the n.r.)
contribute to the PDF. The two distributions from the CAT runs
are almost identical, suggesting that the sampling of the energy
surface at this temperature has converged. The two distributions
from the ZST are quite different. Each of them covered only a
portion of the energy values covered by the CAT-sampled PDFs.
This clearly demonstrates that there are conformations yet
unvisited by ZST that have been sampled by CAT.

There are conspicuous modes in the PDFs of Fig. 2b. These
peaks correspond to different conformations of the system of
rods. For example, the peak at —10kpT, corresponds to con-
formations in which three large rods form a cluster, which is not
interacting with the fourth large rod. There is a combinatorial
number of different conformations even within the same basin,
with several conformations corresponding to the same energy.
An analysis of the modes of the PDFs of Fig. 2b reveals that the
CAT runs have sampled the energies of all the possible confor-
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mations. That is not the case for the ZST runs. One of them
(dot-dashed line) never left the original ordering. The other
(dashed line) visited four different orderings, not including the
one corresponding to the former run. The conformations ac-
cessible to the rods in each of these ZST runs was characteristic
of the few visited basins, thus producing a very biased sampling
of the energy landscape.

Conclusions

In this paper, we introduced CAT, a new Monte Carlo algorithm
for the efficient sampling of the configuration space of systems
with rough energy landscapes. The method is based on the
introduction of a fictitious coordinate y so that the dimension-
ality of the system is increased by one. Monte Carlo sampling in
this higher dimensional space leads to very efficient barrier
crossings and eliminates the quasi-ergodicity of ordinary Monte
Carlo as well as ST, and multicanonical methods for sampling
rough energy landscapes. Although our method is implemented
using the Metropolis Monte Carlo algorithm, it could equally
well have been based on the hybrid Monte Carlo protocol or
other stochastic dynamics protocols. When applied to the very
glassy one-dimensional heterogeneous system of Lennard—Jones
rods moving in one dimension, CAT was able to find both the
lowest energy conformation and the correct energy distribution
where simulated annealing, simulated tempering, parallel tem-
pering and multicanonical Monte Carlo are destined to fail.

Also as with other methods, CAT can not solve the NP-
Complete problem that arises from the exponential growth of
local energy minima with the size of the system. Nevertheless,
CAT should generate new configurations more efficiently than
other methods. This follows from the fact that such methods as
simulated tempering, are subcases of CAT. The introduction of
the barrier reducing strategy is expected to lead to improvements
over these other methods.

It is a simple matter to combine CAT with other methods for
accelerating rapid barrier crossings on rough energy landscapes
such as quantum annealing. Moreover, one can easily apply this
to the force fields used in protein folding. Since those force fields
contain nonbonding forces such as the Lennard-Jones potential
between centers as well as torsion angle potentials, it is a simple
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matter to design truncated potentials for CAT much as we have
been able to do here. We are currently initiating a study on
realistic proteins. We believe that CAT will allow us to sample
the protein efficiently.

Although we have presented one method for finding a cata-
lytic surface (i.e., a truncated potential) in which we have
truncated each pairwise repulsive interaction, it should be clear
that there are many other strategies that could be adopted
instead. For example, it may be possible to generate an efficient
CAT by truncating the whole potential energy surface uniformly
at a given energy.

In closing, it is important to state that CAT can also be used
as a method for annealing. One can sample states at reasonably
low temperatures. Energy minimization from such sampled
states should then determine the global energy minimum. It is
also a simple matter to use CAT as a tool for generalizing
simulated annealing. We call this method catalytic annealing
(CAN). Thus, we are eager to see if barrier reduction in sampling
(or BRIS) of which CAT is one example will be as efficient for
higher dimensional systems.

Appendix

To choose the value of I that maximizes the entropy of Qz(y;Vo)
it is convenient to make use of the functional dependence of V(x,
v;Vo) on V; to derive a simple formula that relates the Q at two
different values of V. In effect, it is easy to show from Eq. 1 that
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where {f(y))y, denotes an average of f(y) with respect to
0z(y;Vy). Thus, if one has a sample of y corresponding to a given
Vo, we can calculate the entropy of the y-distribution corre-
sponding for any 1V,

Ymax
dyQz(y;V)log(Qz(y;V0)),

—Ymax

S(Vop) = [A2]

and choose the value V that maximizes this entropy. In this way,
one can start with any value of 1y, e.g., Vo = VBO) = (0 and sample
PQZ(x,y;VS))) to obtain its marginal y distribution Q7 With the
numerically obtained QZ(y;V((,0 ), and using Al to compute Q7 at
other values of Vj, maximize A2 to compute the optimal VY.
This precedure can be repeated starting with V5. This )provides
a recipe for iterating until the sequence |2 R 7 O, )
— -+ > VY — - converges to the optimal V§. In practice, this
iteration can be stopped after a few cycles.
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