Skip to main content
Gut logoLink to Gut
. 2001 Jul;49(1):97–105. doi: 10.1136/gut.49.1.97

Effects of cellular redox balance on induction of apoptosis by eicosapentaenoic acid in HT29 colorectal adenocarcinoma cells and rat colon in vivo

P Latham 1, E Lund 1, J Brown 1, I Johnson 1
PMCID: PMC1728373  PMID: 11413117

Abstract

BACKGROUND AND AIMS—Epidemiological evidence suggests n-3 polyunsaturated lipids may protect against colorectal neoplasia. Consumption of fish oil modulates crypt cytokinetics in humans, and crypt apoptosis in animal models. To explore these effects, we investigated involvement of caspase enzymes and cellular redox balance in the induction of apoptosis by eicosapentaenoic acid (EPA) in HT29 cells, and in rat colon in vivo.
METHODS—Survival of HT29 cells grown with EPA in the presence of caspase inhibitors, antioxidants, or buthionine sulphoximine, an inhibitor of glutathione neosynthesis, was determined. The effects of EPA enriched fish oil and glutathione depletion on apoptosis in rat colon were assessed using microdissected crypts.
RESULTS—Treatment of HT29 cells with EPA reduced viable cell number and activated caspase 3, prior to cell detachment. Antioxidants and caspase inhibitors blocked HT29 cell death whereas glutathione depletion increased it. Rats fed fish oil had higher crypt cell apoptosis than those fed corn oil, and glutathione depletion enhanced this effect.
CONCLUSIONS—Incorporation of EPA into colonic epithelial cell lipids increases apoptosis. The results of this study, using both an animal and cell line model, support the hypothesis that this effect is mediated via cellular redox tone, and is sensitive to glutathione metabolism. The data suggest a mechanism whereby polyunsaturated fatty acids may influence the susceptibility of colorectal crypt cells to induction or progression of neoplasia.


Keywords: eicosapentaenoic acid; apoptosis; glutathione; caspase; redox; colorectal cancer; rat

Full Text

The Full Text of this article is available as a PDF (167.1 KB).

Figure 1  .

Figure 1  

Adherent cell viability of HT29 cells following treatment with increasing concentrations of eicosapetaenoic acid (EPA 15-45 µM) for 24 or 48 hours. Cell viability was assessed using the neutral red assay, and data are expressed as per cent of the optical density (OD)550nm of untreated control cultures (mean (SEM)). A minimum of 16 OD550nm readings were taken for each treatment. EPA significantly reduced cell viability after 24 and 48 hours at all concentrations tested (p<0.05) compared with untreated cells. Reduction in viable cell number was significantly associated with EPA treatment and time (p<0.001).

Figure 2  .

Figure 2  

Activity of DEVDase caspases (chiefly caspase 3) in HT29 cells following treatment with increasing concentrations of eicosapetaenoic acid (EPA 15-45 µM) for 24 or 48 hours. Positive control cells were also treated with 25 µM C2 ceramide (three hours) or 12 000 J/cm2 (UV, 30 minutes). Data are expressed as mean (SEM) pNA liberated from a DEVDase consensus cleavage site per hour per 106 cells of four samples per treatment group. Caspase activity was significantly higher in all EPA treated cells than in untreated cells after 24 and 48 hours (p<0.05).

Figure 3  .

Figure 3  

Adherent HT29 cell viability following treatment with eicosapetaenoic acid (EPA) (15-45 µM), EPA+100 µM buthionine sulphoximine (BSO), or EPA+BSO+40 µM ebselen for 48 hours. Cell viability was assessed using the neutral red assay, and data are expressed as mean (SEM) per cent of the optical density (OD)550nm of untreated control cultures. A minimum of eight OD550nm readings were taken for each treatment. EPA significantly reduced cell viability after 48 hours at all concentrations tested (p<0.05) compared with untreated cells. BSO alone did not significantly affect cell viability. Exposure to EPA (15-30 µM)+BSO significantly reduced cell viability (p<0.05) but addition of ebselen to EPA+BSO cultures significantly increased cell viability (p<0.05).

Figure 4  .

Figure 4  

Mitotic cells per crypt expressed as mean (SEM) in crypts isolated from the distal colon of rats given corn oil (CO) or fish oil (FO) in the diet with or without 5 mM buthionine sulphoximine (BSO) in drinking water. There was a significant reduction in mitotic cells/crypt associated with FO consumption at all time points (p<0.001) but no significant effect of BSO in the drinking water.

Figure 5  .

Figure 5  

Apoptotic cells per crypt expressed as mean (SEM) in crypts isolated from the distal colon of rats given corn oil (CO) or fish oil (FO) in the diet with or without 5 mM buthionine sulphoximine (BSO) in the drinking water. The total number of apoptotic cells is represented by total column height; the number in the top 40% of the crypt is represented in black and in the bottom 60% as the shaded region. Both FO and BSO significantly increased the total number of apoptotic cells/crypt at all time points (p<0.001).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anti M., Marra G., Armelao F., Bartoli G. M., Ficarelli R., Percesepe A., De Vitis I., Maria G., Sofo L., Rapaccini G. L. Effect of omega-3 fatty acids on rectal mucosal cell proliferation in subjects at risk for colon cancer. Gastroenterology. 1992 Sep;103(3):883–891. doi: 10.1016/0016-5085(92)90021-p. [DOI] [PubMed] [Google Scholar]
  2. Aruoma O. I., Halliwell B., Hoey B. M., Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. 1989;6(6):593–597. doi: 10.1016/0891-5849(89)90066-x. [DOI] [PubMed] [Google Scholar]
  3. Aw T. Y. Molecular and cellular responses to oxidative stress and changes in oxidation-reduction imbalance in the intestine. Am J Clin Nutr. 1999 Oct;70(4):557–565. doi: 10.1093/ajcn/70.4.557. [DOI] [PubMed] [Google Scholar]
  4. Bagchi D., Carryl O. R., Tran M. X., Bagchi M., Garg A., Milnes M. M., Williams C. B., Balmoori J., Bagchi D. J., Mitra S. Acute and chronic stress-induced oxidative gastrointestinal mucosal injury in rats and protection by bismuth subsalicylate. Mol Cell Biochem. 1999 Jun;196(1-2):109–116. [PubMed] [Google Scholar]
  5. Baker M. A., Cerniglia G. J., Zaman A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem. 1990 Nov 1;190(2):360–365. doi: 10.1016/0003-2697(90)90208-q. [DOI] [PubMed] [Google Scholar]
  6. Benard O., Madesh M., Anup R., Balasubramanian K. A. Apoptotic process in the monkey small intestinal epithelium: I. Association with glutathione level and its efflux. Free Radic Biol Med. 1999 Feb;26(3-4):245–252. doi: 10.1016/s0891-5849(98)00164-6. [DOI] [PubMed] [Google Scholar]
  7. Brown J. C., Hughes D. A., Stanley J. C. Use of argentation TLC with GC to resolve C18:1 fatty acid isomers in test and commercial spreads. Biochem Soc Trans. 1998 May;26(2):S176–S176. doi: 10.1042/bst026s176. [DOI] [PubMed] [Google Scholar]
  8. Bégin M. E., Das U. N., Ells G., Horrobin D. F. Selective killing of human cancer cells by polyunsaturated fatty acids. Prostaglandins Leukot Med. 1985 Aug;19(2):177–186. doi: 10.1016/0262-1746(85)90084-8. [DOI] [PubMed] [Google Scholar]
  9. Chan S. L., Mattson M. P. Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res. 1999 Oct 1;58(1):167–190. [PubMed] [Google Scholar]
  10. Chang W. C., Chapkin R. S., Lupton J. R. Predictive value of proliferation, differentiation and apoptosis as intermediate markers for colon tumorigenesis. Carcinogenesis. 1997 Apr;18(4):721–730. doi: 10.1093/carcin/18.4.721. [DOI] [PubMed] [Google Scholar]
  11. Chang W. L., Chapkin R. S., Lupton J. R. Fish oil blocks azoxymethane-induced rat colon tumorigenesis by increasing cell differentiation and apoptosis rather than decreasing cell proliferation. J Nutr. 1998 Mar;128(3):491–497. doi: 10.1093/jn/128.3.491. [DOI] [PubMed] [Google Scholar]
  12. Chinery R., Beauchamp R. D., Shyr Y., Kirkland S. C., Coffey R. J., Morrow J. D. Antioxidants reduce cyclooxygenase-2 expression, prostaglandin production, and proliferation in colorectal cancer cells. Cancer Res. 1998 Jun 1;58(11):2323–2327. [PubMed] [Google Scholar]
  13. Chinery R., Brockman J. A., Peeler M. O., Shyr Y., Beauchamp R. D., Coffey R. J. Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: a p53-independent induction of p21WAF1/CIP1 via C/EBPbeta. Nat Med. 1997 Nov;3(11):1233–1241. doi: 10.1038/nm1197-1233. [DOI] [PubMed] [Google Scholar]
  14. Clarke R. G., Lund E. K., Latham P., Pinder A. C., Johnson I. T. Effect of eicosapentaenoic acid on the proliferation and incidence of apoptosis in the colorectal cell line HT29. Lipids. 1999 Dec;34(12):1287–1295. doi: 10.1007/s11745-999-0480-7. [DOI] [PubMed] [Google Scholar]
  15. Cohen G. M. Caspases: the executioners of apoptosis. Biochem J. 1997 Aug 15;326(Pt 1):1–16. doi: 10.1042/bj3260001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Das U. N., Madhavi N., Sravan Kumar G., Padma M., Sangeetha P. Can tumour cell drug resistance be reversed by essential fatty acids and their metabolites? Prostaglandins Leukot Essent Fatty Acids. 1998 Jan;58(1):39–54. doi: 10.1016/s0952-3278(98)90128-4. [DOI] [PubMed] [Google Scholar]
  17. Droin N., Dubrez L., Eymin B., Renvoizé C., Bréard J., Dimanche-Boitrel M. T., Solary E. Upregulation of CASP genes in human tumor cells undergoing etoposide-induced apoptosis. Oncogene. 1998 Jun 4;16(22):2885–2894. doi: 10.1038/sj.onc.1201821. [DOI] [PubMed] [Google Scholar]
  18. Giardiello F. M., Offerhaus J. A., Tersmette A. C., Hylind L. M., Krush A. J., Brensinger J. D., Booker S. V., Hamilton S. R. Sulindac induced regression of colorectal adenomas in familial adenomatous polyposis: evaluation of predictive factors. Gut. 1996 Apr;38(4):578–581. doi: 10.1136/gut.38.4.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gonzalez M. J., Schemmel R. A., Dugan L., Jr, Gray J. I., Welsch C. W. Dietary fish oil inhibits human breast carcinoma growth: a function of increased lipid peroxidation. Lipids. 1993 Sep;28(9):827–832. doi: 10.1007/BF02536237. [DOI] [PubMed] [Google Scholar]
  20. Gonzalez M. J., Schemmel R. A., Gray J. I., Dugan L., Jr, Sheffield L. G., Welsch C. W. Effect of dietary fat on growth of MCF-7 and MDA-MB231 human breast carcinomas in athymic nude mice: relationship between carcinoma growth and lipid peroxidation product levels. Carcinogenesis. 1991 Jul;12(7):1231–1235. doi: 10.1093/carcin/12.7.1231. [DOI] [PubMed] [Google Scholar]
  21. Grossmann J., Mohr S., Lapentina E. G., Fiocchi C., Levine A. D. Sequential and rapid activation of select caspases during apoptosis of normal intestinal epithelial cells. Am J Physiol. 1998 Jun;274(6 Pt 1):G1117–G1124. doi: 10.1152/ajpgi.1998.274.6.G1117. [DOI] [PubMed] [Google Scholar]
  22. Hampton M. B., Fadeel B., Orrenius S. Redox regulation of the caspases during apoptosis. Ann N Y Acad Sci. 1998 Nov 20;854:328–335. doi: 10.1111/j.1749-6632.1998.tb09913.x. [DOI] [PubMed] [Google Scholar]
  23. Hawkins R. A., Sangster K., Arends M. J. Apoptotic death of pancreatic cancer cells induced by polyunsaturated fatty acids varies with double bond number and involves an oxidative mechanism. J Pathol. 1998 May;185(1):61–70. doi: 10.1002/(SICI)1096-9896(199805)185:1<61::AID-PATH49>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  24. Hengartner M. O. The biochemistry of apoptosis. Nature. 2000 Oct 12;407(6805):770–776. doi: 10.1038/35037710. [DOI] [PubMed] [Google Scholar]
  25. Hinzmann J. S., McKenna R. L., Pierson T. S., Han F., Kezdy F. J., Epps D. E. Interaction of antioxidants with depth-dependent fluorescence quenchers and energy transfer probes in lipid bilayers. Chem Phys Lipids. 1992 Sep;62(2):123–138. doi: 10.1016/0009-3084(92)90090-c. [DOI] [PubMed] [Google Scholar]
  26. Houghton J. A. Apoptosis and drug response. Curr Opin Oncol. 1999 Nov;11(6):475–481. doi: 10.1097/00001622-199911000-00008. [DOI] [PubMed] [Google Scholar]
  27. Kalra J., Mantha S. V., Kumar P., Prasad K. Protective effects of lazaroids against oxygen-free radicals induced lysosomal damage. Mol Cell Biochem. 1994 Jul 27;136(2):125–129. doi: 10.1007/BF00926072. [DOI] [PubMed] [Google Scholar]
  28. Keller J. J., Offerhaus G. J., Polak M., Goodman S. N., Zahurak M. L., Hylind L. M., Hamilton S. R., Giardiello F. M. Rectal epithelial apoptosis in familial adenomatous polyposis patients treated with sulindac. Gut. 1999 Dec;45(6):822–828. doi: 10.1136/gut.45.6.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Latham P., Lund E. K., Johnson I. T. Dietary n-3 PUFA increases the apoptotic response to 1,2-dimethylhydrazine, reduces mitosis and suppresses the induction of carcinogenesis in the rat colon. Carcinogenesis. 1999 Apr;20(4):645–650. doi: 10.1093/carcin/20.4.645. [DOI] [PubMed] [Google Scholar]
  30. Lhuillery C., Cognault S., Germain E., Jourdan M. L., Bougnoux P. Suppression of the promoter effect of polyunsaturated fatty acids by the absence of dietary vitamin E in experimental mammary carcinoma. Cancer Lett. 1997 Mar 19;114(1-2):233–234. doi: 10.1016/s0304-3835(97)04671-5. [DOI] [PubMed] [Google Scholar]
  31. Marangoni F., Angeli M. T., Colli S., Eligini S., Tremoli E., Sirtori C. R., Galli C. Changes of n-3 and n-6 fatty acids in plasma and circulating cells of normal subjects, after prolonged administration of 20:5 (EPA) and 22:6 (DHA) ethyl esters and prolonged washout. Biochim Biophys Acta. 1993 Dec 2;1210(1):55–62. doi: 10.1016/0005-2760(93)90049-f. [DOI] [PubMed] [Google Scholar]
  32. Matthew J. A., Pell J. D., Prior A., Kennedy H. J., Fellows I. W., Gee J. M., Burton J., Johnson I. T. Validation of a simple technique for the detection of abnormal mucosal cell replication in humans. Eur J Cancer Prev. 1994 Jul;3(4):337–344. doi: 10.1097/00008469-199407000-00006. [DOI] [PubMed] [Google Scholar]
  33. Micheau O., Solary E., Hammann A., Dimanche-Boitrel M. T. Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem. 1999 Mar 19;274(12):7987–7992. doi: 10.1074/jbc.274.12.7987. [DOI] [PubMed] [Google Scholar]
  34. Müller A., Cadenas E., Graf P., Sies H. A novel biologically active seleno-organic compound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem Pharmacol. 1984 Oct 15;33(20):3235–3239. doi: 10.1016/0006-2952(84)90083-2. [DOI] [PubMed] [Google Scholar]
  35. Müller A., Gabriel H., Sies H. A novel biologically active selenoorganic compound--IV. Protective glutathione-dependent effect of PZ 51 (ebselen) against ADP-Fe induced lipid peroxidation in isolated hepatocytes. Biochem Pharmacol. 1985 Apr 15;34(8):1185–1189. doi: 10.1016/0006-2952(85)90493-9. [DOI] [PubMed] [Google Scholar]
  36. Pell J. D., Brown J. C., Johnson I. T. Polyunsaturated fatty acids of the n - 3 series influence intestinal crypt cell production in rats. Carcinogenesis. 1994 Jun;15(6):1115–1119. doi: 10.1093/carcin/15.6.1115. [DOI] [PubMed] [Google Scholar]
  37. Piazza G. A., Rahm A. K., Finn T. S., Fryer B. H., Li H., Stoumen A. L., Pamukcu R., Ahnen D. J. Apoptosis primarily accounts for the growth-inhibitory properties of sulindac metabolites and involves a mechanism that is independent of cyclooxygenase inhibition, cell cycle arrest, and p53 induction. Cancer Res. 1997 Jun 15;57(12):2452–2459. [PubMed] [Google Scholar]
  38. Ruemmele F. M., Dionne S., Qureshi I., Sarma D. S., Levy E., Seidman E. G. Butyrate mediates Caco-2 cell apoptosis via up-regulation of pro-apoptotic BAK and inducing caspase-3 mediated cleavage of poly-(ADP-ribose) polymerase (PARP). Cell Death Differ. 1999 Aug;6(8):729–735. doi: 10.1038/sj.cdd.4400545. [DOI] [PubMed] [Google Scholar]
  39. Sagar P. S., Das U. N. Cytotoxic action of cis-unsaturated fatty acids on human cervical carcinoma (HeLa) cells in vitro. Prostaglandins Leukot Essent Fatty Acids. 1995 Oct;53(4):287–299. doi: 10.1016/0952-3278(95)90129-9. [DOI] [PubMed] [Google Scholar]
  40. Sakamoto K., Venkatraman G., Shamsuddin A. M. Growth inhibition and differentiation of HT-29 cells in vitro by inositol hexaphosphate (phytic acid). Carcinogenesis. 1993 Sep;14(9):1815–1819. doi: 10.1093/carcin/14.9.1815. [DOI] [PubMed] [Google Scholar]
  41. Takayama T., Katsuki S., Takahashi Y., Ohi M., Nojiri S., Sakamaki S., Kato J., Kogawa K., Miyake H., Niitsu Y. Aberrant crypt foci of the colon as precursors of adenoma and cancer. N Engl J Med. 1998 Oct 29;339(18):1277–1284. doi: 10.1056/NEJM199810293391803. [DOI] [PubMed] [Google Scholar]
  42. Toft N. J., Winton D. J., Kelly J., Howard L. A., Dekker M., te Riele H., Arends M. J., Wyllie A. H., Margison G. P., Clarke A. R. Msh2 status modulates both apoptosis and mutation frequency in the murine small intestine. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3911–3915. doi: 10.1073/pnas.96.7.3911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Voehringer D. W. BCL-2 and glutathione: alterations in cellular redox state that regulate apoptosis sensitivity. Free Radic Biol Med. 1999 Nov;27(9-10):945–950. doi: 10.1016/s0891-5849(99)00174-4. [DOI] [PubMed] [Google Scholar]
  44. Wesselborg S., Engels I. H., Rossmann E., Los M., Schulze-Osthoff K. Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood. 1999 May 1;93(9):3053–3063. [PubMed] [Google Scholar]
  45. Williams A. C., Hague A., Elder D. J., Paraskeva C. In vitro models for studying colorectal carcinogenesis: cellular and molecular events including APC and Rb cleavage in the control of proliferation, differentiation and apoptosis. Biochim Biophys Acta. 1996 Aug 8;1288(1):F9–19. doi: 10.1016/0304-419x(96)00010-8. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES