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Abstract
Aim—To predict the individual neonatal
mortality risk of preterm infants using an
artificial neural network “trained” on
admission data.
Methods—A total of 890 preterm neonates
(<32 weeks gestational age and/or <1500 g
birthweight) were enrolled in our retro-
spective study. The neural network trained
on infants born between 1990 and 1993.
The predictive value was tested on infants
born in the successive three years.
Results—The artificial neural network
performed significantly better than a
logistic regression model (area under the
receiver operator curve 0.95 vs 0.92). Sur-
vival was associated with high morbidity if
the predicted mortality risk was greater
than 0.50. There were no preterm infants
with a predicted mortality risk of greater
than 0.80. The mortality risks of two non-
survivors with birthweights >2000 g and
severe congenital disease had largely been
underestimated.

Conclusion—An artificial neural network
trained on admission data can accurately
predict the mortality risk for most preterm
infants. However, the significant number of
prediction failures renders it unsuitable for
individual treatment decisions.
(Arch Dis Child Fetal Neonatal Ed 1998;79:F129–F134)
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Mortality has traditionally been used to
compare the therapeutic performances of neo-
natal intensive care units.1–3 As individual mor-
tality risk depends on numerous confounding
factors, crude mortality can be adjusted for
prematurity,4 5 birthweight,1 6 initial illness
severity,7–9 presence of congenital malforma-
tions, or a combination of these factors, for the
purposes of quality assessment.2 3 7

The Score for Neonatal Acute Physiology
(SNAP), Perinatal Extension (SNAP-PE),7

Clinical Risk Index for Babies (CRIB) score7–9

and alternative models10 are excellent predictors
of overall inpatient mortality of preterm ne-
onates if accuracy is judged by the area under
the receiver operating characteristic (ROC)
curve.7–9 11 Despite such excellent results a
significant number of individual prediction fail-
ures still occur. Case analysis of non-survivors
with a low predicted individual mortality risk,
or of survivors with a very high predicted indi-
vidual mortality risk might yield further insight
into the pitfalls of scoring systems.

As the quality of early therapeutic interven-
tions might significantly influence the degree of
illness severity,12 data on initial illness severity
are compromised if collected later than a few
hours after birth.7–9 Thus several variables con-
tributing to CRIB or SNAP scores are regarded
as input as well as output data with respect to
intensive care unit performance.7–9 11 Shorten-
ing the data collection period is desirable.7–9

Artificial neural networks (ANN) are soft-
ware tools with the capacity to learn. An ANN
behaves like a child learning to diVerentiate
between cats and dogs, by means of examples,
under the supervision of his/her parents. An
ANN can learn the relation between input
variables (size, fleece, voice, behaviour pat-
terns) and the output variable (cat or dog) by
presenting multiple input–output pairs to it
(supervised learning). After this learning or
“training” period the ANN can “predict” the
output (cat or dog) on inputs of further
unknown examples.13 14 This capability is called
generalisation. ANNs have shown excellent
predictive accuracy in medicine even on
inaccurate or incomplete input data. Recent

Table 1 Comparison of training and test set and validation set patients (binary scaled
input and output variables)

Variable Training set Validation set p Value

Time period 04/04/90
–05/11/93

06/11/93
–24/10/96

Output
28 day survivors 397 419 NS
28 day non-survivors 38 36 NS

Input
Prenatal

White race 342 354 NS
Singleton birth 328 334 NS

Perinatal
Apgar, 1 minute < 3 34 26 NS
Apgar, 1 minute < 5 129 71 0.001
Apgar, 1 minute < 7 254 219 0.002
Apgar, 5 minutes < 3 4 0 0.040
Apgar, 5 minutes < 5 14 9 NS
Apgar, 5 minutes < 7 70 67 NS
Apgar, 10 minutes < 3 2 0 NS
Apgar, 10 minutes < 5 7 5 NS
Apgar, 10 minutes < 7 21 21 NS
Condition stable 191 209 NS
Condition fair/unstable 215 206 NS
Condition vitally endangered 29 40 NS
Congenital malformation 11 11
Emergency delivery 287 304 NS
Inborn 276 352 0.001
pH < 7.10 17 28 NS
pH < 7.15 26 43 NS
pH < 7.20 52 93 0.001
pH < 7.25 109 175 0.001
PROM (24 h) 147 161 NS
Caesarean section 329 334 NS
Female gender 212 224 NS
SGA 80 84 NS
Body temperature < 35.0°C 29 21 NS
Body temperature < 35.5°C 63 41 0.011
Body temperature < 36.0°C 126 134 NS
Ventilated on transport 254 174 0.001

PROM: premature rupture of membranes at least 24 hours before birth; pH value obtained
from the first capillary blood analysis on admission.
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reviews describe the many clinical applications
of ANN.15–20

Using an ANN for admission data on
preterm neonates we aimed to: predict the
individual neonatal mortality risk of preterm
neonates from their admission data; compare
the net’s performance with that of a logistic
regression model; and characterise survivors
despite a high predicted individual mortality
risk, and non-survivors despite a low predicted
individual mortality risk.

Methods
Our investigation was based on a pre-existing
data set of 890 preterm neonates (gestational
age < 32 completed weeks gestation and/or
birthweight < 1500 g) born between 4 April
1990 to 24 October 1996. Admission and out-
come data were available on computer files
(tables 1 and 2). Outcome was defined with
respect to neonatal death (death within the first
28 days of life).

The patient sample was split into a training
and test (n=435) and a validation set (n=455)
according to date of birth. The cutoV date was
arbitrarily set to 5 November 1993. The
training and test set data were subjected to a
forward stepwise logistic regression analysis

(cutoV p value to include a variable Pin=0.05,
cutoV p value to exclude a variable Pout=0.1)
(SPSS/PC release 6.1.2, SPSS Inc., Chicago,
IL, USA), and were used to train the ANN
(Predict, NeuralWare Inc., Pittsburgh, USA).
Predict helped to develop a feed–forward fully
connected three layer perceptron. The descent
gradient learning rule was applied for error
propagation.21 22 The ANN input variable selec-
tion mode implemented in Predict is based on
genetic algorithms and helps to find the optimal
combination of inputs.21 The training process
was stopped as soon as the prediction error on
a subset of the training data set, namely the test
set, stopped declining further. After the training
process the ANN had settled to 13 input and
three hidden processing elements. There was
one output processing element.

For validation the inputs were derived from
the independent validation data set (6 Novem-
ber 1993 to 24 October 1996). The logistic
regression model and the ANN delivered the
individual mortality risk of each single preterm
neonate. Prediction and actual outcome were
compared to assess performance.

For the purpose of performance assessment
and method comparison ROC (receiver operat-
ing characteristic) curves were used. The
outcome predictions as delivered by both mod-
els were continuous variables (individual mor-
tality risk). The cutoV point used to transform
them into dichotomous mortality predictions
was varied to obtain ROC curves.23 24 The
maximum likelihood estimation of the binormal
ROC curves, and the area under the fitted ROC
curves were calculated using LABROC1 and
CLABROC software (IBM-PC version 1.2.1;
Metz CE et al. 1993, Department of Radiology,
Chicago Medical Center, Chicago, IL, USA).
CLABROC was used to test corresponding
ROC curves for any significant diVerence (uni-
variate Z-score test of the diVerence between
the areas under the two paired ROC curves, and
univariate Z-score test of the diVerence between
sensitivity values on the two paired ROC curves
at a selected specificity level25).

Surviving patients with an ANN based indi-
vidual mortality risk of more than 0.50 were
matched with infants identical in gestational
age and birthweight (within ±5%), but with a
predicted individual mortality risk of less than
0.50. Morbidity of the two groups was
compared with respect to the variables listed in
table 3. Non-survivors with very low predicted
individual mortality risk (<0.10) were analysed
individually.

To test for associations between the variables
in the training or validation set univariate tests
were performed (÷2 test for categorical vari-
ables; t test, or Mann-Whitney U test for con-
tinuous variables). A p value of < 0.05 was
considered significant.

Results
The training data set overall neonatal mortality
was 8.7%, while in the validation set it was
7.9%. The diVerence is not significant (table
1). The validation dataset diVered in several
respects from the training set (table 1 and 2)

Table 2 Comparison of training and test set and validation set patients (continuous input
variables) (5%, 95% centiles in parentheses)

Variable Training set Validation set p Value

Input
Prenatal

Mother’s age (years) 28.0 (19.5/37.6) 29.2 (20.7/38.4) 0.001
Perinatal

Apgar score, 1 minute 6 (2/9) 7 (2/9) 0.001
Apgar score, 5 minutes 8 (5/10) 8 (5/10) 0.047
Apgar score, 10 minutes 8 (7/10) 8 (7/10) 0.048
Birthweight (g) 1240 (634/2030) 1330 (634/2100) NS
Date of birth (years) 2.1 (0.6/3.5) 5.1 (3.7/6.4)
Gestational age (weeks) 29 (25/33) 29 (24/33) NS
pCO2 (mm Hg) 46 (30/67) 53 (33/76) 0.001
pH 7.31 (7.13/7.47) 7.27 (7.08/7.43) 0.001
Body temperature (°C) 36.5 (34.8/37.5) 36.4 (35.2/37.8) NS
Transport duration (min) 5 (2/45) 5 (1/40) 0.001

Date of birth: number of years elapsed since start of the study; pH and PCO2: from capillary
blood gas, analysis on admission.

Table 3 Matched pairs analysis of survivors with high (>0.5) or low (<0.5) predicted
individual mortality risk*

Variable

Predicted individual
mortality risk >0.50
(n=25)

Predicted individual
mortality risk <0.50
(n=25) p Value

Male gender 13 11 NS
Gestational age (completed weeks) 26.3 (2.3) 26.3 (2.3) NS
Birthweight (g) 878 (318) 876 (325) NS
Days intubated 26.2 (17.7) 24.1 (17.9) NS
Duration of antibiotic treatment (days) 23.1 (10.9) 21.4 (12.1) NS
Number of PRC transfusions 8.2 (5.1) 7.4 (4.9) NS
Bronchopulmonary dysplasia 16 12 NS
IVH III/IV or PVL 14 6 0.02
Diseases requiring surgical intervention 16 8 0.02

PRC: packed red cells; IVH: intraventricular haemorrhage; PVL: periventricular leucomalacia
*For normally distributed variables SD in parentheses.

Table 4 Logistic regression model for six predictor variables

Variable
Odds ratio (95% confidence
interval) p Value

Congential malformations 18.73 (2.13 to 164.8) 0.008
Condition vitally endangered 16.32 (5.59 to 47.6) 0.001
pH < 7.10 6.43 (1.44 to 28.9) 0.014
Apgar score, 1 minute <5 3.97 (1.52 to 10.3) 0.005
Gestational age (weeks) 0.68 (0.55 to 0.81) 0.001
Condition stable 0.22 (0.05 to 1.11) 0.066
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mainly because of the higher rate of inborn
infants in the validation time period.

Stepwise logistic regression revealed the
items low gestational age, one minute Apgar
score < 5, pH of the first blood gas analysis
< 7.10, a life threatening condition on admis-
sion, and the presence of congenital malforma-
tion, as significant risk factors for neonatal
mortality. The factor stable condition on
admission was included in the model by the
forward stepwise algorithm of SPSS. This fac-
tor did not reach significance when the odds
ratio was calculated (p = 0.066) (table 4).

The optimal ANN used 13 diVerent input
variables (table 5). To investigate the specific
impact of individual ANN input variables on
neonatal mortality prediction, 14 ANNs were
trained, each omitting one or two input
variables. An additional ANN was trained with
just two inputs—namely, birthweight and
gestational age. The resulting areas under the

ROC curves reflecting each ANN’s perform-
ances are given in table 5.

When adjusted for a specificity level of 80,
85, 90, or 95%, in terms of sensitivity, the pre-
dictions of the ANN were significantly better
than the logistic regression model (table 6).
The ANN area under the ROC curve was
0.954 (SD 0.011), which is larger than the
0.917 (SD 0.017) of the logistic regression
model area ( p = 0.002, area test)(fig 1).

No preterm neonate had an ANN predicted
mortality risk of >0.80. Thirteen (68.4%) of the
19 preterm neonates with an individual pre-
dicted mortality risk of >0.70 died in the neona-
tal period. Of the 67 preterm babies with a pre-
dicted mortality risk of >0.5, 36 (53.7%) died
before 29 days of life and three thereafter (fig 2).

When morbidity was graded according to
grossly abnormal brain ultrasound scans, or to
the number of postnatally acquired diseases
requiring one or more surgical interventions,
survivors with an ANN based mortality risk
>0.50 had a significant higher morbidity than
matched survivors with an ANN based mor-
tality risk < 0.50 (p=0.02)(table 3).

The clinical characteristics, cause of death,
and the individual ANN derived mortality risk
of the three low risk non-survivors (predicted
mortality risk < 0.10) are summarised in table 7.

Case 1, a preterm infant of 27 weeks
gestation, in his first hours of life, developed
respiratory distress syndrome that was unre-
sponsive to surfactant rescue treatment. Cul-
tures on blood and tracheal fluid grew
Escherichia coli. The infant died on his third day
of life, presenting with septic shock syndrome.

Case 2 had a positive history with respect to
neonatal death in three maternal siblings.
Polyhydramnios had been present in each case,
and all the mother’s siblings had died of respira-
tory insuYciency. The mother turned out to
have myotonic dystrophia. Her infant was in
need of aggressive stabilisation immediately after
birth, including adrenalin and sodium bicarbo-
nate. After stabilisation the infant was trans-
ported to neonatal intensive care. On admission
her capillary pH was within an acceptable range
(table 7).

Case 3 had complex cardiac malformation
(double outlet right ventricle, hypoplastic
pulmonary artery, pulmonary valve stenosis)

Table 5 ANN inputs and area under ROC curves of ANNs with reduced input variable set*; comparison to ANN with
complete input set

Skipped variable
Area under the ROC curve
(SD) p Value

None (complete input set) 0.954 (0.015)
Gestational age 0.924 (0.015) 0.004
Birthweight 0.928 (0.017) 0.033
Condition on admission vitally endangered and condition on admission fair 0.929 (0.015) 0.040
Condition on admission stable and condition on admission fair 0.930 (0.015) 0.042
Inborn 0.936 (0.016) NS
Capilliary pH < 7.10 0.943 (0.015) NS
Temperature on admission < 35.5°C 0.945 (0.014) NS
Condition on admission stable and condition on admission unstable 0.945 (0.014) NS
Emergency delivery 0.946 (0.013) NS
10 minute Apgar score < 5 0.947 (0.013) NS
5 minute Apgar score < 3 0.947 (0.013) NS
Congential malformation 0.949 (0.012) NS
1 minute Apgar score 0.950 (0.013) NS
Gestational age and birthweight 0.881 (0.029) 0.001
All except gestational age and birthweight 0.890 (0.021) 0.001

*Table is ranked acccording to the estimated relative predictive impact of the omitted variables in descending order.

Table 6 Comparison of prediction accuracy of ANN and logistic regression models

Specificity (%)

Sensitivity (95% confidence interval) (%)

p ValueANN Logistic regression model

75 98.8 (93.1 to 99.9) 94.7 (85.1 to 98.6) 0.061
80 97.5 (89.8 to 99.6) 90.6 (78.8 to 96.7) 0.029
85 94.6 (84.2 to 98.7) 83.5 (69.5 to 92.5) 0.010
90 87.8 (74.2 to 95.4) 70.6 (54.4 to 83.5) 0.002
95 69.6 (51.6 to 83.7) 46.1 (28.9 to 64.0) 0.001

Figure 1 ROC plots: ANN compared with the logistic
regression model.
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and respiratory distress syndrome grade IV.
Blood pressure and blood pH could be
stabilised for only a short period.

In the latter two cases the individual
predicted mortality risks increased when pre-
dictions were obtained from an ANN trained
without information on gestational age and
birthweight (table 7).

Discussion
Artificial neural networks have been widely
used for outcome prediction.16 Mortality has
been predicted with great accuracy for patients
on intensive care units, and for patients who
received cardiopulmonary resuscitation in hos-
pital. (Doig GS, et al. Proceedings of annual
symposium on computers applied to medical
care,1993: 361-65).26 27

Solely based on routine data for the first
minutes of life, our ANN was capable of accu-
rately predicting individual neonatal mortality
risk in preterm neonates despite changes in
patient characteristics between the training and
validation time period. The ANN performed
better than a logistic regression model.

While the logistic regression model comprised
six items, the ANN used 13 items (table 5). The
input variable selection of the ANN seems
reasonable as most selected variables were
reportedly associated with mortality1–4 7–9 28–32

and as all predictive variables isolated by the
stepwise logistic regression analysis were also
included in the ANN input variable set. Hence

subtle and/or non-linear associations between
input variables and neonatal mortality not
detected by logistic regression analysis might
account for the superior performance of the
ANN.

Gestational age, birthweight, and condition
on admission are the only items that must not
be omitted during the training process without
severely compromising performance (table 5).
The special impact of the first two of those
items on neonatal mortality risk prediction is
illustrated by the fact that the area under the
ROC curve of the ANN trained with just those
two items (table 5) is larger than comparable
reports suggest.7–10 We cannot exclude that our
neonatologists on duty underestimated the
gestational age of some of the neonates,
including more mature and “healthier” infants
(who are at almost no risk for neonatal
mortality and where mortality risk is easier to
predict) into our study population. Any com-
parable studies focused on prediction of
inpatient mortality (table 8). Thus neonatal
mortality may be easier to predict than
inpatient mortality.

The method to find the optimal ANN input
variable set still awaits standardisation despite
recent advances in the field.33 34 It seems
reasonable to use pruning or genetic algo-
rithms for that purpose. We relied on the
intrinsic variable selection mode of Predict,21

but—a feature inherent in genetic
algorithms—we cannot be absolutely sure that
we have found the variable set with the
maximum predictive power.35

There is no easy way to assess the relative
impact of the individual ANN input variables.
We favoured a pragmatic approach by training
several ANNs, subsequently omitting one
input of the optimal input variable set, and
comparing the diVerent performances.

Twenty five survivors with a high (> 0.50)
ANN derived individual mortality risk under-
went a matched pairs analysis with counterparts
of lower risk (< 0.50) (table 3). All 50 preterm
neonates were very immature (median
gestational age 26.3 weeks, median birthweight
about 880 g), and most of them survived but at
the expense of major sequelae. The ANN iden-
tified a subgroup of preterm neonates with
significantly higher morbidity when they sur-
vived. Individuals in this subgroup presenting
with a predicted individual neonatal mortality
risk of > 0.50 had a higher rate of cerebral com-

Figure 2 Predicted and observed neonatal mortality: solid column represents ANN; open
column represents logistic regression analysis. Absolute numbers of fatal (numerator) and
total cases (denominator) of the corresponding patient group are shown.
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Table 7 Case analysis of non-survivors with ANN predicted indivdual mortality risk < 0.10

Variable Case 1 Case 2 Case 3

Apgar 1/5/10 minutes 09/10/10 04/05/05 04/07/08
Birthweight (g) 1085 2005 2025
Capillary blood pH on admission 7.35 7.32 7.17
Condition on admission Stable Vitally endangered Vitally endangered
Visible congenital malformation on admission None None None
Emergency delivery Yes Yes Yes
Gestational age (completed weeks) 27 31 31
Inborn Yes No Yes
Body temperature on admission (°C) 36.5 36.2 36.2
Cause of death E coli sepsis Congenital myotonic dystrophia, lung

hypoplasia, RDS IV° and pneumonia
on postmortem examination

Complex congenital
heart disease

ANN derived mortality risk 0.022 0.044 0.098
ANN-2i derived mortality risk 0.006 0.378 0.624

*ANN trained omitting the items gestational age and birth weight
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plications, and developed more conditions that
eventually required surgical intervention. Those
findings agree with those of recent studies on ill-
ness severity scores (SNAP, CRIB) where a
positive association between high scoring and
the presence of a major cerebral abnormality on
ultrasound brain scan was found.7 11 36

Although overall prediction of neonatal
mortality is accurate enough for the purpose of
intrahospital quality management and risk
stratification, for the purpose of individual
non-treatment decisions, scoring systems as
well as the ANN still fail to diVerentiate
between high risk preterm neonates who will
eventually die and those who will survive for at
least 28 days. Important factors contributing to
preterm mortality risk were probably not
included in the development of established
scoring systems and in the training data of our
ANN. And perhaps those contributing factors
(for example, antioxidant status, etc) have not
been measured yet.

One probable reason for the prediction
failures in cases 2 and 3 of low risk non-
survivors is the tendency of the ANN to
underestimate the mortality risk the heavier
and more mature the babies are. Our database
lacked important information on physiological
measures such as cord blood pH value, oxygen
requirement in the first hours of life, or the
presence of signs of infection. Hence the ANN
overestimated the impact of immaturity on
mortality. In case 1 sepsis started during day 1
of life and the baby died on day 3. The data
collecting period required to detect physiologi-
cal derangements would have been 12 to 24
hours—the same as in the CRIB or SNAP
scores. Our admission data did not adequately
reflect individual mortality risk in this case.

Several models that can predict mortality in
preterm neonates have been developed.1–3 7–9 37 A
performance comparison of these models
proved diYcult as the studies diVer in respect to
authors’ intention, study population, number of
institutions enrolled, data collecting period,
items used to characterise the neonate, primary
endpoint, and general applicability (table 8).

Although high impact items were missing in
our database, and data collecting was restricted
to the prenatal and immediate perinatal periods,

the ANN’s performance is equivalent to estab-
lished scoring systems. In contrast to most other
mortality prediction models, we have opted for
neonatal mortality instead of inpatient mortality
as the endpoint. The reason for this is that indi-
vidual diseases contributing substantially to
mortality after 28 days (late necrotising entero-
colitis, central catheter sepsis, respiratory syncy-
tial virus infection, etc.) are unlikely to be asso-
ciated with admission data. It should be
mentioned that in contrast to published
reports,2 3 surfactant treatment and high fre-
quency oscillation, both of which can influence
mortality,38–40 had already been introduced into
routine care during the study period.

We relied on pre-existing admission data. We
feel that information on important topics was
missing in our database—for example, illness
severity in the first hours of life. One of the
items used was a very subjective measure of ill-
ness severity—the assessment of the overall
condition on admission, as performed by the
physician on duty. Stevens et al31 and Richard-
son et al8 reported that the physician’s and
nurse’s estimation of neonatal mortality risk
was highly correlated with the actual mortality
risk, or with the SNAP score. The assessment
of the overall condition on admission had not
been intended to serve as an estimate of
mortality risk at the time our data were
recorded. Notably, an ANN trained with those
subjective assessments made by 30 diVerent
physicians delivered reliable results when fed
with independent data of the subsequent
validation time period, when overall condition
on admission was assessed by another 30 phy-
sicians. The use of this kind of subjective input
variable is a major limitation of the present
study. EVorts are under way to substitute those
variables with physiological measures, and to
broaden the database. The aim is to train an
ANN exclusively on objectively measurable
physiological data, to render it broadly applica-
ble to other neonatal intensive care units.

A feature intrinsic to an ANN is its retraining
potential in case of advances in medical care, or
simply in case of additional data becoming
available. In contrast to multiple regression
analysis, expanding the database allows the
ANN to improve its knowledge using non-

Table 8 Comparison of diVerent mortality prediction models

Patient group Institutions

Patient group
size - validation
set included

Study
period

Data collection
period End point

Sensitivity
at 0.74
specificity

Area under
ROC curve for
validation
sample

Name of score
(reference)

Inborn 501-1500 g 7 3603 1987-9 Pre- and perinatal Death #0.77 0.82 Horbar 1993
< 1500 g and ventilated; patients who

died in the first 12 h or had severe
congenital malformations were
excluded

2 262 1983-9 Pre-, peri-, and
neonatal (12 h)

Death >
12 h

0.81 Tarnow 1990

Newborns; late readmitted and
moribund patients excluded

3 1621 1989-90 Neonatal (24 h) Death #0.88 0.90 (0.82†) SNAP
(Richardson
1993)

Newborns; late readmitted and
moribund patients excluded

3 1621 1989-90 Peri- and neonatal
(24 h)

Death #0.91 0.93 (0.79†) SNAP-PE
(Richards 1993)

< 1500 g or < 31 weeks gestation;
lethal congenital malformations
excluded

4 1201 1988-90 Pre-, peri-, and
neonatal (12 h)

Death #0.87 0.90 CRIB (INN
1993)

< 1501 g or < 32 weeks gestation 1 890 1990-6 Pre- and perinatal Neonatal
death

0.99 0.95 This article

#: about; † according to Rantonen et al (1994)29 Prenatal: input data collection from conception until labour
Perinatal: input data collection from labour until admission (admission data included)
Neonatal: input data collection after admission (time span as indicated)
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linear relations between input and output data,
whereas multiple regression at some point
reaches its intrinsic limitations.20 With multiple
regression, the limit of accuracy is determined
by two factors—namely, “noise” (missing,
inaccurate, or false data), and the degree of
non-linearity between the input and outcome
variables. With the ANN approach it is noise
alone that determines the limit of accuracy. As
Richardson and Tarnow-Mordi have pointed
out,11 “ as sophisticated systems for automatic
acquisition of large quantities of routine
clinical information become available, empha-
sis may shift in favour of more complex clinical
scoring systems to maximise predictive accu-
racy.” Clearly, the ability of an ANN to use a
very large number of variables from diVerent
sources (parameters, settings, and monitoring
data from mechanical ventilators, ECG signals
or clinical chemistry data) is a distinct
advantage. Neural networks are able to include
both quantitative and qualitative data into the
same model. There are no limitations with
respect to ordinal scaled data as there are in
logistic regression analysis.

With the recent advances in hardware and
software any clinician is able to develop ANNs
to depersonalise his/her experience, and to
make it accessible to junior colleagues. This can
even happen under circumstances where rules
are diYcult to formulate and situations are too
complex to be analysed by classic statistics.16

Trained ANNs predicting morbidity and
mortality might help to assure high quality of
care through comparison of predicted and
actual outcome; to assess the time course of
intrahospital advances in treatment; and to
warn physicians and nurses, when individual
infants are at high risk and deserve intensified
attention. But prediction failures tell us that
neonatal intensive care medicine is too com-
plex to base an individual no-treatment policy
on a prediction that might turn out to be very
inaccurate for individual patients.
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Part of the data in this study are an integral part of Antje
Westermann’s thesis.
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