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BRIEF REVIEWS ON ASPECTS OF AGING AND THE EYE

Aging and the cornea

R G A Faragher, B Mulholland, S J Tuft, S Sandeman, P T Khaw

Aging, the persistent decline in age specific fitness of an
organism as a result of internal physiological deterioration,
is a common process among multicellular organisms.' In
humans, aging is usually monitored in relation to time,
which renders it difficult to differentiate between time
dependent biological changes and damage from environ-
mental insults. There are essentially three types of aging at
work in any adult tissue; the aging of long lived proteins,
the aging of dividing cells, and the aging of non-dividing
cells.? Dividing cells may be derived from renewing popu-
lations in which the rate of cell loss and division is great. An
example is the corneal epithelium in which complete
turnover occurs within 5-7 days after terminal
differentiation.” * Conditional renewal populations, which
normally have an extremely low proliferation rate, can also
produce dividing cells in response to extrinsic stimuli.
Stromal keratocytes are a prime example of a conditional
renewing population.” Corneal endothelial cells retain the
capacity to undergo mitosis and conditional renewal in
humans although they very seldom do so0.”’ Non-dividing
cells are those from static cell populations (exemplified by
cerebral neurons) which never divide during adult life.?

Corneal aging produces both structural and functional
changes. These changes in turn can affect the ability of the
organ to refract light, to repair itself, and to protect itself
and the internal structures of the eye.'® A variety of corneal
aging changes have been reported. However, as it is
difficult to distinguish age specific deterioration from
degenerations modified by environmental and genetic fac-
tors, we think it is helpful to consider these alterations
within the broader framework of the aging process. The
study over the past 30 years of isolated cells in culture as a
model system for aging changes has greatly advanced our
understanding of these concepts.

Cell aging

Normal adult cell populations do not divide indefinitely
either in the culture dish or in the body.’ ' Cellular senes-
cence or replicative failure is the process that imposes a
limit on their replicative lifespan, and it is thought that cell
senescence acts as a powerful tumour suppression
mechanism which thus lengthens the healthy reproductive
lifespan of the organism.'” However, the emergence of
senescent cells also contributes to the aging process in
mitotically competent tissues. This theory, the cell hypoth-
esis of aging, proposes that the gradual accumulation of
senescent cells is the primary event that leads to the devel-
opment of age linked degenerative changes in tissue.” '* A
key feature of this hypothesis is the presence of senescent
cells, but it says nothing about the mechanism that causes
the cells to become senescent in the first place. These
mechanisms are considered below.

What are senescent cells?

A concept of cell senescence can perhaps best be appreci-
ated after a consideration of what it is not. Senescence is
distinct from quiescence, a transient growth arrest state,

also known as contact inhibition. Rather confusingly, both
senescence and quiescence are referred to as the GO phase
of the cell cycle (sometimes more helpfully distinguished as
GO0Q and GOS).” Senescence is also distinct from cell
death, occurring either by apoptosis or necrosis, and it is
not a form of terminal differentiation.'° '” The phenotypes
of growth and senescence are totally distinct cell cycle
compartments; there is no such thing as a half senescent
cell. Cells that enter replicative senescence acquire two
phenotypes: they leave the cell cycle with a G1 DNA
content,” and they undergo a characteristic series of
changes in biology and gene expression that alters the
function of the cell.” ** In this latter situation some genes
are transcriptionally repressed, some gene expression is
upregulated, and some totally senescent specific genes are
turned on.”® These changes cover practically every aspect
of cell physiology and occur in a highly selective manner.”
As many of the changes occur in genes coding for secreted
products the senescent cell can potentially affect the
surrounding microenvironment. This altered function of
senescent cells may thus be the critical phenotype that
compromises tissue function and integrity. As these
changes have been largely studied in vitro it is important to
examine the means by which cells become senescent and
to question their significance within aged tissue.

Where could senescent cells come from within the
cornea?

There are two main routes by which a cell may become
senescent; they are explained below.

CONSTITUTIVE CELL SENESCENCE

Replicative failure is often visualised as the cell counting a
fixed number of divisions and then entering senescence
but, while conceptually straightforward, this is a mislead-
ing oversimplification. Rather than simply counting its way
to senescence, each time a cell divides it has a given chance
of never dividing again, a chance that increases each time
the cell replicates until senescence becomes a certainty.” *
However, since the process is controlled by chance, a cell
that has divided only once can still be unlucky and enter
senescence. The constitutive process is thus rather like
playing Russian roulette, the chance of the fatal bullet is
fixed, but the outcome is uncertain. Unlike Russian
roulette, each time the cell divides extra bullets are loaded
into the revolver. In tissue culture the end result of tens of
thousands of chance decisions are cell populations which
have a mixture of growing and senescent cells, the propor-
tions of which shift in the direction of total senescence as
the culture is passaged and the cells divide.” In tissue, even
very limited division can thus begin to produce senescent
cells. The kinetics of constitutive senescence can be
explained in terms of the inheritance of chromosomes with
progressively shortened telomeric DNA sequences.”

REACTIVE CELL SENESCENCE
This pathway to the senescent state was demonstrated
recently and provides a fascinating alternative to the
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constitutive route. Current data show that this stage is
essentially identical to constitutive senescence but happens
in a matter of hours. It has been shown that the induction
of the activated H-ras oncogene into growing fibroblasts
can trigger senescence.” This suggests that, rather like
apoptosis, senescence can be induced by mutation or
mitogenic overload; this may implicate topical treatment
with anticancer drugs in the induction of senescence. In
contrast with the constitutive route, this pathway appears
to require little if any cell division. Thus, senescent cells
may appear much more frequently in quiescent tissue than
previously thought, particularly if that tissue is in a muta-
genic environment. This may be clinically relevant with the
increasing use of potentially mutagenic agents such as
5-fluorouracil and mitomycin C to prevent scarring after
pterygium excision or glaucoma filtration surgery; particu-
larly since mitomycin C has been shown to rapidly induce
senescent-like changes in cultured fibroblasts.** These
drugs soak into sclera, conjunctiva, and cornea, particu-
larly after subconjunctival injection, but probably also after
sponge application.”” We have seen prolonged effects on
the tissue fibroblasts in the drug treated area that seem
unable to divide further despite maximal serum
stimulation.” It is possible that some of this growth arrest
is reactive cell senescence although this remains to be
proved. This is an important distinction as senescence is
irreversible, unlike prolonged growth arrest seen in vitro
that may recover.”® * The clinical importance of these
observation is that accelerated senescence may thus cause
disease within the affected tissue that may not become
apparent for many years.

Particularly interesting from the perspective of senes-
cence is the recent observation that removal of the corneal
epithelium can trigger apoptosis in the underlying anterior
keratocytes.” These cells are then replaced after re-
epithelialisation by division and migration from the poste-
rior stroma. This apoptosis repopulation process is
believed to form a line of defence against invading
viruses,” it also provides a mechanism by which cell
division, and hence the constitutive senescence pathway,
may be activated. These processes may be manifest as a
decline in the density of keratocytes with advancing age.

The cornea is saturated in light that is potentially muta-
genic and reactive senescence can potentially occur in any
of the cell layers. Cell turnover within the epithelium is
continuous, and thus constitutive senescence has the
potential to occur in both the transient amplifying popula-
tion or, more seriously, in the dividing stem cells. Corneal
epithelium has not been examined for the presence of
senescent cells but studies of skin strongly suggest they will
be present.” ** The behaviour of cultured keratocytes from

Table 1  Alterations seen in the aging cornea
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old donors is also consistent with an elevated fraction of
senescent cells in the biopsy rather than a reduced number
of starting cells.” An age related increase in the number of
senescent cells in human endothelium has been
observed.” *’

How does cell senescence affect the cornea?
Structural and functional alterations documented in the
aging cornea are listed in Table 1. Although insufficient
information exists on the senescence of epithelial cells to
draw more than speculative observations, senescence is
associated with a decreased ability to resist a wide range of
physiological stresses. Changes in the ocular surface render
the aging cornea more susceptible to infection for various
reasons. There is an increase in epithelial permeability with
age that may either represent a breakdown of epithelial
barrier function® or an increased tear contact time.*
Changes in the distribution of integrin subunits in the epi-
thelium could also reduce the epithelial barrier function.
The 06 subunit and the P4 subunit, components of
hemidesmosomes, become discontinuous with age. How-
ever, the number and distribution of hemidesmosomes
along the basal lamina do not appear to change with age.*
A reduced ability of corneal cells to upregulate adhesion
molecules and a reduced phagocytic ability of reactive
polymorphonucleocytes in response to infection also occur
with aging,” ** and this could impair the ability to
eliminate a bacterial infection. Epithelial disease, in turn,
has the potential to contribute to cell loss within the
endothelial layer.*

The major cellular component of the corneal stroma is
the keratocyte. Few studies have been conducted on these
cells, but in vitro studies of senescent dermal and lung
fibroblast-like cells have demonstrated constitutive over-
expression of collagenase, stromolysin, and elastase.”® '
Simultaneously, the expression of tissue inhibitors of met-
alloproteinases (TIMP 1 and TIMP 2)** are greatly
reduced, as is collagen mRNA.” Fibronectin is produced
in an altered form which is a less efficient substrate for cell
adhesion,”™ proteoglycan synthesis falls,” and the migra-
tion rate” and the ability of fibroblasts to contract a colla-
gen lattice in vitro also decline.’® Lipofuscin and endo-
genous ceramide levels increase.’” *® Gap junction assembly
times increase by an order of magnitude and membrane
permeability increases sharply.” Specific inhibitors of
calcium dependent membrane currents are induced.” In
addition, the glycation of corneal collagen produces an
increase in intramolecular spacing.”” The overall result of
these changes is a radical shift of the senescent cell into a
highly catabolic phenotype® and, in aging skin, senescent
cells have been demonstrated in close proximity to degen-

Characteristic

Result of change

(1) Changes in shape and optical properties

(i) Steepening of keratometry and a shift from with the rule to against the rule

astigmatism®® *°
(ii) Transparency is unaffected in central cornea in absence of scar or degeneration®
(iii) Collagen intramolecular and interfibrillar spacing increases—possibly via increased

protein glycation

41 42

(iv) Increased thickness of Descemet’s membrane

(2) Corneal degenerations (influenced by environmental and genetic
factors)

(i) Cornea farinata
(ii) White limbus girdle

(iii) Mosaic degeneration
(iv) Deep crocodile shagreen
(v) Hassall-Henle bodies
(vi) Arcus senilis

(3) Physical properties

(i) Resistance to infection reduced

(ii) Failure to upregulate ICAM-1 and reduced inflammatory cell infiltration*®
(iif) Reduced phagocytically active cells after infection**

(iv) Decline in high energy metabolism*

(v) Increased tear contact time*®

(vi) Increased epithelial permeability to flourescein®’
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erative and disorganised collagen fibrils.”” The reduced
keratocyte density within the aging cornea, the breakdown
of collagen fibres, and the appearance of collagen-free
spaces may reflect similar changes within this tissue.”
The increase in lipofuscin granules seen in the aged stroma
(corneal farinata) may represent deposition of products
from senescent cells.

Some of these factors could adversely affect wound
repair. A reduced number of fibroblasts, an inability of
many of those cells to divide, the decreased ability for
migration, a reduced ability to contract a wound lattice,
and the depressed synthesis of collagen are believed to
contribute strongly to impaired wound healing in the aging
dermis. While no direct evidence for this currently exists in
the normal cornea, patients with Werner’s syndrome—a
hereditary disease characterised by premature fibroblast
senescence”—show severely impaired corneal wound
healing following cataract surgery.” The implication that
senescence may have a detrimental effect on the outcome
of corneal surgery is thus strong. Decreased healing of
wounds in the aged may be advantageous in some circum-
stances such as glaucoma filtration surgery, but age has
also been identified as the most important individual vari-
able affecting the outcome after refractive surgery; the
amount of effective aggression decreasing proportional to
increasing age.”*’

Age related changes in the corneal endothelium have
been examined clinically and experimentally. It has been
estimated that between the ages of 20 and 80 years the
annual reduction in cell density averages approximately
0.6%, with concomitant increases in polymegethism and
pleomorphism.”®"" However, as the mean age of the popu-
lation sample increases, there is an increased spread in the
range of the endothelial cell density counts.”” This means
that the measurement of endothelial cell density is not a
reliable index of the chronological age of the cornea, and
suggests an environmental influence. Changes in cell den-
sity and shape with age have been observed to occur in the
human,” monkey," rat,” cat,” "° dog,”” and rabbit,” but in
each of these species the adult mean cell density (about
2500 cells/mm?®) is remarkably constant. Interestingly, it
has been noted in the rat, which has the ability for
endothelial cell division, that the total reduction in
endothelial cell numbers is of the same order of magnitude
as occurs in humans, but the cell loss is compressed into
the shorter life span of this species.” The biological
mechanisms behind the gradual endothelial cell loss
during aging remain to be elucidated, but might involve
hormonal changes or environmental influences such as
ultraviolet irradiation and chemical toxicity. In particular,
the degradation of enzymes in the anterior segment that
normally metabolise and detoxify hydrogen peroxide and
other free radicals may lead to progressive damage to the
endothelial layer.” Reduction in endothelial cell numbers
and the increased variability in cell size and shape that
accompany normal aging may adversely affect endothelial
function,® although this reduced function may also be the
result of a decline in high energy metabolism with age.*”
The aged cornea is slower to recover from hypoxic stress,*"
and grafts from older donors usually require a longer post-
operative period to attain their final thickness.* ** Although
advanced donor age does not preclude the use of a cornea
for grafting, the life span of a transplanted endothelial cell
is, as yet, unknown. In rabbits, where the endothelial cell
layer is able to regenerate, the pattern of corneal endothe-
lial wound healing after transcorneal freezing is slower and
less extensive in corneas from adult animals than from
young animals.*

Faragher, Mulholland, Tuft, Sandeman, Khaw

Conclusions

A wide range of changes occur in the aging cornea, some of
which can be linked to the changes seen in aging cells in
culture. The lack of uniform culture systems for corneal
epithelium and endothelium has limited the study of
senescence phenotype in these cell types. Although the
growth arrest phenotype of senescence is universal among
different cell types the changes in function that accompany
it are not, with many growth arrest genes showing high tis-
sue specificity. Only studies of these cell types will allow
firm conclusions to be drawn. Simple inactivation of the
mechanism of replicative failure is intrinsically undesirable
since it apparently functions as an antitumour mechanism.
A more sensible strategy appears to be to define in greater
detail the functional phenotype of senescence and then to
attempt to modify this through therapy, an intriguing clini-
cal possibility for the future.
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