Cancer Genetics, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK S Bevan R S Houlston

Tumour Genetics Group, Nuffield Department of Clinical Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Windmill Road, Oxford OX3 7BN, UK M Churchman B Dowling

Molecular Genetics Laboratory, Churchill Hospital, Oxford OX3 7LJ, UK D Jones C G Norbury

Department of Clinical Genetics, Guy's Hospital, St Thomas's Street, London SE1 9RT, UK S V Hodgson

Polyposis Registry, St Mark's Hospital, Watford Road, Harrow HA1 3UJ, UK D Desai K Neale R K S Phillips

Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Australia J Young B Leggett

MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK M Dunlop

Department of Gastroenterology, Tel Aviv Medical Center and Medical School, IL-64239 Tel Aviv, Israel P Rozen

Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA C Eng

Analysis of genetic and phenotypic heterogeneity in juvenile polyposis

K Woodford-Richens, S Bevan, M Churchman, B Dowling, D Jones, C G Norbury, S V Hodgson, D Desai, K Neale, R K S Phillips, J Young, B Leggett, M Dunlop, P Rozen, C Eng, D Markie, M A Rodriguez-Bigas, E Sheridan, T Iwama, D Eccles, G T Smith, J C Kim, K M Kim, J R Sampson, G Evans, S Tejpar, W F Bodmer, I P M Tomlinson, R S Houlston

Abstract

Background—Juvenile polyposis syndrome (JPS) is characterised by gastrointestinal (GI) hamartomatous polyposis and an increased risk of GI malignancy. Juvenile polyps also occur in the Cowden (CS), Bannayan-Ruvalcaba-Riley (BRRS) and Gorlin (GS) syndromes. Diagnosing JPS can be problematic because it relies on exclusion of CS, BRRS, and GS. Germline mutations in the PTCH, PTEN and DPC4 (SMAD4) genes can cause GS, CS/BRRS, and JPS, respectively.

Aims—To examine the contribution of mutations in *PTCH*, *PTEN*, and *DPC4* (*SMAD4*) to JPS.

Methods—Forty seven individuals from 15 families and nine apparently sporadic cases with JPS were screened for germline mutations in *DPC4*, *PTEN*, and *PTCH*.

Results—No patient had a mutation in *PTEN* or *PTCH*. Five different germline mutations were detected in *DPC4*; three of these were deletions, one a single base substitution creating a stop codon, and one a missense change. None of these patients had distinguishing clinical features.

Conclusions—Mutations in PTEN and PTCH are unlikely to cause juvenile polyposis in the absence of clinical features indicative of CS, BRRS, or GS. A proportion of JPS patients harbour DPC4 mutations (21% in this study) but there remains uncharacterised genetic heterogeneity in JPS.

(*Gut* 2000;**46**:656–660)

Keywords: juvenile polyposis syndrome; germline mutations

Juvenile polyposis (JPS; MIM 174 900) is a rare autosomal dominant condition characterised by hamartomatous polyps, usually within the colon but occasionally arising in the stomach and small bowel.¹ These polyps are typified by a predominant stroma, cystic spaces, and an abundant lamina propria lacking smooth muscle, so distinguishing them from Peutz-Jeghers polyps. Unlike solitary juvenile polyps which may affect up to 2% of children and adolescents and have little or no malignant potential, JPS patients have an increased risk of gastrointestinal malignancy.2 3 JPS may occur in association

with arteriovenous malformations (MIM 175 050) but it is not clear if this represents a distinct syndrome.

Juvenile polyps also occur as a manifestation of the dominantly transmitted familial cancer syndromes: Cowden syndrome (CS; MIM 158 350) characterised by multiple hamartomas, macrocephaly, trichilemmomas, and a high risk of benign and malignant neoplasms of the thyroid, breast, uterus and skin; Bannayan-Ruvalcaba-Riley syndrome (Bannayan-Zonana syndrome, BRRS, BZS; MIM 153 480) characterised by mental retardation, macrocephaly, lipomatosis, haemangiomas and genital pigmentation; and Gorlin syndrome (GS; MIM 109 400) characterised by multiple naevoid basal carcinomas, skeletal abnormalities, and odontogenic keratinocytes, macrocephaly, intracranial calcification, and craniofacial abnormalities. Compared with JPS the risk of gastrointestinal malignancy in CS, BRRS, and GS appears to be low.4

GS results from germline mutations in the *PTCH* gene (homologue of *Drosophila* patched) on chromosome 9q22.1.⁵ Juvenile polyps appear to comprise a relatively minor and infrequent component of this disease although few GS patients undergo gastrointestinal screening. Nevertheless, *PTCH* remains a good candidate for JPS given the possibility that a different spectrum of mutations might cause juvenile polyps without the other features of GS. No study to date has tested *PTCH* for germline mutations in JPS patients.

The CS gene is *PTEN* (phosphatase and tensin homologue deleted on chromosome 10 (10q22-q23)),⁶ a ubiquitously expressed dual specificity phosphatase that acts as a tumour suppressor and is mutated in several sporadic tumour types.⁷⁻¹² The inference from patients' clinical features that CS and BRRS might represent allelic forms of the same disease is supported by demonstration of germline mutations in *PTEN* in some¹³⁻¹⁵ but not all patients with BRRS.¹⁶ The shared clinical features of CS/BRRS and JPS, coupled with coincident somatic mutation data in juvenile polyps,¹⁷ raised the possibility that *PTEN* could cause all of these syndromes. This hypothesis has been

Abbreviations used in this paper: JPS, juvenile polyposis syndrome; CS, Cowden syndrome; BRRS, Bannayan-Ruvalcaba-Riley syndrome; GS, Gorlin syndrome; CSGE, conformation specific gel electrophoresis; SSCP, single strand conformational gel polymorphism. Molecular Genetics Laboratory, Pathology Department, Dunedin School of Medicine, Dunedin, New Zealand D Markie

Roswell Park Cancer Institute, Buffalo, New York 14263, USA M A Rodriguez-Bigas

Department of Clinical Genetics, Royal Hospital for Children, St Michael's Hill, Bristol, UK E Sheridan

Centre for Polyposis and Intestinal Diseases, 1–5–45, Yushima, Bunkyo-Ku, Tokyo 113, Japan T Iwama

Wessex Regional Genetics Service, Southampton SO16 5YA, UK D Eccles

Department of Histopathology, Worcester Royal Infirmary, WR1 3AS, UK G T Smith

Department of Paediatrics, University of Ulsan College of Medicine, and Asan Institute, Seoul, Korea J C Kim K M Kim

Institute of Medical Genetics, University of Wales College of Medicine, Cardiff CF4 4XN, UK J R Sampson

Regional Genetic Service, St Mary's Hospital, Manchester M13 0JH, UK G Evans

Centre for Human Genetics, Campus Gasthuisberg, O and N6, B-3000, Leuven, Belgium S Teipar

Cancer Immunogenetics Laboratory, ICRF, Institute of Molecular Medicine, Oxford OX3 9DS, UK W F Bodmer

Correspondence to: R Houlston, Haddow Laboratories, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK. Email: r.houlston@icr.ac.uk

Accepted for publication 25 November 1999

pursued by a number of workers with differing findings.¹⁸⁻²² Some studies found germline *PTEN* mutations in individuals who had been diagnosed as having JPS but there is doubt that a diagnosis of CS/BRRS had been formally excluded in these patients. We have previously found no *PTEN* mutations in a relatively large set of JPS patients (including a subset of the cases reported below).

Recently it has been shown that constitutional mutations in DPC4 (deleted in pancreatic carcinoma locus 4; also referred to as SMAD4, small mothers against decapentaplegic deleted in pancreatic carcinoma, locus 4) can cause JPS.²³²⁴ This gene, which codes for a protein involved in transforming growth factor β signal transduction, is mutated in a number of gastrointestinal cancers.25 26 Previous studies have reported DPC4 mutations in 5/9 (56%) and 1/21 (5%) JPS patients (the latter study including a subset of the cases reported below). Other members of the SMAD family are candidates for IPS but no mutations in SMAD1/2/3/5/6/7 have been found in JPS patients.27

Hereditary mixed polyposis syndrome (HMPS, MIM 601 228) is also characterised by atypical juvenile polyps with mixed features of hamartomas and adenomas.²⁸ No gene for this syndrome has been identified but linkage to chromosome 6q has been reported in one large family.²⁹

Hence there is evidence of considerable genetic heterogeneity in JPS. We have studied 56 individuals with a presumptive diagnosis of JPS, comprising 47 cases from 15 JPS families and nine apparently sporadic cases. These patients comprise an exceptionally large set of JPS cases. Our aims were: (i) to describe the clinical features of JPS patients (including features overlapping with CS, BRRS, and GS); (ii) to resolve the debate as to whether or not *PTEN* mutations account for any cases of JPS; (iii) to test PTCH as a candidate gene for JPS; (iv) to determine the contribution of DPC4 mutations to JPS; (v) to assess the existence of any associations between germline mutations and clinical features; and (vi) to determine the proportion of JPS cases caused by as yet unidentified genes.

Patients and methods

Patients with JPS were identified from sources in the UK, Australia, Israel, USA, Japan, and Korea. The diagnostic criteria for IPS used in this study were in accordance with the proposal of Ko and colleagues³⁰ that affected individuals have either five or more juvenile polyps throughout the gastrointestinal tract or any number of juvenile polyps and a family history of JPS. All affected individuals had more than one typical juvenile polyp as confirmed by histology. The following clinical data were also obtained using a standardised proforma: family history; occurrence of benign and malignant tumours; dysmorphic features; arteriovenous malformations and other cardiovascular anomalies; pigmentation; and other notable clinical features including those of CS, BRRS,

and GS. Where possible, material from JPS polyps and other tumours was obtained for histological review and confirmation of diagnosis.

Constitutive DNA from individuals was extracted from EDTA blood samples using a standard sucrose lysis method. Published oligonucleotide and reaction conditions were used to amplify specifically each exon of the DPC4, PTEN, and PTCH genes.^{20 24 31} The search for germline mutations in DPC4 was performed using conformation specific gel electrophoresis (CSGE). Two independent workers using either CSGE or single strand conformational gel polymorphism (SSCP) undertook screening for mutations in PTEN. A combination of CSGE and SSCP was used to screen the PTCH gene. All samples with band shifts were sequenced in duplicate and in forward and reverse orientations, after reamplification of the appropriate exon from genomic DNA in the polymerase chain reaction, using the ABI Ready Reaction Dye Terminator Cycle Sequencing kit and the 377 Prism sequencer.

Results

Fifty six patients with JPS were studied; 47 were ascertained from 15 families and nine apparently sporadic patients had no known relatives affected with JPS, although in three cases there was a strong family history of colorectal cancer. Table 1 details the clinical characteristics of all patients. Mean age at presentation of juvenile polyposis was 23 (SD 16) years (range 1–65). All affected individuals from whom histological material was available had juvenile polyps of a typical type.

The extent of polyposis within the gastrointestinal tract varied considerably between families in terms of both the numbers and sites of polyp formation. Some of the families showed marked evidence of intrafamilial differences in disease expression (table 1) even allowing for factors such as patient age and screening by colonoscopy. Furthermore, in a number of patients there was documented evidence of adenomatous intestinal polyposis although none had the atypical juvenile polyps found in HMPS.

The increased risk of gastrointestinal cancer reported in association with JPS was clearly present in our patients. Fifteen (27%) had developed some type of gastrointestinal cancer by the age of 65. Of these, six were small bowel carcinomas, two gastric cancers, and seven colorectal cancers. Based on cancer incidence rates in the UK,³² this equates to about a 16-fold increased risk of gastrointestinal malignancy in JPS.

None of the patients had prototypical dermatological (e.g. tricholemmomas) or skeletal phenotypic features indicative of CS, BRRS, or GS. There was some overlap between the clinical features of JPS patients and these other syndromes—three patients had macrocephaly for example—but no specific features to suggest misdiagnosis. Furthermore, none of the patients had a past history of thyroid cancer and only one had developed breast cancer. Three patients had hyper- or hypothyroidism but no tissue diagnosis suggestive of CS. The increased risk of cancer in these JPS patients appeared to be confined to the gastrointestinal tract in contradistinction to CS

and GS. Arteriovenous and other cardiovascular anomalies were present in three patients (5%). The reported association between JPS and these anomalies may therefore be genuine.

Table 1 Clinical features of the patients studied

E	m	4*	C	Phenotype	Ch in	Shalat al	CMS	Contine	Durant	T1	Orlean	-
Family	ID	Age*	Sex	Gastrointestinal tract**	Srin	Skeletal	CNS	Cardiac	Breast	Thyroid	Other	Additional information
W	3	47	F	Caecal Ca aged 47, jejunal JPs and adenomas, TA								
W W	2	14	F F	100+JPs					סחח	T T		
w SK	1 1	32 13	г F	Ca colon (transverse) aged 32, Multiple colonic polyps					BBD	Hyper		
		15	1	(mixed, Ad and JPs)								
SRO	1	13	F	Multiple JPs							Р	
SS	1	29	F	(50+) JPs								Niece Ca colon (25); sister Ca pancreas; father Ca larynx and stomach
SV	1	12	М	Sigmoid and rectal polyps (50+)								Father Ca colon aged 48; Pat. uncle Ca color aged 50
SH	1	1	М	Multiple colonic polyps, resection aged 8		CLP, PD						ageu 50
SC	1	16	Μ	Colonic (30-50)		MC						
SD	1	15	M	Jejunal polpys				CD VSD				
SR AF	1 1	4 16	F M	Recto-sigmoid and Caecal polyps (50+) Colonic polyps (4)				VSD				Father JPs and Ca colon***
SCA	1	27	F	Multiple sigmoid polyps								colon
3	3.5 4.2	37 6	M M	Colonic and gastric polyps Ileal, jejunal, colonic, and rectal polyps;								
	2.3	65	F	Ca ileum; Ca stomach Colonic and rectal polyps	ML							
10	102	41	F	Ca colon	ML							
	202	21	M	Ileum and colon								
	201	24	Μ	Multiple								
1	204	32	F	Small bowel, colonic and gastric polyps (JPs and Ad, 20+); Ca ileum aged 49; intussusception								Sister, lymphoma aged 42, Ca breast aged 54.
	302	16	M	Colonic polyps								
б	301 302	21 23	F M	Colonic polyps (20) Colonic and small intestinal polyps (50+)		MC						
	402	9	F	Colonic polyps								
	201	55	F	Colonic polyps (3)								
11	$401 \\ 4.4$	12 18	M M	Colonic polyps (2) Colonic polyps (3)							HT	
	3.5	30	M	Colonic polyps	FK						SR	
8	1.2	50	F	Ca colon aged 50								
	3.1	20	M	Caecal polyps								
9	2.1 301	18 17	F M	Multiple JPS; Ca stomach Colonic polyps								
9	203	19	F	JPs and Ad polyps in colon							BK	
	302	4	М	Colonic polyps				AS and CO				
15	502	14	М	Multiple colonic polyps		CL		00				
	305	51	F	Ca colon (transverse) aged 51, multiple colonic polyps						Нуро		Brother Ca colon aged 38, multiple colonic polyps
	306	43 61	M	Colonic polyps (10) Caecal Ca aged 61								
	308 405	61 48	M F	Multiple colonic polyps		CL		AR		Hyper	OVC	
12	204	8	M	Multiple colonic polyps; Ca jejunum		02	SAH			nyper	010	
	206	8	Μ	Multiple colonic polyps								
	201	7	M	Polyposis at autopsy							01/0	
	307 304	4 22	F F	Florid colonic polyposis; small intestinal polyps (22); Ca small intestine aged 27. Caecal and colonic polyps							OVC	
	308	17	M	Multiple (TA, Ad and JP) in colon and		MC						
	203	7	М	duodenum; Ca jejunum Ca jejunum aged 37			Schiz					
16	102	19	F	Ca colon aged 60			Geniz	BBD				
	301	13	F	20+ polyps								
	302	14	M	Multiple colonic polyps								
17	201 202	32 NK	M M	Multiple polyps in colon and stomach >100 gastric JPs, 8 colorectal JPs								
11	202	NK	M	Gastric JPs	ML							
20	201	NK	F	Extensive polyposis, colectomy aged 45								
	301	NK	F	Colorectal JPs; colectomy aged 21							OVC	
BL	101 201	39 6	M F	Colonic polyps (TA +Ad) >100 JP, exocrine pancreatic								Short stature,
	201	0	Τ,	insufficiency								development delay

*At diagnosis (NK, not known); **number of polyps in parentheses; ***familial case but only index case analysed. Ad, adenoma; AR, aortic regurgitation; AS, aortic stenosis; BBD, benign breast disease; BK, bifid kidney; Ca, Cancer; CD, conduction defect; CLP, cleft palate; CL, clinodactylyl; CO, coarctation; FK, excessive freckling; HT, hypertelorism; Hyper, hyperthyroidism; Hypo, hypothyroidism; JPs, juvenile polyps; MC, marcocephaly; ML, multiple lipomas; OVC, ovarian cyst; P, poryphria; PD, polydactylyl; SAH, subarchnoid haemorrhage; Schiz, schizophrenia; SR, Schatski ring; TA, tubular adenoma; VSD, ventricular septal defect.

Table 2 Description of DPC4 mutations identified in JPS patients

Patient/ family	Mutation	Predicted effect
SV	11bp deletion (GTCCACTGAAG) at nucleotide 516 (exon 4)	Frameshift creating stop codon at nucleotide 561
AF	CGC to TGC, at nucleotide 1083 (exon 8)	Arg to Cys
17	2 bp deletion (CC) at nucleotide 1564 (exon 11)	Frameshift creating stop codon at nucleotide 1575
20	9 bp deletion (AAATGGAGC) at nucleotide 189 (exon 1)	Deletion of amino acids 64-66
BL	CGA to TGA at nucleotide 1333 (exon 10)	Substitution creating stop codon

No JPS patient had a germline *PTEN* mutation. Control samples with known *PTEN* mutations showed aberrant SSCP bands and previously reported polymorphisms were detected. *PTEN* mutations are typically found in 80% of CS and 50% of BRRS cases which adhere to operational diagnostic criteria established by the International Cowden Consortium.³³ Also, germline *PTCH* mutations were not detected in our JPS cases. *PTCH* mutations are typically detectable in 39% of GS patients.³¹

Five germline *DPC4* mutations were identified (table 2). Three of these were deletions ranging in size from two to 11 base pairs in exons 1, 4, and 11. One of the mutations was a single base substitution creating a stop codon in exon 10. The fifth mutation was a missense mutation in exon 8. This variant has been reported previously.²⁴ Our series therefore confirms that mutations in *DPC4* are associated with JPS but the mutations we detected did not involve the trimerisation domain of the *DPC4* protein. There were no distinguishing clinicopathological features in those patients harbouring *DPC4* mutations.

Discussion

Several syndromes-JPS, CS, BRRS, GS, and HMPS—include juvenile polyps in their phenotype. These diseases can have subtle manifestations and some of their clinical features are not unique. Hence diagnosis is not straightforward. However, it is important to distinguish between these syndromes as the types of cancer associated with each appear to be quite different. A more reliable and objective means of differentiating syndromes than reliance solely on clinical features is clearly desirable, especially in the case of JPS the diagnosis of which is made in part by exclusion. Determining the molecular basis of each of these syndromes clearly offers the best method of establishing a diagnosis.

Until recently the molecular basis of the hamartomatosis polyposis syndromes was unknown. Early somatic data suggested the existence of a putative locus for JPS at 10q22–24, encompassing *PTEN*.¹⁷ This observation led several researchers to examine *PTEN* as a candidate for JPS. No linkage to 10q22 or mutation in *PTEN* was detected in either the JPS families or isolated cases studied by Marsh and colleagues.²⁰ However, both Olschwang and colleagues²¹ and Lynch and colleagues¹⁸ reported germline *PTEN* mutations in patients with multiple juvenile polyps, suggesting that PTEN was the cause of some JPS cases. Eng has recently questioned their conclusion.33 In the study by Olschwang and colleagues,²¹ the adult male patient (G116) also had a laryngeal carcinoma and a heterogeneous thyroid nodule, which is highly suggestive of CS. Furthermore, although both children in the report (G796 and G710) did not have features indicative of CS or BRRS, they were less than 15 years of age. As the penetrance of CS is only 10% by this age³⁴ it is possible that both children will develop features of CS later in life. Similarly, the affected members of the family reported by Lynch and colleagues18 had major clinical features consistent with a diagnosis of CS.

Our mutational analysis of JPS patients is the most comprehensive to date. The findings concur with previous work suggesting that the probability of detecting a constitutive mutation in *PTEN* is not high if a patient's clinical phenotype does not adhere to the International Cowden Consortium operational diagnostic criteria for CS^{33} or to the specific clinical features of BRRS.

PTCH is a good candidate for JPS but has not previously been tested for germline mutations in JPS patients. We have excluded this gene as a cause of juvenile polyps outside the setting of GS. Although *PTCH* mutations may directly lead to gastrointestinal hamartoma formation it remains possible that reports of juvenile polyps in GS result from a chance association or from contiguous deletion of *PTCH* and at least one other gene.

Recent work has identified germline mutations in the DPC4 (SMAD4) gene on 18q21.1 as a cause of some cases of JPS.²³ In our study 21% of JPS could be ascribed to germline mutations in DPC4 (five of 24; comprising 15 families and nine sporadic cases tested). This provides further support for the role of mutations in this gene as a cause of JPS. Failure to detect mutations in DPC4 in the other patients is unlikely to reflect problems in the screening method alone: it is possible that some mutations may be in the UTRs, introns, or promoter region of the gene but we have screened all exons and splice sites and have found that CSGE can detect all small insertions, deletions, and 90% of single base substitutions under such conditions.

DPC4/SMAD4 is a pivitol component of the transforming growth factor β signal transduction pathway.35 Through hetero-oligomer formation by interaction with SMAD1 (and possibly 5) and SMAD2 (and possibly 3), SMAD4 mediates apoptotic and growth inhibition responses. Hamartoma formation in JPS presumably results from disruption of the transforming growth factor β signal transduction pathway.35 In our study mutations in SMAD4 were detected in exons 1, 4, 8, 10, and 11. Pathogenic mutations previously reported were in exons 5, 8, and 9.23 A wide range of mutations can clearly affect cellular responses to transforming growth factor β leading to hamartoma formation. Whether specific genotype-phenotype relationships exist await further studies.

and PTCH and who do not, therefore, have a diagnosis of JPS. The rare syndrome HMPS can probably be distinguished from JPS on histological grounds, and there is no evidence for linkage of JPS to the HMPS locus (although this cannot be confirmed until the HMPS gene is identified). Combining our findings and those reported by Howe and colleagues²³ suggests that up to 40% of JPS cases might be caused by germline mutations in DPC4 although these patients cannot be distinguished from the majority of JPS patients who harbour germline mutations in uncharacterised genes. Current evidence does not suggest any common mode of action of PTEN, PTCH, and DPC4. Therefore, there are few clues as to the nature of the uncharacterised genes for JPS as it appears that several different cellular defects are associated with hamartomatous juvenile polyps of identical appearance.

Cowden

We thank the patients that took part in this study. Part of this work was supported by BREAKTHROUGH Breast Cancer. KW-R is supported by the EEC, SB is in receipt of a Fellowship from the Coeliac Society, MC is supported by the CRC, and BD by the MRC.

- 1 Jass JR, Williams CB, Bussey HJ, et al. Juvenile polyposis-a
- precancerous condition. *Histopathology* 1988;13:619-30. 2 Giardiello FM, Hamilton SR, Kern SE, et al. Colorectal neoplasia in juvenile polyposis or juvenile polyps. Arch Dis Child 1991;66:971-5.
 3 Howe JR, Mitros FA, Summers RW. The risk of gastro-
- Intestinal carcinoma in familial juvenile polyposis. Ann Surg Oncol 1998;5:751–6.
- 4 Murday V, Slack J. Inherited disorders associated with colorectal cancer. *Cancer Surv* 1989;8:139–57.
- 5 Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome *Cell* 1996;85:841–51.
 6 Liaw D, Marsh DJ, Li J, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. *Nat Genet* 1997;16:64–7.
- Rhei E, Kang L, Bogomolnie, *Nat Genet* 1997;10:04–7.
 Rhei E, Kang L, Bogomolniy F, et al. Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast carcinomas. *Cancer Res* 1997;57:3657–9.
 Guldberg P, thor-Straten P, Birck A, et al. Disruption of the
- MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 1997;57:3660-3.
- 9 Tashiro H, Blazes MS, Wu R, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 1997;57: 3935-40.
- 10 Rasheed BK, Stenzel TT, McLendon RE, et al. PTEN gene mutations are seen in high-grade but not in low-grade gliomas. *Cancer Res* 1997;57:4187–90.
 11 Dahia PL, Marsh DJ, Zheng Z, et al. Somatic deletions and
- mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. *Cancer Res* 1997;57:4710–13.
- 12 Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. *Nat Genet* 1997;15:356-62.

- 13 Marsh DJ, Dahia PLM, Zheng Z, et al. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 1997;16:333-4.
- 14 Arch EM, Goodman BK, Van Wesep RA, et al. Deletion of PTEN in a patient with Bannayan-Riley-Ruvalcaba syndrome suggests allelism with Cowden disease. Am J Med Genet 1997;71:489-93.
- 15 Marsh DJ, Coulon V, Lunetta KL, et al. Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, 2 hamartoma syndromes with germline PTEN mutation. Hum Mol Genet 1998;7: 507 - 15
- 16 Carethers JM, Furnari FB, Zigman AF, et al. Absence of PTEN/MMAC1 germ-line mutations in sporadic Bannayan-Riley-Ruvalcaba syndrome. Cancer Res 1998;58: 2724 - 6
- 17 Jacoby RF, Schlack S, Cole CE, et al. A juvenile polyposis tumor suppressor locus at 10q22 is deleted from nonepithelial cells in the lamina propria. Gastroenterology 1997; 112:1398-403.
- 18 Lynch ED, Ostermeyer EA, Lee MK, et al. Inherited mutations in PTEN that are associated with breast cancer, Cowden syndrome, and juvenile polyposis. Am J Hum Genet 1997;**61**:1254–60. 19 Howe JR, Ringold JC, Summers RW, *et al.* A gene for famil-
- ial juvenile polyposis maps to chromosome 18q21.1. Am J Hum Genet 1998;62:1129-36
- 20 Marsh DJ, Roth S, Lunetta KL, et al. Exclusion of PTEN and 10q2224 as the susceptibility locus for juvenile polypo-sis syndrome (JPS). *Cancer Res* 1997;**5**7:5017–21.
- Olschwang S, Serova-Sinilnikova OM, Lenoir GM, et al. PTEN germline mutations in juvenile polyposis coli. Nat Genet 1998;18:12–14.
- Tsuchiya KD, Wiesner G, Cassidy SB, et al. Deletion 22 10q23.2-10q23.33 in a patient with gastrointestinal juvenile polyposis and other features of a Cowden-like syndrome. Genes Chromosomes Cancer 1998;21:113-18. 23 Howe JR, Roth S, Summers RW, et al. Mutations in the
- Smad4/DPC4 gene in juvenile polyposis. Science 1998;280: 1086 - 8
- 24 Houlston RS, Bevan S, Williams A, et al. Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases. Hum Mol Genet 1998; 7:1907–12.
- 25 Schutte M, Hruban RH, Hedrick L, et al. DPC4 gene in various tumor types. Cancer Res 1996;56:2527-30.
- 26 Hahn SA, Bartsch D, Schroers A, et al. Mutations of the DPC4/Smad4 gene in biliary tract carcinoma. Cancer Res 1998;58:1124-6.
- Bevan, S, Woodford-Richens K, Rozen P, et al. Screening SMAD1, SMAD2, SMAD3 and SMAD5 for germline mutations in juvenile polyposis syndrome. Gut 1999;45: 406 - 8
- 400–8. Whitelaw SC, Murday VA, Tomlinson IP, *et al.* Clinical and molecular features of the hereditary mixed polyposis syndrome. *Gastroenterology* 1997;**112**:327–34. Thomas HJ, Whitelaw SC, Cottrell SE, *et al.* Genetic map-28
- ping of hereditary mixed polyposis syndrome to chromosome 6q. *Am J Hum Genet* 1996;58:770–6.
 30 Ko FY, Wu TC, Hwang B. Intestinal polyps in children and
- adolescents—a review of 103 cases. Chung Hua Min Kuo Hsiao Erh Ko I Hsueh Hui Tsa Chih 1995;36:197-202.
- Wicking C, Shanley S, Smyth I, et al. Most germ-line mutations in the nevoid basal cell carcinoma syndrome lead to a premature termination of the PATCHED protein, and no genotype-phenotype correlations are evident. Am J Hum Genet 1997;60:21-6.
- 32 Cancer Registrations in England and Wales 1986. Office of National Statistics. London: HMSO, 1986. 33 Eng C, Ji HL. Molecular classification of the inherited
- hamartoma polyposis syndromes: Clearing the muddied waters. Am J Hum Genet 1998;62:1020–2.
- Nelen MR, Padberg GW, Peeters EA, et al. Localization of the gene for Cowden disease to 10q22-23. Nat Genet 1996; 13:114-16
- 35 Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins Nature 1997;390:465-71.