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Magnetic resonance imaging (MRI) has proved to be a
valuable tool for monitoring development and pathology
in the preterm brain. This imaging modality is useful for
assessing numerous pathologies including
periventricular leukomalacia, intraventricular
haemorrhage/germinal layer haemorrhage, and
periventricular haemorrhagic infarction, and can help to
predict outcome in these infants. MRI has also allowed
the detection of posterior fossa lesions, which are not
easily seen with ultrasound. Additionally, and perhaps
most relevant, quantitative MR studies have shown
differences between the normal appearing preterm
brain at term equivalent age and term born infants,
confirming that the brain develops differently in the ex
utero environment. Further studies using quantifiable MR
techniques will improve our understanding of the effects
of the ex utero environment, including aspects of
neonatal intensive care on the developing brain.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The developing brain is vulnerable to injury

from many causes, resulting in significant

mortality and morbidity despite recent im-

provements in neonatal intensive care, and at 30

months corrected age impairment can be identi-

fied in one half of all infants born at 25 weeks

gestational age (GA) or less.1 However, even those

with no identifiable disability at this age may

experience learning difficulties when they enter

mainstream school or have behavioural problems

in adolescence.2–5

The neuropathological correlates for neurode-

velopmental impairments are incompletely de-

fined. Most of our knowledge comes from

ultrasound, which shows a relation between peri-

ventricular haemorrhagic infarction (PHI) and

periventricular leucomalacia (PVL) and the devel-

opment of cerebral palsy. There are, however, no

pathological or imaging correlates for the spec-

trum of neurocognitive impairments seen in the

child who was born preterm.

Magnetic resonance imaging (MRI) provides

an ideal and safe technique for imaging the

developing brain. It is non-invasive and non-

ionising and allows considerable differentiation

of structures within the immature brain, showing

the extensive maturation that occurs from 23 to

40 weeks gestation while these vulnerable infants

are receiving intensive care. MRI shows the well

recognised pathologies seen on ultrasound and in

addition allows the detection of more subtle

abnormalities.

MRI OF THE NORMAL PRETERM BRAIN
MRI provides excellent detail of the immature

brain with good delineation of the cortex, white

matter, and central grey matter structures.6 7 In

the immature brain we have found that a T2

weighted fast spin echo (FSE) sequence gives the

best contrast between different structures. The

cortex is seen as high signal intensity on T1

weighted imaging and low signal on T2 weighted

imaging, reflecting its high cellular density. Serial

imaging allows the maturation of cortical folding

to be assessed and scored.6 7 At 24 weeks GA the

surface of the brain appears smooth apart from

the parieto-occipital fissure, central sulci, cingu-

late sulci, calcarine sulci, and very wide Sylvian

fissures (fig 1). Sulcation and gyration develop at

different rates in different regions of the brain. At

any given age prior to term, the folding of the

central sulcus is the most advanced, followed by

the medial occipital lobe. The parietal lobe is the

next most advanced, followed by the frontal and

posterior temporal lobes. The anterior temporal

region is the least well developed. By term the

cortex has extensive folding with the formation

of tertiary sulci.

Unmyelinated cerebral white matter is shown

as high signal intensity on T2 weighted imaging

and low signal on T1 weighted imaging. On T2

weighted MRI, bands of low signal intensity are

visible within the white matter, situated anterior,

posterior, and lateral to the lateral ventricles.6

These represent relatively dense regions of glial

cells migrating from the germinal matrix to the

cerebral cortex8 (fig 2). At around 30 weeks GA,

while the periventricular white matter remains

high signal intensity, the low signal bands

become difficult to visualise, presumably because

the majority of the migrating cells have reached

the cortex at this age.9 In addition to these areas

of low signal intensity, areas of extremely high

signal intensity on T2 weighted FSE images are

visualised around the anterior horns of the lateral

ventricles between 24 and 36 weeks GA. Similar

high signal intensity areas in the shape of arrow-

heads are visualised in the posterior periventricu-

lar white matter at this GA.6 Histologically, these

extremely high signal intensity areas are com-

prised of dense fibre bundles, which have a

relatively low cellular density.8
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The germinal matrix is visible up to around 32 weeks GA as

a prominent structure along the margins of the lateral ventri-

cles (fig 2). After this age, small residual areas of germinal

matrix are visualised at the anterolateral angles of the lateral

ventricles and adjacent to the head of the caudate nucleus and

in the roof of the temporal horn, a site not readily visualised

with ultrasound. The germinal matrix is shown as high signal

intensity on T1 weighted imaging and low signal intensity on

T2 weighted FSE imaging.

Myelin has been shown in numerous white matter tracts

and grey matter nuclei in the preterm brain, corresponding to

those sites that show myelination on histology at this age.

These areas lie within the brain stem, cerebellar vermis, and

the thalami. From 28 weeks GA, myelination is not visualised

at any new site, until 36 weeks GA, when myelin is visualised

in the corona radiata, the posterior limb of the internal

capsule, the corticospinal tracts of the precentral and postcen-

tral gyri, and the lateral geniculate bodies. We have found that

T2 weighted FSE imaging is the best imaging pulse sequence

to show myelin in grey matter nuclei; however, T1 weighted

imaging shows myelin earlier in some white matter tracts in

the preterm brain.10

QUANTITATIVE MR TECHNIQUES
Recently, quantitative MR techniques have been used to assess

the preterm brain, the preterm brain at term equivalent age,

and the preterm brain later in adolescence. These techniques

produce objective and reproducible measurements that

improve our understanding of brain development and provide

a more accurate correlate for neurodevelopmental outcome.

Techniques include three dimensional (3D) volumetric MR

and measurements of cortical folding, which have been used

to determine the increase in brain volume11 and cortical

folding12 with increasing GA. Diffusion weighted imaging

Figure 1 Development of sulcation and gyration with increasing GA. Transverse T2 weighted FSE images at the level of the central sulcus at:
(A) 25 weeks GA; (B) 28 weeks GA; (C) 30 weeks GA; (D) 33 weeks GA; (E) 39 weeks GA.

Figure 2 (A) Coronal T2 weighted FSE image of an infant at 25 weeks GA showing the unmyelinated white matter as high signal intensity
and the cerebral cortex as low signal intensity. The germinal matrix is shown as low signal intensity around the head of the caudate nucleus
(arrowhead), and low signal bands representing migrating glia are shown within the white matter (arrow). (B) TransverseT2 weighted FSE
image at the mid-ventricular level of an infant at 25 weeks GA showing the germinal matrix as low signal intensity (arrows). (C) TransverseT1
weighted FSE image at the mid-ventricular level of an infant at 25 weeks GA showing the germinal matrix as high signal intensity (arrows).
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(DWI) is an MR technique which studies the Brownian

motion of water in tissue and can be used to calculate appar-

ent diffusion coefficients (ADCs), which quantify water

molecular motion. Additionally anisotropy, which is a function

of the directional dependence of water motion in a restricted

environment, can be measured using DWI, and provides an

insight into white matter structure. T1 and T2 relaxation

values have also been studied in the preterm brain.13 14 These

MR parameters are associated with cerebral water content,

and are raised in pathology and in the immature brain.

MRI ASSESSMENT OF CEREBRAL PATHOLOGY
The developing brain is susceptible to injury from infective,

ischaemic, and inflammatory insults. The majority of preterm

infants show some evidence of brain injury on MRI in the

early neonatal period.9

WHITE MATTER ABNORMALITIES
With the decline in the incidence of pathology such as PVL

and IVH, diffuse white matter changes in the absence of more

obvious focal lesions may now be the most common

abnormality of the preterm brain.15 MRI has shown that there

are a variety of white matter abnormalities that can be visual-

ised in the preterm infant. It is not yet clear whether these

represent a spectrum of one disorder or separate entities with

different aetiological factors. These abnormalities may prove

to be related to factors such as poor nutrition,16 17 steroids,18–20

and infection,21–23 which are known to affect development of

the preterm brain.

DIFFUSE WHITE MATTER ABNORMALITY
The majority of preterm infants at term equivalent age appear

to have areas of diffuse excessive high signal intensity

(DEHSI) within the cerebral white matter (fig 3).9 These

changes are most marked in the periventricular white matter,

but may be evident throughout the white matter. Assessment

of these changes is difficult with visual analysis as the appear-

ances are markedly influenced by the windowing used prior to

image processing. This has lead to strategies that allow a more

objective measurment. DWI has shown raised ADC values in

the cerebral white matter in infants with DEHSI compared to

preterm infants with normal white matter, suggesting that

DEHSI represents diffuse white matter disease.24 ADC values

were comparable with those obtained from infants with

obvoius white matter pathology such as PVL and PHI. It is

unclear what causes the increase of ADCs in DEHSI, but it may

be due to vasogenic oedema, oligodendrocyte damage, or a

reduced axonal diameter. DEHSI represents one of the many

differences between the preterm brain at term equivalent age

and the brain of the term born infant. Quantitative MR tech-

niques may be used to further delineate these differences.

PERIVENTRICULAR LEUKOMALACIA
PVL is a histological diagnosis with “softening” of the white

matter and focal cystic degeneration.25 Its incidence is 3–9% in

preterm infants.26 Traditionally, PVL was thought to be due to

ischaemia, but recent studies have suggested an infective

cause.27–29 PVL is shown as periventricular regions that are

hypointense on T1 weighted imaging30 and high signal inten-

sity on T2 weighted imaging in the early neonatal period.

These areas may become cystic and lead to dilatation of the

lateral ventricles, particularly in the region of the posterior

parietal white matter adjacent to the occipital horn. Addition-

ally, areas of short T1, presumably a haemorrhagic compo-

nent, have been identified in the acute/subcacute stage.31 DWI

has identified PVL as areas of high signal intensity, represent-

ing restricted diffusion, before cysts were evident on

ultrasound.32 Additionally, Roelants-van Rijn and colleagues33

reported high signal intensity on DWI adjacent to cystic areas,

which we have also seen in an infant at 32 weeks GA with PVL

(fig 4A–C). On histology, these areas were found to be under-

going active degeneration with cytotoxic oedema, apoptosis,

and macrophage infiltration.33 We have noted increased T1 and

T2 relaxation values in the white matter adjacent to cystic

areas, probably representing more diffuse white matter

damage.34 Chronically, DWI shows low signal areas in the

affected white matter. At this time ADCs are elevated,

representing frank cystic lesions and areas of vasogenic

oedema. By term equivalent age, the cystic lesions are often

incorporated into the lateral ventricles, resulting in the

characteristic squared off appearance of the posterior horns

(fig 4D). Frequent associated findings are thalamic atrophy35

and abnormal signal intensity within the PLIC.36 The latter

may help predict neuromotor outcome.

PVL is associated with delayed myelination, which is prob-

ably caused by extensive glial necrosis and oligodendrocyte

dysfunction as a consequence of white matter injury.37 3D

Figure 3 Transverse T2
weighted FSE image of an infant
at 40 weeks GA, who was born
at 30 weeks GA, showing DEHSI
within the cerebral white matter
(arrows).

Figure 4 PVL in an infant at 28 weeks GA. (A) Transverse T1
weighted image at the mid-ventricular level showing cystic PVL as
areas of low signal within the cerebral white matter posterior and
anterior to the lateral ventricles (arrows). (B) Transverse T2 weighted
FSE image at the mid-ventricular level showing the cystic lesions as
high signal intensity (arrows). (C) DWI image showing areas of
restricted diffusion around the lateral ventricles as high signal
intensity (arrows). (D) T2 weighted FSE image of the same infant at
40 weeks GA showing squared off posterior horns of the lateral
ventricles (arrows) and diminished white matter posteriorly. Cystic
lesions are shown anterior to the anterior horns of the lateral
ventricles (arrowheads).
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volumetric MRI has shown that preterm infants with PVL

have a reduced cortical grey matter volume at term compared

to both preterm infants with no evidence of PVL and normal

term control infants.38 These findings suggest that PVL has an

impact on cerebral cortical development, which may help to

explain the cognitive deficits associated with this condition.

PUNCTATE HAEMORRHAGIC/ISCHAEMIC LESIONS
Non-specific focal lesions have been identified in the cerebral

white matter on MRI studies of the preterm brain.39 These

lesions are high signal intensity on T1 weighted imaging and

frequently, but not always, low signal on T2 weighted imaging

(fig 5), suggesting that they may be haemorrhagic/ischaemic

rather than purely haemorrhagic. The distribution of lesions

varies and is not restricted to the immediate periventricular

white matter. These punctate lesions may develop into areas of

long T2 consistent with gliosis on later MRI.40 Neurodevelop-

mental outcome appears to be inversely related to the number

of lesions present on early MRI.40

INTRAVENTRICULAR/GERMINAL LAYER
HAEMORRHAGE
The appearance of haemorrhage on MRI depends on the age

and site of the haemorrhage, and the pulse sequence used

(table 1).41 IVH usually arises from a GLH in preterm infants,

and is the most common form of intracranial neonatal

haemorrhage.42 The incidence of IVH in preterm infants

increases with decreasing birth weight.42–44 An association

between thrombophilic disorders, such as factor V Leiden het-

erozygosity, and IVH has recently been established.45 GLH is

shown as low signal on T2 weighted imaging (fig 6) and high

signal intensity on T1 weighted imaging. GLH may occur at

any site along the immature ventricle wall, but most

commonly arises from the germinal matrix over the caudate

head and in the roof of the temporal horn. It can be differen-

tiated from the normal germinal layer by its irregular appear-

ance, and it is slightly more hypointense on T2 weighted

imaging. The low signal intensity on T2 weighted imaging

may persist for several months because of the presence of

haemosiderin. GLHs were shown in one third of preterm

infants on MRI in the early neonatal period.9 It is thought that

this lesion may damage oligodendroglial progenitors and dis-

rupt their migration, potentially resulting in impaired

myelination. A further consequence of GLH may be damage to

astrocytic precursors bound for the upper layers of the cerebral

cortex, and thereby impairment of cortical neuronal

development.46 Neurological outcome in infants with IVH

depends largely on the severity of the haemorrhage and the

site of any parenchymal infarction.47–50

PERIVENTRICULAR HAEMORRHAGIC INFARCTION
Blood in the cerebral white matter is drained by the medullary

veins, into the veins of the germinal matrix, and finally into

the terminal veins. Periventricular haemorrhagic infarction

(PHI) probably occurs as a consequence of obstruction of

venous drainage and subsequent infarction of the white

matter.51 Diminished cerebral blood flow in the periventricular

white matter has been shown by positron emission

tomography,52 and Doppler ultrasound has shown reduced

blood flow velocity in the terminal vein on the affected side,53

suggesting impaired venous drainage. The periventricular

haemorrhage is shown as a fan shaped structure, due to

obstructed medullary veins, of low signal intensity on T2

weighted FSE imaging (fig 7).54 55 Parenchymal haemorrhagic

infarction results in interruption of projection and association

fibres and oligodendroglial damage, which disrupts myelina-

tion. PHI and large GLHs may also affect the subplate

neurones, which are concerned with cortical neuronal organ-

isation and in the connection of association and projection

fibres with the cerebral cortex.46 It is possible that injury to the

subplate neuronal layer may result in cognitive delays and

attention deficits in this group of infants.56

Large PHI is associated with a high incidence of

mortality57 58 which is related to the extent of the lesion.59–61 In

surviving infants, a porencephalic cyst usually develops at the

site of the lesion. Infants with a unilateral lesion and

asymmetry in the myelination of the posterior limb of the

internal capsule on term MRI have a high incidence of hemi-

plegia. This may not be due to primary involvement of the

Figure 5 (A) Transverse T1 weighted image of an infant at 29
weeks GA showing a high signal lesion adjacent to the optic
radiation on the left (arrow). (B) Transverse T2 weighted FSE image
showing the lesion as low signal (arrow).

Table 1 Evolution of signal intensity in parenchymal haemorrhage41

Age of haemorrhage T1 weighted imaging T2 weighted imaging

2 days Not seen/high signal intensity rim Low signal intensity
3–10 days Not seen/high signal intensity Low signal intensity (with high signal

intensity periphery)
10–21 days High signal intensity High signal intensity
3–6 weeks High signal intensity High signal intensity (with low signal

intensity periphery)
6 weeks – 10 months Not seen/minimal high signal intensity Not seen/low signal intensity
10–22 months Not seen Minimal low signal intensity/not seen

Figure 6 Transverse T2
weighted FSE image of an infant
at 27 weeks GA showing
bilateral germinal layer
haemorrhages (arrows).
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posterior limb of the internal capsule, but may occur second-

arily as a result of Wallerian degeneration.62

CEREBELLAR HAEMORRHAGE
Cerebellar haemorrhage has been observed in 10–25% of very

low birth weight preterm infants at postmortem

examination63 and is associated with traumatic birth,64 injury

from tightly bound ventilator masks,65 66 and supratentorial

haemorrhage.63 65 67 Using the posterior fontanelle, ultrasound

has shown cerebellar haemorrhage in just under 3% of

preterm infants weighing less than 1500 g, most of whom did

not have extensive supratentorial haemorrhage.68 We have

seen haemorrhagic lesions within the cerebellum on MRI in

8% of preterm infants born at less than 32 weeks gestation,

and the incidence increased with decreasing GA69 (fig 8). Mor-

bidity is high for infants with large supratentorial and

cerebellar haemorrhages.64 70 In those that survive, specific

neurological signs related to cerebellar damage are difficult to

show,71 and the neurological signs that occur may be due to

co-occurring lesions. In the light of evidence that the cerebel-

lum plays an important role in cognitive functioning,72 further

studies are required to assess the impact of isolated cerebellar

haemorrhages on neurodevelopmental outcome.68

QUANTITATIVE MR IN PRETERM BRAIN INJURY
Quantitative MR techniques have identified anomalies which

are not visualised on conventional MRI. Preterm infants at

term have higher ADC values in the central white matter and

lower relative anisotropy than infants born at term.73

Additionally, ADC values are raised in the posterior limb of the

internal capsule, and regional anisotropy in the thalamus and

cortical grey matter is altered in preterm infants with

intrauterine growth retardation compared to appropriately

grown preterm infants at term equivalent age, suggesting

altered development of these regions.74

Although brain volume in preterm infants at term was

similar to that of infants born at term, the surface area of the

cortex and cortical folding was reduced in preterm infants.12

Additionally, Peterson et al showed reduced volumes of the

basal ganglia, corpus callosum, amygdala, hippocampus, and

cerebellum in preterm infants at 8 years of age compared with

term born controls.75 These findings provide objective evidence

that brain development differs in preterm infants compared to

infants born at term.

Quantitative MR techniques are also providing an insight

into the effects of drugs; for example, 3D volumetric MRI has

shown a reduction in cortical grey matter volume in preterm

infants treated with dexamethasone when compared to

untreated preterm infants, implying that dexamethasone

impairs cortical grey matter development.76 Similar findings

have been reported in term infants exposed to multiple doses

of antenatal steroids.77
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