Skip to main content
British Journal of Sports Medicine logoLink to British Journal of Sports Medicine
. 2003 Jun;37(3):245–249. doi: 10.1136/bjsm.37.3.245

Energy demands during a judo match and recovery

F Degoutte 1, P Jouanel 1, E Filaire 1
PMCID: PMC1724647  PMID: 12782550

Abstract

Objective: To assess energy demand during a judo match and the kinetics of recovery by measuring the metabolites of the oxypurine cascade, lipolytic activity, and glycolytic pathway.

Methods: Venous blood samples were taken from 16 national judoists (mean (SEM) age 18.4 (1.6) years), before (T1) and three minutes (T2), one hour (T3), and 24 hours (T4) after a match. A seven day diet record was used to evaluate nutrient intake.

Results: Nutrient analysis indicated that these athletes followed a low carbohydrate diet. Plasma lactate concentration had increased to 12.3 (1.8) mmol/l at the end of the match. An increase in the levels of extracellular markers of muscle adenine nucleotide catabolism, urea, and creatinine was observed at T2, while uric acid levels remained unchanged. High concentrations of urea persisted for 24 hours during the recovery period. Ammonia, hypoxanthine, xanthine, and creatinine returned to control levels within the 24 hour recovery period. Uric acid concentrations rose from T3 and had not returned to baseline 24 hours after the match. The levels of triglycerides, glycerol, and free fatty acids had increased significantly (p<0.05) after the match (T2) but returned to baseline values within 24 hours. Concentrations of high density lipoprotein cholesterol and total cholesterol were significantly increased after the match.

Conclusions: These results show that a judo match induces both protein and lipid metabolism. Carbohydrate availability, training adaptation, and metabolic stress may explain the requirement for these types of metabolism.

Full Text

The Full Text of this article is available as a PDF (115.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker B. F., Reinholz N., Ozçelik T., Leipert B., Gerlach E. Uric acid as radical scavenger and antioxidant in the heart. Pflugers Arch. 1989 Nov;415(2):127–135. doi: 10.1007/BF00370582. [DOI] [PubMed] [Google Scholar]
  2. Berger G. M., Griffiths M. P. Acute effects of moderate exercise on plasma lipoprotein parameters. Int J Sports Med. 1987 Oct;8(5):336–341. doi: 10.1055/s-2008-1025680. [DOI] [PubMed] [Google Scholar]
  3. Bianchi G. P., Grossi G., Bargossi A. M., Fiorella P. L., Marchesini G. Can oxypurines plasma levels classify the type of physical exercise? J Sports Med Phys Fitness. 1999 Jun;39(2):123–127. [PubMed] [Google Scholar]
  4. Brouns F., van der Vusse G. J. Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. Br J Nutr. 1998 Feb;79(2):117–128. doi: 10.1079/bjn19980022. [DOI] [PubMed] [Google Scholar]
  5. Callister R., Callister R. J., Staron R. S., Fleck S. J., Tesch P., Dudley G. A. Physiological characteristics of elite judo athletes. Int J Sports Med. 1991 Apr;12(2):196–203. doi: 10.1055/s-2007-1024667. [DOI] [PubMed] [Google Scholar]
  6. Chagoya de Sánchez V., Hernández-Muñoz R., Suárez J., Vidrio S., Yáez L., Aguilar-Roblero R., Oksenberg A., Vega-González A., Villalobos L., Rosenthal L. Temporal variations of adenosine metabolism in human blood. Chronobiol Int. 1996 Aug;13(3):163–177. doi: 10.3109/07420529609012650. [DOI] [PubMed] [Google Scholar]
  7. Collins M. A., Hill D. W., Cureton K. J., DeMello J. J. Plasma volume change during heavy-resistance weight lifting. Eur J Appl Physiol Occup Physiol. 1986;55(1):44–48. doi: 10.1007/BF00422891. [DOI] [PubMed] [Google Scholar]
  8. Durnin J. V., Rahaman M. M. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr. 1967 Aug;21(3):681–689. doi: 10.1079/bjn19670070. [DOI] [PubMed] [Google Scholar]
  9. Farrell P. A., Maksud M. G., Pollock M. L., Foster C., Anholm J., Hare J., Leon A. S. A comparison of plasma cholesterol, triglycerides, and high density lipoprotein-cholesterol in speed skaters, weightlifters and non-athletes. Eur J Appl Physiol Occup Physiol. 1982;48(1):77–82. doi: 10.1007/BF00421167. [DOI] [PubMed] [Google Scholar]
  10. Fry R. W., Morton A. R., Garcia-Webb P., Keast D. Monitoring exercise stress by changes in metabolic and hormonal responses over a 24-h period. Eur J Appl Physiol Occup Physiol. 1991;63(3-4):228–234. doi: 10.1007/BF00233853. [DOI] [PubMed] [Google Scholar]
  11. Haskell W. L. The influence of exercise on the concentrations of triglyceride and cholesterol in human plasma. Exerc Sport Sci Rev. 1984;12:205–244. [PubMed] [Google Scholar]
  12. Hellsten Y., Sjödin B., Richter E. A., Bangsbo J. Urate uptake and lowered ATP levels in human muscle after high-intensity intermittent exercise. Am J Physiol. 1998 Apr;274(4 Pt 1):E600–E606. doi: 10.1152/ajpendo.1998.274.4.E600. [DOI] [PubMed] [Google Scholar]
  13. Hellsten Y., Sjödin B., Richter E. A., Bangsbo J. Urate uptake and lowered ATP levels in human muscle after high-intensity intermittent exercise. Am J Physiol. 1998 Apr;274(4 Pt 1):E600–E606. doi: 10.1152/ajpendo.1998.274.4.E600. [DOI] [PubMed] [Google Scholar]
  14. Ivy J. L. Muscle glycogen synthesis before and after exercise. Sports Med. 1991 Jan;11(1):6–19. doi: 10.2165/00007256-199111010-00002. [DOI] [PubMed] [Google Scholar]
  15. Lithell H., Cedermark M., Fröberg J., Tesch P., Karlsson J. Increase of lipoprotein-lipase activity in skeletal muscle during heavy exercise. Relation to epinephrine excretion. Metabolism. 1981 Nov;30(11):1130–1134. doi: 10.1016/0026-0495(81)90059-7. [DOI] [PubMed] [Google Scholar]
  16. Maddali S., Rodeo S. A., Barnes R., Warren R. F., Murrell G. A. Postexercise increase in nitric oxide in football players with muscle cramps. Am J Sports Med. 1998 Nov-Dec;26(6):820–824. doi: 10.1177/03635465980260061401. [DOI] [PubMed] [Google Scholar]
  17. Ohkuwa T., Itoh H. High density lipoprotein cholesterol following anaerobic swimming in trained swimmers. J Sports Med Phys Fitness. 1993 Jun;33(2):200–202. [PubMed] [Google Scholar]
  18. Ranallo R. F., Rhodes E. C. Lipid metabolism during exercise. Sports Med. 1998 Jul;26(1):29–42. doi: 10.2165/00007256-199826010-00003. [DOI] [PubMed] [Google Scholar]
  19. Sahlin K., Tonkonogi M., Söderlund K. Plasma hypoxanthine and ammonia in humans during prolonged exercise. Eur J Appl Physiol Occup Physiol. 1999 Oct;80(5):417–422. doi: 10.1007/s004210050613. [DOI] [PubMed] [Google Scholar]
  20. Sutton J. R., Toews C. J., Ward G. R., Fox I. H. Purine metabolism during strenuous muscular exercise in man. Metabolism. 1980 Mar;29(3):254–260. doi: 10.1016/0026-0495(80)90067-0. [DOI] [PubMed] [Google Scholar]
  21. Terzuoli L., Porcelli B., Setacci C., Giubbolini M., Cinci G., Carlucci F., Pagani R., Marinello E. Comparative determination of purine compounds in carotid plaque by capillary zone electrophoresis and high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 1999 May 28;728(2):185–192. doi: 10.1016/s0378-4347(99)00119-x. [DOI] [PubMed] [Google Scholar]
  22. Thomas S. G., Cox M. H., LeGal Y. M., Verde T. J., Smith H. K. Physiological profiles of the Canadian National Judo Team. Can J Sport Sci. 1989 Sep;14(3):142–147. [PubMed] [Google Scholar]
  23. Turcotte L. P. Role of fats in exercise. Types and quality. Clin Sports Med. 1999 Jul;18(3):485–498. doi: 10.1016/s0278-5919(05)70163-0. [DOI] [PubMed] [Google Scholar]
  24. Westing Y. H., Ekblom B., Sjödin B. The metabolic relation between hypoxanthine and uric acid in man following maximal short-distance running. Acta Physiol Scand. 1989 Nov;137(3):341–345. doi: 10.1111/j.1748-1716.1989.tb08762.x. [DOI] [PubMed] [Google Scholar]
  25. Yuan Y., Chan K. M. A review of the literature on the application of blood ammonia measurement in sports science. Res Q Exerc Sport. 2000 Jun;71(2):145–151. doi: 10.1080/02701367.2000.10608892. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Sports Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES