Abstract
Background: Bronchopulmonary dysplasia (BPD) is a common outcome of preterm birth. Experimental animal work has shown that initial ventilation strategies injure the immature lung and may lead to BPD. Studies with asphyxiated babies have shown that, if tidal ventilation at birth is preceded by sustained lung inflation, larger inflation volumes can be achieved, which is thought to lead to clearance of lung fluid and formation of the functional residual capacity (FRC).
Objective: To see if sustained lung inflation at initial resuscitation of preterm babies would facilitate the removal of lung fluid, establish the FRC, and allow an even distribution of alveolar opening, permitting less aggressive ventilation, leading to a reduction in pulmonary inflammation and subsequent BPD.
Method: The outcomes of 52 babies of less than 31 weeks gestation, resuscitated at birth using either a sustained lung inflation of five seconds or a conventional lung inflation of two seconds for the first assisted breath of resuscitation, were examined. Evidence of pulmonary inflammation was determined by quantification of interleukins 6, 10, and 1ß and tumour necrosis factor α in bronchoalveolar lavage fluid by enzyme linked immunosorbent assay.
Results: There were no significant differences in any of the cytokines. Death occurred in 3/26 babies in the conventional group and 6/26 babies in the sustained lung inflation group. Survival without BPD occurred in 13/26 and 14/26 respectively.
Conclusion: The use of sustained lung inflation at resuscitation did not reduce lung injury, as measured by inflammatory markers.
Full Text
The Full Text of this article is available as a PDF (78.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bancalari Eduardo, Claure Nelson, Sosenko Ilene R. S. Bronchopulmonary dysplasia: changes in pathogenesis, epidemiology and definition. Semin Neonatol. 2003 Feb;8(1):63–71. doi: 10.1016/s1084-2756(02)00192-6. [DOI] [PubMed] [Google Scholar]
- Belai Y. Z., Findlay R. D., Lau A. S., Walther F. J. Bronchoalveolar lavage in ventilated newborn infants: safety and tumor necrosis factor-alpha activity. J Perinatol. 1997 Sep-Oct;17(5):360–365. [PubMed] [Google Scholar]
- Björklund L. J., Ingimarsson J., Curstedt T., John J., Robertson B., Werner O., Vilstrup C. T. Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res. 1997 Sep;42(3):348–355. doi: 10.1203/00006450-199709000-00016. [DOI] [PubMed] [Google Scholar]
- Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
- Coalson J. J., Kuehl T. J., Prihoda T. J., deLemos R. A. Diffuse alveolar damage in the evolution of bronchopulmonary dysplasia in the baboon. Pediatr Res. 1988 Sep;24(3):357–366. doi: 10.1203/00006450-198809000-00017. [DOI] [PubMed] [Google Scholar]
- Coalson J. J., Winter V. T., Gerstmann D. R., Idell S., King R. J., Delemos R. A. Pathophysiologic, morphometric, and biochemical studies of the premature baboon with bronchopulmonary dysplasia. Am Rev Respir Dis. 1992 Apr;145(4 Pt 1):872–881. doi: 10.1164/ajrccm/145.4_Pt_1.872. [DOI] [PubMed] [Google Scholar]
- Coalson J. J., deLemos R. A. Pathologic features of various ventilatory strategies. Acta Anaesthesiol Scand Suppl. 1989;90:108–116. doi: 10.1111/j.1399-6576.1989.tb03014.x. [DOI] [PubMed] [Google Scholar]
- Corcoran J. D., Patterson C. C., Thomas P. S., Halliday H. L. Reduction in the risk of bronchopulmonary dysplasia from 1980-1990: results of a multivariate logistic regression analysis. Eur J Pediatr. 1993 Aug;152(8):677–681. doi: 10.1007/BF01955247. [DOI] [PubMed] [Google Scholar]
- Edwards D. K., Dyer W. M., Northway W. H., Jr Twelve years' experience with bronchopulmonary dysplasia. Pediatrics. 1977 Jun;59(6):839–846. [PubMed] [Google Scholar]
- Greenough A. Update on modalities of mechanical ventilators. Arch Dis Child Fetal Neonatal Ed. 2002 Jul;87(1):F3–F6. doi: 10.1136/fn.87.1.F3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korhonen P., Tammela O., Koivisto A. M., Laippala P., Ikonen S. Frequency and risk factors in bronchopulmonary dysplasia in a cohort of very low birth weight infants. Early Hum Dev. 1999 Apr;54(3):245–258. doi: 10.1016/s0378-3782(98)00101-7. [DOI] [PubMed] [Google Scholar]
- Kotecha S., Wilson L., Wangoo A., Silverman M., Shaw R. J. Increase in interleukin (IL)-1 beta and IL-6 in bronchoalveolar lavage fluid obtained from infants with chronic lung disease of prematurity. Pediatr Res. 1996 Aug;40(2):250–256. doi: 10.1203/00006450-199608000-00010. [DOI] [PubMed] [Google Scholar]
- Kraybill E. N., Runyan D. K., Bose C. L., Khan J. H. Risk factors for chronic lung disease in infants with birth weights of 751 to 1000 grams. J Pediatr. 1989 Jul;115(1):115–120. doi: 10.1016/s0022-3476(89)80345-2. [DOI] [PubMed] [Google Scholar]
- Manktelow B. N., Draper E. S., Annamalai S., Field D. Factors affecting the incidence of chronic lung disease of prematurity in 1987, 1992, and 1997. Arch Dis Child Fetal Neonatal Ed. 2001 Jul;85(1):F33–F35. doi: 10.1136/fn.85.1.F33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Northway W. H., Jr Bronchopulmonary dysplasia: then and now. Arch Dis Child. 1990 Oct;65(10 Spec No):1076–1081. doi: 10.1136/adc.65.10_spec_no.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Northway W. H., Jr, Rosan R. C., Porter D. Y. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967 Feb 16;276(7):357–368. doi: 10.1056/NEJM196702162760701. [DOI] [PubMed] [Google Scholar]
- Palta M., Gabbert D., Weinstein M. R., Peters M. E. Multivariate assessment of traditional risk factors for chronic lung disease in very low birth weight neonates. The Newborn Lung Project. J Pediatr. 1991 Aug;119(2):285–292. doi: 10.1016/s0022-3476(05)80746-2. [DOI] [PubMed] [Google Scholar]
- Parker R. A., Lindstrom D. P., Cotton R. B. Improved survival accounts for most, but not all, of the increase in bronchopulmonary dysplasia. Pediatrics. 1992 Nov;90(5):663–668. [PubMed] [Google Scholar]
- Phillips B., Zideman D., Wyllie J., Richmond S., van Reempts P., European Resuscitation Council European Resuscitation Council Guidelines 2000 for Newly Born Life Support. A statement from the Paediatric Life Support Working Group and approved by the Executive Committee of the European Resuscitation Council. Resuscitation. 2001 Mar;48(3):235–239. doi: 10.1016/s0300-9572(00)00382-8. [DOI] [PubMed] [Google Scholar]
- Van Marter Linda J., Dammann Olaf, Allred Elizabeth N., Leviton Alan, Pagano Marcello, Moore Marianne, Martin Camilia, Developmental Epidemiology Network Investigators Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic lung disease in preterm infants. J Pediatr. 2002 Feb;140(2):171–176. doi: 10.1067/mpd.2002.121381. [DOI] [PubMed] [Google Scholar]
- Vyas H., Milner A. D., Hopkin I. E., Boon A. W. Physiologic responses to prolonged and slow-rise inflation in the resuscitation of the asphyxiated newborn infant. J Pediatr. 1981 Oct;99(4):635–639. doi: 10.1016/s0022-3476(81)80279-x. [DOI] [PubMed] [Google Scholar]
- Wada K., Jobe A. H., Ikegami M. Tidal volume effects on surfactant treatment responses with the initiation of ventilation in preterm lambs. J Appl Physiol (1985) 1997 Oct;83(4):1054–1061. doi: 10.1152/jappl.1997.83.4.1054. [DOI] [PubMed] [Google Scholar]