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The idea that enzymes accelerate their reactions by entropic effects
has played a major role in many prominent proposals about the
origin of enzyme catalysis. This idea implies that the binding to an
enzyme active site freezes the motion of the reacting fragments
and eliminates their entropic contributions, (DScat

‡ )9, to the activa-
tion energy. It is also implied that the binding entropy is equal to
the activation entropy, (DSw

‡ )9, of the corresponding solution reac-
tion. It is, however, difficult to examine this idea by experimental
approaches. The present paper defines the entropic proposal in a
rigorous way and develops a computer simulation approach that
determines (DS‡)9. This approach allows us to evaluate the differ-
ences between (DS‡)9 of an enzymatic reaction and of the corre-
sponding reference reaction in solution. Our approach is used in a
study of the entropic contribution to the catalytic reaction of
subtilisin. It is found that this contribution is much smaller than
previously thought. This result is due to the following: (i ) Many of
the motions that are free in the reactants state of the reference
solution reaction are also free at the transition state. (ii ) The
binding to the enzyme does not completely freeze the motion of
the reacting fragments so that (DS‡)9 in the enzymes is not zero. (iii )
The binding entropy is not necessarily equal to (DSw

‡ )9.

Many prominent proposals (e.g., see refs. 1 and 2) and
textbooks that consider biochemical systems (e.g., refs.

3 and 4) invoke entropic contributions as major factors in
enzyme catalysis. These proposals, which are intuitively very
appealing (e.g., see ref. 5), have assumed that the large
configurational space available for the reacting fragments in
water would be drastically restricted in the enzyme active site.
It has been thus deduced that this should lead to large entropic
contributions to the difference between the activation barrier
in the enzyme and in the reference solution reaction. However,
the validity of these proposals is far from being obvious (6, 7).
For example, the very inf luential proposal introduced by Page
and Jencks (1) ref lects the assumption that the formation of
the transition state in a bimolecular reaction in solution
involves complete loss of three translational and three rota-
tional degrees of freedom. However, two or more of these
degrees of freedom are usually almost free in the transition
state (see below). More serious is the implicit assumption that
the entropic contribution to catalysis is given approximately by
the negative of the binding entropy (see below). Other prob-
lems with simple estimates of the entropic contribution will be
mentioned in the next section.

The main stumbling block for determining the validity of the
entropic proposal is the absence of direct experimental infor-
mation about the corresponding contribution of the reacting
fragments to the activation entropy in the enzyme and in
solution. In this respect it is interesting to note the recent
analysis of cytidine deaminase by Wolfenden and co-workers
(8). This study found that the entropies of activation in the
enzyme and in water are very similar and that the overall
catalysis is due to enthalpic effects. Interestingly, it was found
that the activation entropy in water and the binding entropy are
significant. However, it is not known what parts of these
entropies are associated with the restriction of the motion of

the reacting fragments and what parts are associated with
solvation entropies.

Intramolecular cyclizations of model compounds were used
as ‘‘proofs’’ that enzyme catalysis involves large entropic contribu-
tions (e.g., ref. 2). However, recent simulations of Bruice and
co-workers (9) indicated that the rate acceleration associated with
smaller ring size is not necessarily associated with entropic contri-
butions. Furthermore, our studies (6) have challenged the direct
relevance of these model compounds to enzyme catalysis.

The entropic contributions to enzyme catalysis can be deter-
mined in principle by computer simulation approaches, but the
development of the proper method is far from trivial because of
enormous convergence problems. Nevertheless, some encour-
aging progress has been made in studies of related problems.
This includes the progress in evaluating solvation entropies (10)
and in evaluating binding entropies (11). Yet, no attempt has
been made in evaluating activation entropies by simulation ap-
proaches. Note in this respect that the recent interesting studies
reported by Kollman and co-workers (12, 13) have not provided
ways for consistent evaluation of activation entropies or binding
entropies.† At any rate, it is clear that calculations of activation
entropies in enzyme active sites and in the corresponding reference
solution reactions are essential for a quantitative understanding of
entropic contributions to enzyme catalysis (6).

The present work introduces an approach for evaluating the
contribution from the motion of the reacting fragments to the
activation entropies of enzymatic reactions and uses this ap-
proach in assessing the importance of entropic effects to enzyme
catalysis.

Defining the Problem
To evaluate the importance of a specific contribution to catalysis
it is essential to define the relevant thermodynamic cycle. This
is particularly important in considering entropy contributions,
whose definition and estimates involve in many cases incomplete
thermodynamic cycles. The starting point of the present study is
the free energy diagram of Fig. 1. This diagram compares the
activation free energies Dgp

‡ and Dgw
‡ for a given reaction in a

protein (p) and in water (w) and also compares the correspond-
ing activation free energies (Dg‡)9 when the reacting fragments
are frozen (see below). As shown in Fig. 1, Dgp

‡ is given by
DGbind 1 Dgcat

‡ , and thus reflects the binding energy DGbind,
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whose nature is quite clear and is not involved in the catalytic
puzzle (see also ref. 7). The main open question is the relation-
ship between Dgcat

‡ (which corresponds to kcat) and the activation
barrier of the reaction in water, Dgw

‡ . It is also interesting,
although not essential, to compare Dgcat

‡ to the barrier Dgcage
‡

obtained by correcting Dgw
‡ for the free energy associated with

bringing the reactants to a solvent cage, where each of the
(n 2 1) reactants (from an overall n reactants) is at a relatively
small distance from the central reactant (the nth reactant). At
this distance the interaction with the central ligand is small and
each reactant moves almost freely. In a case of small reactant
molecules we can define the cage volume by requiring that the
central reactant will have a standard 1 M concentration and the
other reactants will have a concentration that is less than or equal
to 55 M. In other words, taking into account the free energy
contribution associated with confining a molecule that occupies
a molar volume v0 (1,660 Å3 at 300 K) (6) to a volume vcage we
may write

Dgw
‡ 5 Dgcage

‡ 2 nr RT ln Svcage

v0
D , [1]

where Dgw
‡ is the activation barrier in solution at a standard state

concentration, and vcage is the volume of the solvent cage, which
is taken to be larger than 1,660 Å3y55. Here nr is the number of
the ligands that become bound to the substrate at the transition
state. This number is equal to (n 2 1) in a fully concerted
reaction, whereas it reduces to 2 in a stepwise reaction. The
seemingly arbitrary definition of Dgcage

‡ (which will not change
our final evaluation of Dgw

‡ ) reflects two considerations. First,
early workers (e.g., refs. 1 and 2) implied or stated correctly that
the free energy price associated with bringing the reacting
fragments to a distance of a weak interaction is given by simple
concentration considerations and is given approximately by
2RTln 55. Thus the real puzzle was (and is) why Dgcat

‡ is much
smaller than the barrier obtained by considering the small
volume correction to Dgw

‡ . And second, comparing Dgcat
‡ and

Dgcage
‡ provides conceptually and computationally closely related

quantities, the activation barrier in the enzyme active site and the
activation barrier in a solvent cage, where the reactants are in
close proximity. It should also be stated that our cage system is
very different than the system used by Jencks and others, where
the reactants in solution are frozen in a space similar to that

available in the enzyme active site. This traditional definition
makes it rather difficult to define a simple thermodynamics cycle
for the comparison of Dgcat

‡ and Dgw
‡ .

Now, the major question one has to address is related to the
entropy contribution associated with the restriction of the mo-
tions of the reacting fragments by the enzyme active site, relative
to the corresponding contribution in the solvent cage. This effect
does not include the contribution from the change in the entropy
of the environment (e.g., solvent), since the early proposals were
defined clearly in terms of the substrate entropy rather than the
entropy of the surroundings. Thus, we are not addressing here
the change in the so called cratic entropy (11) that includes the
overall change in entropy upon binding, but rather the changes
in the contribution, DS9, from the configurational space of the
reacting fragments. The factors involved in the catalytic effect of
DS9 are illustrated in Fig. 1. The figure compares the free energy
profile Dgw and the corresponding (Dgw)9, obtained by freezing
the degrees of freedom of the substrate that are perpendicular
to the reaction coordinate. Similarly, the figure compares Dgp
and (Dgp)9. As clarified above, we are interested in the contri-
bution of DS9 to (Dgcat

‡ 2 Dgw
‡ ) or to (Dgcat

‡ 2 Dgcage
‡ ). Using Fig.

1, we obtain:

2 T~DDScage3 cat
‡ !9 5 2 T~DScat

‡ 2 DScage
‡ !9

5 2 T[(Scat
TS 2 Scage

TS )9 2 ~Scat
RS 2 Scage

RS !9] ,

[2]

where RS and TS, respectively, designate the corresponding
contributions from the reactants state and transition state in the
protein or in the solvent cage. Of course we can also obtain easily
(DDSw3 cat

‡ )9.
The first point to note from Eq. 2 is that one must consider

the entropy contributions from the RS and TS both in the
enzyme and in the solvent cage. To the best of our knowledge
all previous estimates, with the exception of ref. 6, have not
considered both the RS and TS and have not defined the
catalytic effect in a rigorous way. Probably the most systematic
attempt was made by Jencks (page 720 of ref. 2), who defined
the problem by considering the hypothetical case with identical
DH‡ in the enzyme and in water. He assumed that DScat

‡ is zero
and estimated DSw

‡ by considering the process of bringing the

Fig. 1. Comparison of the free energy profiles Dg for a given reaction in a protein (Dgp
‡) and in water (Dgw

‡ ). The figure represents these free energy profiles
in the absence (Dg) and presence (Dg9) of constraints for the movement of the reacting fragments. Note that Dgp

‡ corresponds approximately to kcatyKm (it is
given by DGbind 1 Dgcat

‡ ). The figure uses the notation of L for ligand rather than S for substrate to prevent confusion with the symbol S used for entropy.

11900 u www.pnas.org Villà et al.



reactants in water to the same frozen position that they have
in the enzyme. Furthermore, the TS in water was also assumed
to be frozen in the same way. Basically, it was assumed
implicitly that Sw

TS 5 Sp
TS . 0, and that the activation entropy

in water can be approximated by the binding entropy of the
protein. In other words, Jencks as well as most other workers
implied that we can freeze the motion of the reactants in
solution in the same restricted space available for these
motions in the protein and that the free energy that should be
invested in this configurational restriction is the entropic
contribution to the difference between Dgw

‡ and Dgcat
‡ . This

(apparently incorrect assumption) can be formulated by the
more accurate terms of Fig. 1 as:

2TDDSw3 cat
‡ < 2T@~Scage

RS !9 2 ~SEL
RS!9# 2 nrRT ln Svcage

v0
D ,

[3]

where Scage
RS is the hypothetical frozen RS of the solution reaction.

Here we subtract 2T(SEL
RS)9 from 2T(Scage

RS )9, because the sub-
strate is not completely frozen in the protein. However, as seen
from Fig. 1, this is a problematic assumption in large part
because of the fact that S9 is not zero at the TS of the solution
reaction. Or in other words because of the fact that many of the
motions that are free in the RS in the solvent cage are also free
in the TS in this cage.

To further clarify this point we can consider the hypothetical
case when all the motions are frozen in the enzyme in both the
RS and the TS (so that (DScat

‡ )9 5 0) and all the motions are free
in solution in the RS and in the TS (so that (DScage

‡ )9 5 0). In
this case we have (DDScage3 cat

‡ )9 5 0 and DDSw3 cat
‡ . 8 entropy

units. On the other hand, if we only consider the RS in water and
in the protein site we may obtain a large (DDScage3 cat

‡ )9.
Finally, it might be useful to comment on the inherent

assumption of Page and Jencks (1) that the formation of a
bimolecular complex involves the loss of three translational and
three rotational degrees of freedom. This model was based on
considering two spherical fragments. However, in actual forma-
tion of the cage complex we still retain between one to three of
these degrees of freedom. For example, in the attack of a CH3O2

group on an amide we do not lose the rotation around the C–O
axis, and two of the translational motions of the CH3 group are
almost free (see Fig. 2).

The above discussion should not be viewed as a list of
problems with previous estimates but as a reminder that the
problem of evaluating entropic contributions to enzyme catalysis
has not been solved. It seems to us that this challenging problem
cannot be resolved without some form of computer simulation
approach.

Methods
As clarified in the previous section, our task is to evaluate the
entropic contribution of the reacting fragments to DDgw3 cat

‡ . To
do so we developed a restrain–release approach (RRA) which is
related in some aspects to the approach developed by Hermans
and co-workers (11) for studies of binding entropies. Our
approach has been described in detail in ref. 14, where it was
used for studies of the activation entropy of amide hydrolysis in
water. Here we discuss only the main points of this approach,
which is based in the thermodynamic cycle of Fig. 3. This cycle
considers the activation free energy, Dg‡, for the given reaction
in the given system (the enzyme or solvent cage) in two limiting
conditions. In the first case (the upper part of the cycle) the
reacting system is transformed from the RS to the TS along a
(unspecified) reaction coordinate while a restraint is used to
minimize the available configuration space in the direction
perpendicular to this reaction coordinate. In this case the
activation free energy, Dg1

‡, does not involve the entropic con-
tributions of the solute, (DS1

‡)9 5 0, since the corresponding
motions are frozen. In the second case (the lower part of the
cycle) the reacting fragments are free to move so that the
corresponding activation barrier, Dg2

‡, includes the entropic
contributions of the solute. Thus, the difference between the two
Dg‡ values gives the desired 2T(DS‡)9. The possible enthalpic
contribution can be minimized with the proper selection of the
initial conditions for the simulation (see below). Using the
thermodynamic cycle, we can obtain (Dg2

‡ 2 Dg1
‡) from DG9RS

and DG9TS. This can be done by imposing a strong position
restraint in both states I9 and II9 and evaluating the correspond-
ing free energies DG9RS 5 DG9I9 3 I and DG9TS 5 DG9II93 II
associated with the release of these constraints (see below). In
this way we can write

2T~DS‡!9 5 2T~DS2
‡!9 < Dg2

‡ 2 Dg1
‡ < DG9TS 2 DG9RS. [4]

The enthalpic contribution to DG9 will be discussed below. Now,
the practical evaluation of the DG9 values involves the introduc-
tion of restrain potentials of the form

Urest,j
N 5

Kj

2 O
i

~Ri
N 2 R# i

N!2 , [5]

where i runs over the substrate coordinates and R# N are reference
coordinates that define the minimum of the restrain potential

Fig. 2. Schematic representation of the translational and rotational degrees
of freedom in the nucleophilic attack of a CH3O2 group on an amide. The
figure depicts only the transition state, but the corresponding RS picture can
be obtained by stretching the C z z z O distance. For simplicity we place the
rotation axes on the attacking oxygen. As illustrated, R2 remains a free
rotation in the TS, R1 becomes a low-frequency torsional oscillator, while T1,
T2, and T3 become bending motions.

Fig. 3. Thermodynamic cycle used for the evaluation of the entropy contri-
bution to the activation free energy of the reaction. The fragments are fixed
in (I9) and (II9) and allowed to move (as indicated by the shaded area) in (I) and
(II). The same circle is also used for the reaction in water (see figure 1 of ref. 14).
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(see below) at the given state (N 5 I, or N 5 II for the RS and
TS, respectively). The reference coordinates R# N are evaluated by
running molecular dynamics (MD) relaxation runs on the RS
and the TS with K 5 0 (see also below). Different conditions for
the MD runs can generate different values of R# N, and the
selection of the optimal coordinates as well as the implications
of this selection will be discussed below.

The constraint release free energies (DG9) are evaluated by a
free energy perturbation (FEP) approach, where we use a
mapping potential of the form

Um
N 5 ~1 2 lm!Urest,1

N 1 lmUrest,2
N 1 O

F 5 1

f 2 1
1
2

Kcage~Rc
F 2 R# c

F! 1 E ,

[6]

where lm is changed from 0 to 1 in n increments and E designates
the unconstrained potential surface of the system. Rc

F is the
distance between an atom of the central fragment F 5 1 and an
atom of the Fth fragment. The Kcage term is needed to prevent
divergence when K23 0. The value of Rc

F is chosen in a way that
the Fth fragment can move freely around the central ligand while
still being close to this ligand. Kcage is chosen so that vcage will
correspond to 55 M concentration.

Now we can write

2T~DS‡!90 5 DG9TS 2 DG9RS 2 nrRT ln Svcage

v0
D , [7]

where (DS‡)90 designates the entropic contribution in the 1 M
standard state and the last term in Eq. 7 gives the free energy
associated with the change of the cage volume from vcage to v0.

The results of the thermodynamic cycle of Fig. 3 depend in
principle on the chosen R# and may involve, in addition to DS9,
contributions from the enthalpy of the reacting fragments and
from their solvation by the surrounding environment. To extract
DS9 from the total DG9 we have to formulate the cycle of Fig.
3 in a more rigorous way. This is done by the approach presented
in the appendix of ref. 14, which considers the free energy
DG9(R# ) of the system as a function of the restraint coordinates
of the solute. Using the quadratic expansion of this potential of
mean force (PMF) and evaluating the corresponding contribu-
tions has established that DG9(R# 0) (where R# 5 R# 0 is the R# that
minimizes the PMF) gives the desired DS9 without additional
enthalpic contributions. Although the minimization of this PMF
is impractical at present, we can estimate the exact result for DS9
by performing several random simulations with different R# N and
selecting the one that gives the minimum value of uDG9u. In other
words, we can use the lower bound (14)

u 2TDS9N~R# 0
N!u 5 uDG9N~R# 0

N!u # uDG9N~R# N!u [8]

and estimate the value of u2TDS9N(R# 0
N)u by finding the smallest

uDG9N(R# N)u. With DS9N(R# 0
N) we can obtain (DS‡)9 by using (see

appendix of ref. 14)

2T~DS‡!9 5 DG9TS~R# 0
II! 2 DG9RS~R# 0

I ! . [9]

Eqs. 8 and 9 and the treatment in ref. 14 outline the formal
requirements for rigorous evaluation of (DS‡)9. However,
because the evaluation of DS9 with random R# is very expensive
we confine the present study to the evaluation of the values of
DS9N at several values of R# , obtained by running MD simula-
tions on the corresponding potential surface with zero restrain
potential. We then use the R# values that give the lowest uDG9u
in evaluating DS9.

To evaluate activation entropies it is essential to perform long
MD or Monte Carlo (MC) samplings of the corresponding
potential surfaces. Such potential surfaces should provide a
reliable representation of the relevant reactions and also allow
for sufficient sampling at a reasonable computer time. At
present, it is impossible to satisfy this requirement with a
high-level ab initio potential surface because this would require
an enormous amount of computer time. Approaches that obtain
the solute potential surface by fitting it to the corresponding ab
initio gas phase surface and then consider the interaction of the
gas phase charges with the solvent can provide reasonable
estimates of the solvent contribution to the activation entropies
in reactions that involve relatively small charge separation.
However, it is hard to use such approaches for evaluation of the
solute contribution to the activation entropy. This is particularly
true when the solute is constrained to move along the gas phase
reaction coordinate (e.g. ref. 15) and the substrate fluctuations
in the directions perpendicular to the reaction coordinate are not
taken into account. In our opinion the optimal strategy is to use
empirical valence bond (EVB) potential surfaces (6). These
surfaces can be fitted to reliable ab initio surfaces and to relevant
experimental information and then to provide a consistent and
reliable description of the solution reaction. This description
includes a consistent incorporation of the solvent in the solute
Hamiltonian, consistent description of the motion of the reacting
fragments, and an analytical representation of the given surface
that allows one to perform very extensive MD simulations. The
EVB method was described extensively elsewhere (6) and has
been used by many other groups (see ref. 14 and references
therein). Thus we will mention here only several crucial points.

The EVB approach describes the reacting system by mixing
several diabatic states that represent the reactants, products, and
crucial intermediates. The energy of each diabatic state i («i) is
described by a force-field like potential function and the off-
diagonal terms (Hij) are described by simple analytical functions.
The parameters in the «i and Hij values are determined by using
both experimental information and ab initio calculations. To
perform our RRA calculations we have to confine the reactants

Table 1. DG* (in kcalymol) for the hydrolysis of the Tyr-Gly dipeptide in water and in the
active site of subtilisin

System DG9RS DG9TS 2 T(DS‡)90

Water 291.9, 2103.7, 289.6, 295.7, 287.0, 299.3, 2.6 1 2.4
290.0, 298.6, 293.8, 2134.1, 291.7, 2101.7,
298.9, 296.0, 2100.2 2105.0, 299.2, 2102.7,

Protein 2102.3, 2103.8, 2113.0, 2103.5, 298.6, 296.6, 2.5
2100.6, 2100.1, 292.9, 290.4, 295.9, 2100.0,
2103.0, 2106.6, 2103.4 295.4, 298.4, 2105.3

The calculations were done with ra 5 14 Å, and the results reported were evaluated with different R# values,
obtained by the nine relaxation runs described in the text. The underlined values in boldface are the lowest
absolute values obtained in each case and thus the optimal estimate of the corresponding 2 TDS9 (see text).
2 T(DS‡)90 is obtained from Eq. 7 with the optimal DG9 and a 2.4 kcalymol volume correction for the water case.
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to the specified region of the potential surface (e.g., RS and TS).
Here we limit our discussion to the common case where the
system is represented by three diabatic states. In the case of a
stepwise mechanism it is reasonable to use (14)

ERS < «1

ETS < l1
TS«1 1 l2

TS«2 1 l3
TS«3

, [10]

where the ls are the values of the FEP mapping parameters that
bring the system to the TS region.

Results and Discussion
The present study considered as a test case the catalytic reaction of
subtilisin. The potential surface of this reaction was evaluated by the
previously developed EVB potential surface (16). The three reso-
nance structures that roughly correspond to the three states in the
mechanism of action of subtilisin (reactants, intermediate, and
products) are described in figure 6 of ref. 16. The parameters for this
EVB potential energy surface are similar to those used in ref. 16.
The rate-limiting step of the reaction is the attack of the Og of
Ser-221 on the carbonyl carbon of the substrate. Thus, the entropy
calculations have been done considering the RS and the TS, whose
ground state energies Eg

RS and Eg
TS were obtained, respectively, by

using Eq. 10 and lm
TS 5 (0.0, 0.4, 0.6), as described above. Within

this model the system is divided into several regions (see ref. 17 for
a detailed discussion). The reaction region (region I) is surrounded
by a protein 1 solvent sphere (region II, with a radius ra) that is
surrounded by external regions with special polarization and posi-
tion boundary conditions (17). The protein atoms in these external
regions are held by strong constraints. All the calculations were
done with the ENZYMIX package (17).

The simulations involved the release of the position restrains
in 5 FEP stages, changing Kj from 100 to 30, from 30 to 3, from
3 to 0.3, from 0.3 to 0.03, and from 0.03 to 0.003, where all the
values of K are given in kcaly(molzÅ2). Each of these stages
involved 11 mapping steps, and each of these steps followed an
initial relaxation of the given system. The total simulation time
for these five stages was 1,100 ps for both the water and protein
runs. Kcage was taken as 0.4 kcalymol (which corresponds to vcage
of 1,660y55 Å3) and Rc

F were taken as 3.0 and 3.1 for the Og–C
distance and the Og–N«2 distance, respectively. To generate the
different R# s needed for obtaining the optimal DG9 we use
different relaxation runs with different constraints on region I
and II. Overall, we generated nine different R# s for the RS and
nine for the TS. Next we performed RRA calculations for the
different R# s. Table 1 gives the results of the simulations with ra 5

14 Å. Additionally, we depict in Fig. 4 the values of the DG9 in
an increasing order. As is apparent from the figure, we obtain a
reasonable convergence in the selection of minimal values of
uDG9u. The differences between DG9TS and DG9RS (plus the
volume correction of Eq. 7) yield the final values of 2T(DS‡)90
that are given in the last column of Table 1. As seen from the
table, the entropic contribution of the reacting fragments is not
so different in the enzyme and in the solvent cage. More
specifically, the simulations give a difference of (2.5 2 (2.6 1
2.4)) 5 22.5 for 2T((DScat

‡ )9 2 (DSw
‡ )9). This estimate already

includes the effect of Kcage ('22.4 kcalymol). Note that in this
volume correction nr is taken as 1, because the solution reaction
has been found to involve a stepwise mechanism (18). The
present estimate of 2T(DDS‡)9 involves a few kcalymol error
and is likely to change with a more complete convergence (see
footnote §). The main point is, however, that uT(DDS‡)90u is much
smaller than previously thought. The reason for this exciting
finding is rationalized in Fig. 5, which shows snapshots of the last
FEP frame of the simulation where K changes from 0.003 to
0.0003 kcaly(molzÅ2). As seen in the figure the degree of
movement for each system (cage and protein) is similar in RS
and in TS. If this conclusion will hold in other systems, which is
likely (see below), then entropic effects do not contribute in a
major way to the reduction of Dgcat

‡ .

Concluding Remarks
This work examined the importance of the entropic contribution
of the reacting fragments in enzyme catalysis. This was done by
developing a computer simulation method capable of evaluating
(DS‡)9 in enzyme and in solution, and using this method in
calculations of (DDS‡)9 for the catalytic reaction of subtilisin. It
was found that (DDS‡)9 is much smaller than commonly assumed
and should not be approximated by T(DSbind)9.

Our finding of a rather small (DDS‡)9 is consistent with a study
(19) of nucleophilic displacements on phenyl esters in water. It
was shown that dividing 2TDSw

‡ by the kinetic order of the
reaction (first, second, and third) gives 4 to 5 kcalymol. This
finding was interpreted to indicate that bringing each species to
the TS does not involve more than 5 kcalymol entropic contri-
bution (19, 20). Since the solvent contributions (14) to both
2TDSw

‡ and 2T(DScat
‡ )9 are positive, u2T(DDS‡)9u should be

quite small.
Obviously one may wonder what is the origin for the difference

between the present results and previous estimates. One of the
reasons that were alluded to in the Introduction is the fact that
many of the motions that are free at the RS are also free at the
TS. Another important factor is associated with the fact that
(DScat

‡ )9 is not zero in the protein. Finally, as was noted in the
Introduction (see Fig. 2), the early estimate of Page and Jencks

§ To examine the convergence we performed additional calculations with ra of 13 Å and 16
Å. For ra 5 13 Å we obtained DG9TS (in kcalymol) 286 and 285 for the water case and 289
and 287 in the protein case. These results are similar to those obtained with ra 5 15 Å.
On the other hand, in the 16-Å case we obtained for 2 T(DDS‡)9 more positive value (by
about 9 kcalymol) than for the smaller radius. This is not a major problem, because it
represents a well-understood convergence problem and because it still leads to the same
conclusion as obtained from the small ra. That is, while the natural tendency is to assume
that the results obtained with larger ra are more reliable, we are limited here by enormous
convergence problems that are reduced significantly for smaller ra. Moreover, the incom-
plete convergence does not present a serious problem, because our main point is that u
(DDgw3 cat

‡ )9u is small. By reducing the motions in the protein we obtain a lower limit for
2 T(DScage

‡ )9 and an upper limit for the entropic contribution to catalysis. Thus, we can
focus on the results obtained with ra # 14 Å. We also examined the convergence of the
simulations (rather than the search of the optimal R# ). This was done by examining the
change in the results in the last 550 ps. It was found that the results become more negative
for both the RS and TS. However, (DSw

‡ )9 and (DScat
‡ ) changed by only 0.5 and 0.2 kcalymol,

respectively. In general, we expect that with more complete convergence DSw
‡ will become

negative by a few kcalymol.

Fig. 4. DG9 values at different initial conditions: in water (Left), and in the
protein site (Right). Black and gray bars correspond to DG9 in the reactant state
and in the transition state, respectively. The figure represents the results of
Table 1 for the simulations with region II radius of 14 Å, and the calculated
values have been plotted in decreasing order of uDG9u.
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(1) provides an overestimate of the entropy loss upon binding,
where some rotational and translational motions remain free
even in the solvent cage.

The importance of entropic effects in enzyme catalysis has
been frequently deduced from the trend in the rates of intramo-
lecular cyclization reaction, where the formation of smaller rings
is associated with larger rate constants. Recent studies (9) have
suggested, however, that this trend may be due to RS destabi-
lization enthalpic effects. This does not mean that such enthalpic
effects play a significant role in enzyme catalysis. In fact, it is not
clear that intramolecular cyclization reactions are directly rele-
vant to most enzymatic reactions (6). At any rate, the present
approach may provide a powerful way of exploring RS enthalpic
contributions. That is, if instead of using the optimal R# for both
the enzyme and the solution reaction we use the R# of the enzyme
reaction for the water reaction we should be able to evaluate the
enthalpic contribution associated with the distortion of the
structure of the substrate by the enzyme.

The present work is an attempt to obtain a quantitative
estimate of the entropic contribution of the reacting fragments
to enzyme catalysis. The finding that these contributions are
much smaller than previous estimates as well as simulations of

many enzymatic reactions is consistent with the view that
electrostatic effects are the major factor in enzyme catalysis. As
argued repeatedly before (e.g., refs. 6 and 7), the electrostatic
effects are due to the preorganized polar environment of the
enzyme active site and to the relatively small reorganization free
energy of this environment. The ability of the enzyme to provide
smaller reorganization free energy than water does involves, of
course, some entropic effects. These effects are not, however, the
entropic effects introduced in all early proposals of entropic
contributions to enzyme catalysis. That is, previous proposals
were based on the assumption that the enzyme decreases the
entropy of the reacting fragments. On the other hand, our
electrostatic proposal involves the reduction of the reorganiza-
tion free energy (which includes some entropic contributions) by
folding the enzyme to its catalytic configuration. This contribu-
tion of the enzyme–enzyme rather than the enzyme–substrate
interaction is the most important factor in enzyme catalysis.
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Fig. 5. Superposition of snapshots of the trajectories propagated at the last point of the FEP protocol where K changes from 0.003 to 0.0003 kcalymol for the
RS and the TS of the water surface (solid curve) and the protein surface (dashed curve). The free energy profiles are given in a schematic way. The 20 snapshots
for each system were taken at equal time space during 50-ps runs. L designates ligand as in Fig. 1.
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