A Primer on Cytokines: Sources, Receptors, Effects, and Inducers

J. H. A. J. CURFS,* J. F. G. M. MEIS, AND J. A. A. HOOGKAMP-KORSTANJE

Department of Medical Microbiology, University Hospital Nijmegen, Nijmegen, The Netherlands

INTRODUCTION	742
Ш	743
IL-1	743
IL-2	743
IL-3	748
IL-4	748
IL-5	748
IL-6	748
IL-7	755
IL-8	755
IL-9	762
IL-10	762
IL-11	765
IL-12 and IGIF	
IL-13	
IL-14 and LMW BCGF	767
IL-15	771
IL-16	771
IL-17	
TNF AND LT	
IFN	
CSF	
CHEMOKINES	
MISCELLANEOUS CYTOKINES	
CYTOKINE RECEPTORS	
CONCLUSIONS	776
REFERENCES	776

INTRODUCTION

Most mammals are continuously challenged by microorganisms, as a result of which defense mechanisms must be maintained throughout their life span. The first line of defense is provided by the skin or the mucosa of the gastrointestinal tract, which forms an impermeable barrier for the vast majority of microorganisms. However, when this barrier becomes damaged, an easy path of entry is provided. Furthermore, some microorganisms are capable of penetrating these barriers and can thereby gain access to the underlying tissues. There they are encountered by immunological defense mechanisms and may elicit an inflammatory reaction. These defense mechanisms can be nonspecifically directed against a broad range of microorganisms (e.g., neutrophils that phagocytose and kill bacteria) but may also be specifically directed against a single organism (e.g., antibody-mediated inactivation of the organism). The generation and maintenance of these immunological responses is controlled by a network of small, nonstructural, intercellular regulatory proteins that mediate a multiplicity of immunologic as well as nonimmunologic biological functions (4, 121, 177). These so-called cytokines and chemokines (referred to here as cytokines) are induced by specific stimuli, such as several types of bacterial products, and are responsible for the generation, stimulation, and differentiation of multiple cell types as well as for the control of production of other cytokines that may enhance or inhibit the synthesis of protein products and/or biological effects of other cell types and proteins. This results in a complex, fine-tuned regulatory network that may ultimately succeed in the eradication of the invading microorganism(s). The ability or inability to generate certain cytokines or cytokine patterns in response to infection often determines the clinical course of infection (126, 196) and may greatly affect the outcome. In certain circumstances, mistuning or massive overproduction of cytokines may even lead to shock, multiorgan failure, or death (74).

The availability of recombinant cytokines, cytokine-neutralizing antibodies, antagonists, cytokine-inhibitory drugs, and cytokine knockout laboratory animals (61, 91, 110, 166, 206) enables researchers to study and modulate immune responses. The knowledge thus obtained may eventually lead to the development of new strategies for therapy of infectious diseases (123, 126), which would be particularly valuable in light of the increasing ineffectiveness of antibiotic treatment due to development of resistance of microorganisms to antibiotics.

Due to the ever-increasing number of cytokines that are being discovered and new insights into cytokine functions, it is almost impossible to remember all cytokines and their effects. It would therefore be helpful to have a quick reference guide in which the major cytokines as well as their sources, receptors, biological actions, and inducers are listed. As a result of the vast amount of research on cytokines currently being con-

^{*} Corresponding author. Mailing address: Department of Medical Microbiology, University Hospital Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands. Phone: 031 24 3614356. Fax: 031 24 3540216. E-mail: J.CURFS@MMB.AZN.NL.

ducted and the continuous flow of publications concerning cytokines, it is not possible to provide a completely updated overview. Therefore, the aim of this review is to provide a list of the most common cytokines involved in inflammatory and immune responses which may be expanded on a regular basis.

The list of references predominantly contains review articles on specific cytokines or groups of cytokines that may be useful as a source of more background information and as a starting point for a search for more specific articles on a specific cytokine(s).

Although cytokines have sometimes been divided into groups according to their source (lymphokines or monokines), it has become difficult to maintain this categorization since most of the cytokines can be produced by a variety of cell types depending on the stimulating agent and interaction with other cells. Therefore, the cytokines are described in the following order: interleukins (IL), tumor necrosis factors (TNF) and lymphotoxins (LT), interferons (IFN), colony-stimulating factors (CSF), chemokines, and miscellaneous cytokines. The tables present contemporary and historical names and abbreviations, information on receptors and receptor-related proteins, cytokine sources and gene locations, biochemical properties of the protein, information on cytokine-specific bioassays, molecular properties such as amino acid homologies and species specificities, and information on various biological effects and inducers.

IL

It has now been more than 12 years since the first two members of the IL family, IL-1 α and IL-1 β , were cloned. Furthermore, several other molecules that have been known and studied for some time have been named as IL, such as IL-2, formerly known as T-cell growth factor. Since the introduction of the term IL, at least 17 cytokines have been described and given that designation, the last one being IL-17 (204).

IL-1

Since the cloning of IL-1 it has become clear that IL-1 can evoke a wide variety of biological effects (Tables 1 and 2) at very low concentrations, sometimes even in the femtomolar range (54, 55). It is a remarkably potent molecule that is able to induce its effects by triggering as few as one or two receptors per cell. The first effects ascribed to IL-1 were the induction of fever, augmentation of lymphocyte responses, and stimulation of the acute-phase response, hence the older names such as endogenous pyrogen and lymphocyte-activating factor. Two different molecules with agonistic effects are known, IL-1 α and IL-1 β . While IL-1 α is predominantly membrane bound, IL-1 β is secreted. A clear distinction should be made between local and systemic effects of IL-1 (52). The induction of an inflammatory reaction in response to infection is to a large extent attributed to the effects of IL-1. Apart from the induction of other proinflammatory cytokines and chemotactic cytokines at the site of infection, IL-1 also up-regulates cell adhesion molecules, which ultimately leads to the production of an effective defense mechanism. Indeed, in several models of bacterial, fungal, and parasitic infection, IL-1 is associated with protection (188, 189). Furthermore, the radiation-protective effect of IL-1 (possibly because of its stimulatory effect on hematopoiesis) may hold promise for treatment during cancer therapy. In contrast, however, overproduction of IL-1 may sometimes be associated with disease (51, 114).

A molecule named IL-1 receptor antagonist (IL-1ra) is also

part of the IL-1 family. This cytokine, which strongly resembles IL-1, completely lacks an agonistic effect in vitro and in vivo (53, 55, 144). Therefore, IL-1ra may act by dampening IL-1 responses. Furthermore, the IL-1 receptor type II (IL-1-RII) presumably may act as a decoy receptor, thereby attenuating the potential effects of IL-1 (173, 174). In addition, it has become clear from models of infection that treatment with IL-1ra may have protective effects (189); e.g., treatment of *Plasmodium berghei*-infected mice with IL-1ra may be beneficial in some disease states, such as chronic inflammation. It has become evident that the time and location of IL-1 production together with production of IL-1ra and IL-1-R expression is crucial in determining the final biological effect.

IL-2

The T-cell-derived cytokine IL-2 targets a variety of cells to induce their growth, differentiation, and functional activation (Table 3). Previous names for IL-2, such as lymphocyte mitogenic factor and T-cell growth factor, indicate that one of the major functions of this cytokine is in the activation, growth, and differentiation of T cells. Indeed, within minutes after interaction of the T-cell receptor (TCR) with the major histocompatibility complex (MHC) class II antigen complex on antigen-presenting cells. T cells transcribe three categories of genes that are expressed early during T-cell activation: cellular proto-oncogenes, cytokine genes, and cytokine receptor genes. Transcription of the gene for IL-2 as well as of that for IL-2-R begins within 1 h of TCR-mediated stimulation of human lymphocytes. In this way secreted IL-2, produced by an activated T cell in an autocrine fashion, stimulates growth and proliferation of antigen-specific T lymphocytes as well as B cells. The major T-cell subclass that produces IL-2 is the CD4⁺ T cell, although CD8⁺ cells may also produce small quantities of IL-2. Apart from the autocrine effect, IL-2 also induces the production of other T-cell-derived cytokines such as IFN- γ and TNF-β, which results in activation of monocytes, neutrophils, and natural killer cells (NK cells). It is evident that in that way IL-2 contributes to the generation and propagation of antigenspecific immune responses. A strong induction of IL-2 (and IFN- γ and TNF- β) is also found after stimulation of the TCR β chain by superantigens; this induction leads to extensive proliferation of T-cell subsets.

The functional human IL-2-R is composed of subunit complexes of α , β , and γ chains or β and γ chains. Together with the β chain, the γ chain participates in increasing the IL-2 binding affinity and is responsible for signal transduction. Remarkably, signaling through the γ chain is shared by receptors for at least IL-4, IL-7, IL-9, and IL-15 (56, 84). The importance of signaling through the γ chain can be demonstrated by the fact that mutations of the γ -chain gene are the cause of the human X-linked severe combined immunodeficiency syndrome (178).

IL-2 has been used for several therapeutic applications, such as infusions of IL-2-activated lymphokine-activated killer (LAK) cells and tumor-infiltrating lymphocytes for antitumor therapy, the augmentation of IL-2 levels in immunodeficiency disorders, and the increase of NK cell activity following bone marrow transplants (88). Studies to determine beneficial effects of IL-2 during human immunodeficiency virus (HIV) infection are currently being conducted. Increases in the numbers of circulating B and T cells have been observed at relatively high doses of IL-2, although toxicity due to activation of NK cells and the resulting production of proinflammatory cyTABLE 1. IL-1^a

Inducers	in whole sudent of	other oducts			:	okines.	Ś	totoxin A.		ò	1β by		n primed	s).	membrane	(monocyte)	schanism r ne	t- 2	events and	ends on	(uoi		lates IL-1β RNA and	absence of	v LPS is These	inhibited	igh LPS	IS.		cies.
Indu	LPS (IL-1ß in whole blood independent of		(toxins).	Viruses.		Various cytokines.	Phagocytosis.	Pyrogenic exotoxin A.	Strentolvsin O	metiondance	sol CD23 (IL-1β by	monocytes).	BCG (only in primed	macrophages)	Mvcoplasma membrane	lipoproteins (monocyte)	through a mechanism	(involves post-	translational events and	critically depends on	tyrosine nhosnhorvlation)	- Croudourd	CRH up-regulates IL-1β and IL-1ra mRNA and	protein in the absence of	LPS or at low LPS	cytokines are inhibited	by CRH at high LPS	concentrations.	Tissue injury.	Candida species.
Major effects	Activates: T., B- and NK cells (synergistically with IL-2 and IFN α),		and E-selectin expression), nerve cells, adipocytes,	pancreatic β-cells (at low concentrations), hepatocytes and		Cytotoxic for: Melanocytes, pancreatic 8-cells (at high concentration), islets of	Langerhans in vitro (in pico- to nanomolar concentrations).	In vivo effects:	Fever (endogenous pyrogen), anorexia, slow-wave sleep, neuro-	ACTH- and cortisol induction, leukocytosis, radioprotection,	protection against several infections (bacterial as well as	parasitic), adjuvant errect independent of 1L-2, stimulation of central release of CRH in primates.		Down-regulates: I_1D averación on T_colle /	mRNA), Fas-antigen expression on synovial cells (thereby	inhibits Fas-Ag-mediated apoptosis and perpetuates synovial	hyperplasia in rheumatoid arthritis), collagen in human smooth		Up-regulates:	TNF-R expression on human bone marrow stromal cell strain,	IL-ZK EXPLESSION.	Increases:	AC1H, endorphins, vasopressin and somatostatin release, oxidative burst of neutrophils (bovine), proliferation of B-cells	and antibody formation (synergistically with various B-cell	growth and differentiation factors), nerve growth factor in rat brain tissue after CNS trauma. shedding of sol TNF-R75 from	monocytes (not sol TNF-R55).	T = 1	Pro-inflammatory cytokines and hematopoietic growth factors.	coagulation (formation of thrombin-anti-thrombin III [TAT]	comprexes, normorysis (plasmin-oz-anu-plasmin [rAr] complexes), release of tissue-type plasminogen activator (t-PA) and its inhibitor plasminogen activator inhibitor (PA1), release
Molecular biology and miscellaneous information	hIL-1α: 159 aa. hIL-1β: 153 aa.	mlL-1 α and mlL-1 β : 26%	aa homology. Much higher	nomology in predicted 3D structure.		species specificity: rrecIL-18 and hrecIL-18	have the same max. dose	proliferation assay but the	peak response of rrecIL-1β	Is twice that of inectL-tp. Rat IL-1R binds poorly to	mIL-1 β and hIL-1 β .	Half-life of mRNA	enhanced by porins from	Salmonella typhimurium.																
Biochemistry	human (h) IL-1: 17.5 kDa,	chromosome 2q.	murine (m) IL-1: 17 5 kDa 31 kDa	precursor (prec).	mIL-1α: pI 5.0.	.0./ Id .d I-4111	human recombinant	electric point (pl)	5.6.	rrecIL-1β: pI 8.74.		IL-10 intracellular or exposed on	membrane.	IL-1 secreted (also	as precil-1b).	rrecIL-1ß blocked	by hIL-1ra.	rrecH18 hinds	with rIL-1RI and	not with COS-1 or	COS-7 (monkey)	-111-111	hrecIL-1β does not bind to rIL-1R but	has bioactive effect	on rat cells carrying	dissociation	between receptor	binding and	dissociation rate of	human ligand from rat receptor).
Producers	Monocytes / macrophages, activated alveolar	macrophages, T-, B- and NK cells, neutrophils,	dendritic cells, L'anverhans' cells	keratinocytes, endothelial	cells, epithelial cells, neuronal cells, astrocytes	glial cells, mesangial cells,	fibroblasts, synovial cells, smooth muscle cells, rat	intestinal epithelial cell	nne lEC-6 (only lL-1α and only intracellular).	•	IL-1 a precursor is	precursor is biologically	inactive.	precidence is cleaved by $\frac{1}{100}$	precil18 is cleaved by	pyrogenic exotoxin B	(proteinase precursor).	ICE (IL-1ß converting	enzyme, mammalian	cysteine endoproteinase)	cleaves preiL-1 \$ at 2 sites:	not cleave IL-1 α). ICE	activity is inhibited by p- benzoguinone [134, 184].		IL-1 transcription is short-	corticoids.		Translation is increased by	leukotrienes and is	inhibited by PGE ₂ -induced cAMP.
Receptors	Two independent proteins: IL-1RI and IL-1RII.	IL-1RI / CDw121a (80 kDa).	213 amino acids (aa), plycosylated cytonlasmic	domain necessary for signal	transduction.	Found on B-cells, monocytes,	neutrophils. Preference for IL-1α.	Down-regulated by IL-1, up-	regulated by corricosteroids, 1- cell activation, epidermal	growth factor, IL-2 and IL-4.	Mediates IL-1β-induced fever		IL-IRII / CDw121b (68 kDa).	27 aa cytoptastine uomain, no signal transduction. Possibly	acts as decoy receptor.	Found on endothelial cells,	keratinocytes, T-cells.	Preference for IL-1 β .	Devoid of signaling.	Roth tynes of recentors are	encoded by separate genes,	28% as homology in extra-	Genes map to the IL-1 gene	cluster on chromosome 2	$(2412-22)$ together with the genes for IL-1 α (<i>IL1A</i>), IL-1 β	(ILIB) and IL-1ra (ILIRN).	The functional II 1 recentor is	a complex of at least 2 sub-	units.	Soluble (sol) IL-1RI and sol IL-1RII are detected in human
Full Name	Interleukin-1	Lymphocyte activating factor)	B-cell activating factor		Helper peak-1	T-cell replacing	Tactor III	B-cell differentiation	Iactor	Mononuclear cell	factor	Mitogenic protein		Leukocytic pyrogen	Endogenous pyrogen		Leukocyte endogenous mediator	0	Hematopoietin-1	Osteorclast activating	factor	Catabolin		Melanoma growth inhihitor factor		Tumor inhibitor	tactor-2	Lymphocyte	proliteration promoting factor of neutrophils
Acronym or synonym	IL- $1\alpha/\beta$	LAF		BAF		HP-1	TRF III / TRF _M		BDF		MCF		MP	4	LF	EP		LEM		HP-1	OAF	20			MGIF		TIF-2			

Aspergillus species. Autologous platelets or factors produced by them enhance production of IIIrd	Selegiline (monoamine oxidase Binhibitor) increases IL-1β production by peripheral blood mononuclear cells.					
of soluble plasmin-o ₂ (sPLA ₃), infection-induced malnutrition, monocyte chemoattractant protein-1 (synergistically with platelet derived growth factor), lymphokine gene expression, cyclooxygenase and lipoxygenase gene expression, acute phase response, early cartilage damage in immune complex arthritis in mice, protein phosohorvlation.	Suppresses: Somatotropic axis (together with corticotropin-releasing factor). Somatotropic axis (together with corticon by human peripheral LL-1α and IL-1β inhibit IL-4 production by human peripheral blood mononuclear cells. IL-1β suppresses apoptosis in CD34* bone marrow cells through IL-1RI.	Stimulates: Late shedding of TNF-R75 from human monocytes (not TNF-R55), mucin exocytosis through IL-1R1 located basolaterally on HT-29CI.16E human colon epithelial cell line.	Enhances: Antigen-specific activity of T _H cells, IL-2 production, immune responses to T-cell-independent antigens, secondary antibody response of mice to BSA (50-fold), FcyR-mediated phagocytosis by human PMN, collagenase expression in human smooth muscle cells.	Miscellaneous: IL-1 is able to replace the requirement for la ⁺ cells in the proliferation of antigen-primed T-cells. IL-1 mediates increased plasma levels of eicosanoids and IL-6 in patients with sepsis syndrome. Finament with sepsis syndrome. Teatment with solIL-1R protects non-obese diabetic mice from experimental auto-immune diabetes. Two PstI polymorphisms of IL-1R1 are known: RFLP-A and RFLP-B. RFLP-A is significantly associated with insulin- dependent diabetes mellius in contrast to RFLP-B.	Intra-colonic trease of L-1p is increased in circlin ulcerative colitis and cell-associated IL-1p is enhanced in inflamed mucosa. IL-1p is implicated for the <i>in vitro</i> disruption of the blood- brain-barrier (mediated by cyclooxygenase activation).	
cAMP signaling pathway(s) is important in the regulation of IL-1β at the trans- criptional level.	Bioassay: Proliferation of mouse thymocytes or D10G4.1 cells. Synthetie nona-	163-171) still has T-cell activating effect but no pyrogenic effect.				
serum. Rat sol IL-1Rl binds to rat recombinant (rrec) IL-1β but not to hIL-1β or murine (m) IL-1β.	Extracellular domain of rIL-1 RI: pi 4.7 (hIL-1R, pi 6.7). IL-1β binds to IL-1R, and IL-1 RI through different sites.	(ut-rta) untuing to ut-rtvi occurs through distinct sites. IL-IR AcP (IL-1 receptor accessory to rti 101 - tr	α/β but not with IL-Ira α/β but not with IL-Ira. Increases affinity of IL-Iβ and TL-IR. 570 aa ~ 66 kDa, Ig super- family. Murine & human.	Lumited nomology to Kd & Kd Expressed in many murine tissues. Regulated by IL-1. IIP1: protein that interacts with a functionally important region of the IL-1R, co-immuno- precipitates with IL-1R and appears critical for IL-1 signal transduction.	IL-1 Rrp (IL-1 receptor related protein): does not bind known IL-1 ligands. IL-1 Rrp orpolasmic domain coupled to IL-1 B membrane domain leads to IL-1 binding and signal transduction.	IRAK: IL-1RI-associated kinase that associates with IL-1-IL-IRI complex and is subsequently phosphorylated leading to activation of NFkB. [Refs. 21, 45, 151, 173, 174]
				анри п в о й а н		III Refs. 46, 51, 52, 54, 55, 114, 121, 177, 197]

^{*a*} Abbreviations: aa, amino acids; prec, precursor; 3D, three dimensional; VCAM-1, vascular cell adhesion molecule 1; ACTH, adenocorticotropic hormone; CRH, corticoid-releasing hormone; BCG, bacillus Calmette-Guérin; AG, antigen; PGE₂, prostaglandin E₃; CNS, central nervous system; BSA, bovine serum albumin; PMN, polymorphonuclear leukocyte; RFLP, restriction fragment length polymorphism.

or synonym		receptors	Froducers	Biochemistry	Molecular biology and miscellaneous information	Major functions	Inducers
IL-1 anta	IL-1 receptor antagonist	IL-IRI / CDw121a. IL-IRII / CDw121b.	Monocytes / macrophages, neutrophils, astrocytes, keratinocytes, endothelial	hIL-1ra: 17.5 kDa (23-25 kDa), chromosome 2a	icIL-1ra: 152 aa. Two molecular forms conversited from the same	Inhibits: All known effects of IL-1 α and IL-1 β by competing for binding to the IL-1D	LPS.
IL-1	IL-1 inhibitor	IL-1raBF (IL-1 receptor antagonist binding factor):	cells, epithelial cells, neuronal cells, fibroblasts,	icIL-1rall:	gene: sol IL-1ra and icIL-1ra. They differ	to uto 12-17. <i>In viv</i> o inhibition of:	TGFB.
		present in serum and immunologically related to IT 1DT Binds evolutioned to	T-cells (small amounts).	25 kDa, new molecular form generated by	because of the absence of a leader sequence in icIL-1ra	Death from endotoxin and bacterial infections, endotoxin fever and systemic IL-6 induction in rask. IPS-induced pulmonary information in zero acceleration in mice and with the	TNF α (enhanced by IL-
sol IL-1ra Solu	Soluble IL-1ra	IL-1ra. Consists of a 35-40 kDa protein backbone that is	Activated fibroblasts, keratinocytes.	expression of a new 63 basebair (bb)	regulated.	initiatimization in tas, cereoral initiatatia in inite, arturius in rodents, diabetes mellitius in rats, graft-versus-host disease in mice, inflammatrov howel disease in rats and rabhins.	10). 1øG
Intra	Intracellular II -1 ra	glycosylated, its carbohydrate	myelomorcytic cells (at	exon located 2 kb		Neutralization of IL-1ra (antibody) leads to exacerbation of inflammation in animal models of formula-immune complex	150. I Ilterorialat liaht (I IVD)
I I all		binding to IL-1ra.	Cortisol inhibits LPS-	first ic-exon.		minimization in annual moters of pointain minimize compress arthritis, <i>Schistosoma mansoni</i> egge-induced granuloma formation and <i>Provinsibicuerium cons</i> -sinduced hensitis	outaviotet ngut (0 V D) induces IL-1ra in mouse enidermal cells [00]
			induced IL-1ra production via glucocorticoid- and			Miscellaneous:	
			mineralocorticoid-receptor.			icIL-1ra, icIL-1rall and sol IL-1ra have similar capacities to inhibit IL-1 activity in terms of induction of E-selectin and HIV	
						replication. icil 1-1ra alters II1-inducible gene expression without blocking	
						exogenous signaling by IL-1β (attenuates IL-1 responses	
						uownsucant of the initial 1L-1~1L-1K interaction by decreasing IL-1 mRNA stability).	
	_=					The role of IL-1ra <i>in vivo</i> is modulation of inflammatory events	
						mediated by 1L-1, whereas icIL-1ra is suggested to act by destabilizing IL-1-induced mRNA's.	
						Rat: studies with mutant proteins vIL-18A4 (binds	
						preferentially to rIL-1RII) and yIL-1BN7/Q (binds equally well	
[Refs. 46, 53,						to IL-I KI and IL-I KIIJ showed that IL-I KI exerts gastroprotective effects against indomethacin-induced ulcers	
						while stimulation of IL-1RII leads to an anti-secretory (gastric	

TABLE 2. IL-1ra^a

^a Abbreviation: aa, amino acid.

			kin A.	oxic																			
Inducers		Antigen / mitogen.	Superantigens: - pyrogenic exotoxin A.	 staphylococcal toxic shock toxin-1. stanhvlococcal 	enterotoxins. - M-proteins.																		
Major effects		Promotes: T- and B-cell growth and differentiation, immunoglobulin	secretion by B-cells, NK cell growth and (cytolytic) activity, production of the cytokines IFNY, TNFB and BCGF,	development of LAK cells. Induces:	IL-2 alone induces proliferation of T_{H2} cells (IL-4 and IL-5 producers) and generates IgG, and IgE secreting cells.	12^{-2} = 11.17 metrics 141 cells which activates macrophages, induces delayed type hypersensitivity responses and $1gG_{2a}$ (but not [2E]).	Eosinophilia, capillary leak (in vivo).	Enhances: IL-7R expression on yő intra-epithelial lymphocytes.	Miscellaneous: 11-2 plays a major role in the control of memory T _H -cell ioducion	IL-2 is elevated in intestinal mucosa lymphokine-secreting cells of patients with active Crohn's disease.	mice [91].												
Molecular biology	and miscellaneous information	153 aa incl. 20 aa leader sequence.	IL-2 gene expression can	be plocked by cyclosporine.	Suppression of IL-2 gene transcription by T2 (Trinternation wildfordii	Hook F extract).																	
Biochemistry		hIL-2: 15-20 kDa, chromosome 4q.	mIL-2: 15-30 kDa.	Homology h - m: 63% aa.	Bioassay: Proliferation of	IL-2-dependent CTLL-2 indicator	cells.	hlL-2 is also active on rat and mouse cells.															
Producers		T-cells (T_H0 , T_H1), CD4 >> CD8.	(B-cells, NK cells).	ΓOL_2 minutes acquisition of ability to produce IL-2 by naive CD4 ⁺ T-cells.	Enhanced in serum during the onset of insulin	dependent diabetes mellitus.																	
Receptors		IL-2R α / CD25 (dissociation constant (K _d) 5-10 nM).	$\frac{IL-2R\beta}{IL-2R\gamma}$ (CD122 (K _d ~70 nM).	α-chain: Tac-ag, 55 kDa.	p-cnain: 64 kDa, shared with γ -chain: 64 kDa, shared with IL-4R, IL-7R and IL-9R.	The 3 chains form a functional high-offinity recentor (K, 5-80)	pM) and are members of hematopolictic cytokine	receptor superfamily.	truman: $\alpha\beta\gamma$ trimer (K _d 10 ⁻¹¹ M) or $\beta\gamma$ dimer (K _d 10 ⁻⁹ M) \rightarrow signal	transduction. Mouse: only $\alpha\beta\gamma$ trimerization leads to	signal transduction.	Cytoplasmic domain of IL-2 Rα is dispensable for mitogenic signaling.	Human and mouse IL-2R sytems differ in that the α -	chain is absolutely required for a functional (binding and	signaling) mouse IL-2R. Therefore, regulation of CD8 ⁺ T-cell growth during immune	reaction in the mouse depends upon α-chain expression.	Soluble bioactive form of IL-2 R (8MST) = 178 N-	terminal aa-residues of mature IL-2R.	Staphylococcal enterotoxin A or B (super-antigen):	- after 4 h: IL-2Rα unaffected, IL-2Rβ	down-regulated and IL-2Ry slightly up-regulated. - after 16 h:	IL-2Rα upregulated, IL-2Rβ remains low and IL-2Rγ up- regulated.	[[Refs. 6, 48, 56, 84, 94, 118, 136, 178]
Full Name		Interleukin-2	Lymphocyte mitogenic factor	Blastogenic factor	T-cell growth factor																		
Acronym	or synonym	IL-2	LMF	BF	TCGF																		[Refs. 4, 35, 122, 177]

^a Abbreviations: Tac-ag, T-cell accessory antigen; PGE₂, prostaglandin E₂; aa, amino acid; incl., including.

tokines is one of the side effects. However, B and T cells express high-affinity IL-2Rs while NK cells express low-affinity IL-2Rs; therefore, low doses of IL-2 may be beneficial in increasing the numbers of B and T cells without induction of proinflammatory cytokine production by NK cells.

IL-3

Murine IL-3 (Table 4) was first described in 1974 as a factor released from T cells after stimulation with the mitogen phytohemagglutinin (PHA) and was named CFU-stimulating activity. Later this factor was renamed IL-3 because treatment of splenic lymphocytes with this factor gave rise to mature T cells. Several years after the discovery of murine IL-3, the human equivalent was identified from a cDNA clone from concanavalin A (ConA)-activated human T-helper cells.

IL-3 exerts its ability to support multilineage-colony formation early in the development of multipotent progenitors and exhibits synergy with stem cell factor in inducing human CD34⁺ cells to form basophils and mast cells. IL-3 apparently supports only a few cell divisions, giving rise to neutrophils or erythroid bursts only upon addition of granulocyte-macrophage CSF (GM-CSF) or erythropoietin, respectively. These observations are in agreement with data indicating that multilineage colonies become less sensitive to IL-3 as they mature. IL-3 has indeed been used successfully in combinations with later-acting factors such as GM-CSF to stimulate hematopoiesis in primates. In addition, sequential administration of IL-3 and IL-6 in primates stimulates thrombopoiesis.

Based upon in vitro studies, IL-3 may be an effective treatment for reversing the hematopoietic toxicity associated with zidovudine. Furthermore, therapies directed at down-regulating IL-3 or its receptor may be an effective treatment in patients with non-Hodgkin's lymphoma because of the ability of IL-3 to promote the proliferation of follicular B cells from lymphomas (34). In clinical trials IL-3 has been used in combination with other CSF as a possible treatment for aplastic anemia (80).

IL-4

Formerly designated B-cell growth factor (BCGF) (Table 5), IL-4 was first described in 1982 as a factor present in the supernatants of cultures of phorbol myristate acetate-stimulated thymoma cells (EL-4) capable of supporting the growth of anti-immunoglobulin (Ig)-stimulated B cells by driving them into the S phase (92).

IL-4 is also designated as a type 2 cytokine because it is mainly produced by T_H2 cells. Indeed, when it was shown that CD4⁺ cells do not constitute a homogeneous class of cells, IL-4 together with IL-5, IL-10, and IL-13 proved to be produced primarily by the $CD4^+$ subset (T_H2) whereas the other subset (T_H1) mainly produced IL-2, IFN- γ , and TNF- β . T_H1 cells are assumed to be well suited for induction of enhanced microbicidal activity by macrophages (enhanced cellular immunity), whereas $T_{H}2$ cells make products that are well adapted to help B cells develop into antibody-producing cells. Apart from its involvement in the generation of the humoral immune response, a striking effect of IL-4 is its ability to suppress many monocyte proinflammatory responses such as IL-1 and TNF- α production, and it may thus act as an antiinflammatory cytokine involved in the fine-tuning of an immunological response (32, 35, 116, 154). Therefore, IL-4 may hold promise as a therapeutic agent in chronic inflammatory processes. However, during lepromatous leprosy the enormous accumulation of intracellular organisms is associated with IL-4 production. On the other hand, tuberculoid leprosy, in which

there are very few organisms and little tissue damage mediated by immunologically induced inflammation, is characterized by T_{H1} cell responses. Furthermore, IL-4 is involved in the pathogenesis of *Leishmania* infection (126). Few infections in which IL-4 production correlates with protection are known; e.g., in nematode infections in mice, IL-4 is involved in clearance of the primary infection and in immunity to rechallenge.

As a multifunctional cytokine that can augment certain Tand B-cell responses, IL-4 may have potential therapeutic value in several instances, such as reconstitution of humoral and cellular immune function following bone marrow transplantation, induction of terminal differentiation of acute lymphoblastoid leukemias, and amelioration of immunodeficiency associated with hyper-IgM syndrome (88).

IL-5

Eosinophil differentiation factor (Table 6), later designated IL-5, was first isolated and characterized in 1985 from conditioned culture supernatants of parasite-specific, antigen-stimulated T-cell clones isolated from *Mesocestoides corti*-infected mice. However, in the early 1970s the first observations that foretold the discovery of IL-5 had been made: eosinophilia was shown to be a T-cell-dependent condition, and supernatants of activated murine spleen cell cultures were shown to be capable of inducing eosinophil colony formation.

Mainly produced by activated T cells, IL-5 exhibits activity on eosinophils (chemotaxis and activation), basophils (activation), B cells (differentiation), and thymocytes (up-regulation of IL-2R). Some observations made with IL-5 in mice have not yet been confirmed in humans, i.e., induction of B-cell differentiation, synergism with IL-2 in production of cytotoxic T lymphocytes (CTL) from thymocytes, and BCGF II activity (167).

Based on the activities of IL-5 in humans one can only speculate about possible therapeutic uses for this cytokine. During schistosomiasis, IL-5 may be beneficial through its activating effect on eosinophils (28). Conceivably, IL-5 antagonists may be of benefit in hypereosinophilic syndromes (180) or in reducing the production of asthma-related lesions of respiratory epithelium (73).

IL-6

One of the oldest names for IL-6, IFN- β_2 , came from observations that fibroblastoid cells could be induced to produce a protein with weak antiviral activity. Since then IL-6 has received a large number of designations based upon its great variety of effects (Table 7) (190). One of the best-known biological effects of IL-6 is undoubtedly the induction and control of acute-phase protein synthesis and release by hepatocytes in response to noxious stimuli such as trauma, infection, and burns (8). An additional important effect is the stimulation of growth and differentiation of and antibody production by B cells. Therefore, IL-6 is considered to play an important role in host defense mechanisms. Abnormal production of IL-6, however, has been suggested to be involved in the pathogenesis of a variety of diseases, such as rheumatoid arthritis, Castelman's disease, mesangial proliferative glomerulonephritis, and several autoimmune diseases (103, 179). Furthermore, there are several indications that IL-6 is a possible autocrine growth factor for human myeloma cells. Although IL-6 is produced early in inflammation (shortly after IL-1 and TNF- α) and displays several proinflammatory properties (e.g., maturation and activation of neutrophils, maturation of macrophages, differentiation and maintenance of CTL and NK cells, and increased expression of IL-1 and TNF- α), it cannot be regarded as a

TABLE
4.
IL-3"

Acronym or synonym	Full Name	Receptors	Producers	Biochemistry	Molecular biology and miscellaneous	Major effects	Inducing condition
IL-3	Interleukin-3	IL-3R / CD123, heterodimer.	T-cells $(T_{\rm H}2)$, thymic	hIL-3: 15-25 kDa,	hIL-3: 152 aa.	Activates:	T-cell activation.
CSF-2α	Colony stimulating	h: α-chain (ca. 70 kDa, low	NK cells, keratinocytes,	mir 3. 30 40 l-D-	mIL-3: 166 aa precursor.	nematopoetic progenitor cells (differentiation of early stages), mast cells (differentiation into mucosal mast cells),	Cross-linking of IgE-
:	factor 2a	affinity) and β-chain (130-140 kDa).	neuronal cells, mast cells, mesothelial cells, lamina	mIL-3: 30-40 kDa. Larger forms due to	Two forms of mIL-3 are generated from the same	megakaryocyte progenitors, PMNs.	FcR.
CFU-SA	CFU stimulating activity (factor)	Association of both chains forms high affinity receptor $(K_4 \sim 5 \times 10^{-11} \text{ M}).$	propria monocytes (production reduced by prostaglandin E ₂ (PGE ₂)).	glycosylation. Species specific.	precursor: 134 aa and 140 aa residues.	Promotes: Proliferation of multipotential progenitor cells.	
HCGF	Hematopoietic cell growth factor	Both chains are members of hematopoietic cytokine receptor superfamily.			Homology m - h: 45% DNA level / 29% aa level.	Increases: IgM and IgG response in mice against human IgG (T-cell dependent Ag) but not against pneumococcal polysaccharide	
BPA	Burst promoting activity	α -chain homologous with IL-5 R α and GM-CSF-R α .				(T-cell independent Ag). Induces:	
PSF	Persisting cell stimulating factor	β -chain (KH97 = human β - chain, AIC2B = mouse β -				Expression of MHC class II molecules (HLA-DR) on neutro- phils, differentiation and growth of thymocytes, recovery of B- and T-cell functions in sublethally irradiated mice. chronic	-
	Multi-CSF	GM-CSF-R α and can react with all three distinct α -chains.				expression of P-selectin on endothelial cells.	
	Histamine producing cell stimulating factor	IL-3R expressed on subset T _H 2 cells, induced by TCR				Miscellaneous: Synergizes with M-CSF in producing macrophages and with G- CSF in producing neutrophils.	
	Multilineage hemopoietic growth	stimulation. ICK stimulation + IL-3 \rightarrow IL-4 production + proliferation.				growth of primitive hematopoietic stem cells. Promotes growth of mast cells in the mouse (enhanced by IL-4, IL-9 and IL-10).	
	Thy-1 inducing factor	MoAb 7G3: hIL-3ra, recognizes N-terminal part of hIL-3 Rα.				Interacts with 1.2-2 to summate growth of 1-cells and to induce IgG secretion from activated B-cells.	
	Mast cell growth factor						
	Eosinophil-CSF						
	Megakaryocyte-CSF						
	Erythroid-CSF						
	Neutrophil- granulocyte CSF						
	Hemopoietin-2						
	Synergistic activity factor						
	WEH1-3 growth factor						
[Refs. 34, 80, 121, 124]	Pan-specific hemopoietin	[Ref. 111]					

^a Abbreviations: aa, amino acid; PMN, polymorphonuclear leukocyte; Ag, antigen; MoAb, monoclonal antibody.

$IL-4^a$
TABLE 5.

2		en.			3.		cts as a	nt to	pe 11.4	-			-										-									_		_						_
Inducers		Antigen / mitogen.	د ۲	IL-2.	In vivo anti-CD3.		Cholera toxin acts as a	mucosal adjuvant to	responses and thus II4	production.																														
Mainr effects		Promotes:	T- and B-cell growth (naive $T \rightarrow T_{H}2$) and differentiation,	pronneration and differentiation of B-cells, expansion and recruitment of early myeloid progenitors II -1 ra production	VCAM-1 expression on endothelial cells (NFkB-independent),	IgE production by B-cells.	Enhances macrophage antigen processing and presentation.	Traditions	III Its hy macronhages together with TNE α IEN α II 10	IL-3, and GM-CSF.	IFN γ production by NK cells, lipase production by T-cells,	LAK cell activity, IL-6 and TNF production by B-cells.	U-CSF, M-CSF, and IL-6 production by fibroblasts.	IL-0, IL-6, and MCF production by endomental cents. I Isotype shift in B cells (towards IgE, JoG, and JoG, production)	and soluble IgM production by B-cells.	Activation of 15-lipooxygenase (which catalyzes 15-HETE	production).	CR3 (complement receptor 3) expression on and CR3-mediated	ingestion by monocytes.	Inhibits:	Antigen presenting cell function. T _u l development.	IL-1a, IL-1B, IL-6, TNF, IL-8, PGE2, GM-CSF, G-CSF,	IFNox/B and superoxide production by macrophages. TNF and	serine esterase by NK cells, IFNy production by T-cells,	GM-CSF and PGE ₂ production by fibroblasts, IFNy production	by IL-2 activated NK cells, IL-1 β , IL-6 and IL-8 production by	rheumatoid synovial cells, TNF α - or IL-1 β - or LPS-induced	expression of IL-8 on human umbilical cord vascular	endothelial cells, ICAM-1 and E-selectin expression on	Reduces FooDL D11 avaragion on monomities and Eco.D	mediated ingestion and decreases (D14 everescion on human	mounter ingention and development of the contraston of municity monocytes (mRNA level).	~	Suppresses:	Ig production by human B-cells stimulated with Staphylococcus	aureus anu 112, annuouy secretion by 1gA-commuted numan B-cells evoloeverensee-2 (COV2) denendent DGE eventeerie	D-cons, cyclooxygenase-z (COAz)-uependent rOz_2 synthesis in osteoclasts (\rightarrow inhibition of bone resonation), expression of	$\alpha_2, \alpha_3, \beta_1$, and β_4 integrin subunits on HT-29 colon carcinoma	cells.	
Molecular biology	and miscellaneous information	Precursor IL-4:	153 aa (h) / 140 aa (m).	Secreted IL-4:	129 aa (h) / 120 aa (m).		N-glycosylation sites:	7 (m) / 3 (m).	Relatively high aa	homology with IL-13.		hlL-4 and mlL-4 share 50% as homology	. Gotomor ma avor																											
Biochemistry		hIL-4: 12-20 kDa.	mil-4: 12-20 kDa.	Glycosylated.	pl: 10.4 (h) / 6.5	(m).		Cene location: chr $5a23 - 31$ (h)/	11 (m).		Species specific	biological action.	Bioassavs:	hIL-4 proliferation	of PHA-activated	human PBL.	mlL-4 proliferation	01 mouse H1-2 cells Inhibition of	growth of human	Jung carcinoma cell	line CCL-185	(2 pg/ml) [153].		IL-482: alternative	splice variant of	IIL-4. BINGS 10 II AD and inhibite	IL-4 stimulated T-	cell proliferation.	Glycosylated, 13-	15 kDa core	protein. mRNA	expressed in	peripitetat pioou mononuclear cells	(lower than IL-4)	and thymocytes	(higher than IL-4).	Alternatively	spliced filking	in activated T-cells	
Producers		Naive T-cells (very low	levels), CD4 1h2-cells, MHC class I selected	CD4 CD8 TCR a 8 ⁺ T-cells	(during primary immune	response), NK1.1 ⁺ cells	(strong and fast produc-	tion) basophils, mucosal mast cells (nartly II -3-	dependent), monocytes /	macrophages, neutrophils,	B-cells, bone-marrow	stromal cells.	Enhanced in serum during	Graves' disease.																										
Receptors	•	IL-4R / CDw124.	hII -4B~ chain: 140 bDa	glycoprotein, member of	hematopoietic cytokine	receptor superfamily (K _d 1-2	x10 ⁻¹⁰ M).	Associated chain identical with II 23R weehain [165]		Soluble form of extracellular	domain inhibits biological	effects.	mII -4R chain: 3 different	forms (a 140 kDa membrane-	bound receptor, a form lacking	the cytoplasmin region and a	soluble form).		SIL-4N legulates IL-4 acuvity.	Species specificity is due to	species specific interaction	with IL-4R α chain.		Present on many hematopoietic	as well as non-hematopoietic	cells, e.g., human fibroblasts,	epimental cents, nepanc, nancreatic and bladder tumor	cell lines, as well as murine	fibroblasts, muscle cells,	neuroblasts, epithelial cells,	and a variety of stromal cell	lines.	Human colon carcinoma cells	(HT-29 & WiDr): IL-4Rs do	not associate with common γ -	chain. High affinity IL-4Rs	$(140 \& 70 \text{ kDa}; \text{K}_{d} = 200 \text{ pM}).$	Thus: IL-4R complex is	composed of different sub-	
Full Name		Interleukin-4		B-cell growth factor-		B-cell stimulatory	factor-1		1 -cell growth tactor-	4	Mast cell growth	factor-2																												-
Acronym	or synonym	IL-4		BCGF-1		BSF-1			TCGF-2		MCGF-2																													_

Down-regulates M-CSF-R on human macrophages rapidly.	Enhances:	Expression of HLA class I and class II (HLA-DK) antigens on melanoma cells expression of VCAM-1 on endothelial cells	MHC class II expression on resting B-cells, CD23 expression	on B-cells and monocytes, $TNF\alpha$ - or $IL-I\beta$ - or LPS -induced expression of $IL-6$ on human umbilical vein endothelial cells,	Enhancement of proliferation of granulocyte-macrophage	progenitors, erythrocyte progenitors and megakaryocytes in	response to G-CSF, erythropoictin, and IL-1, respectively.	IL-4R expression on splenocytes.	Antagonizes:	TGFβ-induced CD16 (FcγRIII) expression on human	inolocytes.	Miscellaneous:	Plays a major role in modulation of the cytokine cascade.	Protects mice against sepsis induced by staphylococcal	enterotoxin B (superantigen).
but also in human	B-cells, B-cell-	derived cell lines and non-lymnhoid	cell lines.												
															[Refs. 84, 94, 142, 149, 165]
													[Refs. 17, 35,	92, 116, 121,	154]

^{*a*} Abbreviations: K_u, dissociation constant; aa, amino acid; TCR, T-cell receptor; VCAM-1, vascular cell adhesion molecule 1; MCP, monocyte chemotactic protein; PGE₂, prostaglandin E₂; TGFB, transforming growth factor B; PBL, peripheral blood leukocytes.

TABLE 6 IL-5"

Acronym	Full Name	Receptors	Producers	Biochemistry	Molecular biology	Major effects	Inducers
or synonym					and miscentaricous information		
<u>S-</u> 1	Interleukin-5	IL-5R / CD125.	T-cells (T _H 2), mast cells,	hIL-5: 21.5 kDa,	134 aa (h) / 133 aa (m).	Promotes:	Antigen / mitogen.
2			eosinophils.	chromosome 5q.		B-cell differentiation and isotype switch towards IgA,	:
TRF	T-cell replacing	hlL-5Rα: 60-70 kDa, alveonrotein		Forms inter-	Human-mouse homology at nucleotide (77%) and aa	eosinophil differentiation and function.	Cross-linking of IgE FcR.
	factor	hiL-5RB (KH97): 130-140		digitating glyco-	(70%) level.	Chemotactic for:	
I JOON	D and amounth footon	kDa, shared with IL-3R α and		sylated disulfide-		Eosinophils.	
BCGF-II	B-cell growin lactor	GM-CSF-Ra.		linked homodimers	Species cross-reactivity.		
	1			of 40-45 kDa.		Activates:	
	D call differentio	mIL-5R: α and β chain.		Glycosylation not		Peritoneal B-1 (Ly-1) cells for antibody production.	
BCUFµ	b-cen untercauta- tion factor u	IL-5 Ra: epitopes on loop 3		required for			
		helix D region confer species		biological activity			
EDF	Eosinophil differentiation factor	specificity.		binant protein).			
EO-CSF	Eosinophil colony			mIL-5: 22-25 kDa, hiologically active			
	stimulating factor			as 45-50 kDa			
I_A EE	IPA enhancing factor			glycosylated dimer.			
וק-ריק)			Bioassav:			
[Refs. 19, 110,				Proliferation of			
121, 167, 181]		(D-6- 6 33 041		TF-1 cells $(m + h)$.			

^a Abbreviation: aa, amino acid.

TABLE 7. IL-6^a

Acronym	Full Name	Receptors	Producers	Biochemistry	Molecular biology and miscellaneous information	Major effects	Inducers
9-11	Interleukin-6	II-6R α / CD126 / gp80: ligand	Monocytes / macrophages,	hIL-6: 22-29 kDa,	human:	as IL-1 (with few exceptions) and as IL-11 (LIF and OSM).	Cytokines: IL-1, TNFα
) 		binding. II -6R8 / m130 / CD130: non-	activated alveolar macrophages, T-cells	chromosome /p21. Post-translational	212 aa, incl. 28 aa leader sequence and 28 aa	Exhibits pielotropy and redundancy in biological activities.	(turougn pɔɔ), it-4 and IFNγ.
IFN-β ₂	Interferon 32	ligand binding signaling	(T _H 2), germinal center	N- and O-linked	hydrophobic signaling	Induces:	
BCDF	B-cell differentia-	molecule.	(CD39'slgD') and mantle zone (CD39 ⁺ sloD ⁺) R-	glycosylations and nhosnhorvlations.	sequence. 2 notential N-linked	Entry of primitive nematopoletic progenitor cells into cell cycle, maturation of megakarvocytes, myelopolesis, acute phase	PHA and ConA.
	tion factor	Member of hematopoietic	cells, eosinophils,		glycosylation sites.	proteins (hepatocytes), ACTH formation in pituitary, B-cell	Viruses, EBV, HIV.
DCE 3	B.cell stimulatory	cytokine receptor superfamily.	basophils, fibroblasts,	mIL-6: 19-26 kDa,	-	differentiation, infection-induced malnutrition, vascular	
7-100	factor 2	LTT ED ~ chain: 001.Do / 160	osteoblasts, hepatocytes, endothelial cells, mast	chromosome 5, U- linked glvco-	mouse / rat: 211 aa. incl. 24 aa leader	endomental growth lactor (VEOT) expression, allenna in tais due to intestinal blood loss.	Canaiaa species.
			cells, neuronal cells,	sylation sites only.	sequence.	HSP90 expression in human peripheral blood mononuclear	Mycoplasma membrane
HPGF	Hybridoma / plasma-		astrocytes and glial cells,			cells.	lipoproteins
	cytoma growin ractor		cardiac myxoma cells,	C- and N-terminus	hIL-6 homology with rat	Géim n I a é ace.	(monocytes) through a
IL-HP1	Interleukin hybrido-	a cytoplasmic domain), binds	inymocytes, pancreauc	contains ontuing sites that are critical	DNA level: 58% and 42%	Henatocytes (acute phase protein production), hematopoiesis,	from LPS (involves
	ma plasmacytoma-1	association of this complex	osteosarcomas, renal / lung	for biological	at protein level.	T-cell differentiation, growth and effector function, production	post-translational events
HSF	Henatocyte	with IL-6Rβ. IL-6Rβ sub-	carcinomas, astrocytomas.	functions → mono-	Mouse and rat sequences	of platelets (thrombopoiesis), IFNy production by T-cells,	and critically depends
1011	stimulating factor	sequently forms homodimers	In general, IL-6 is	meric bivalent cytokine.	are 93% Identical. hIL-6 can stimulate mouse	differentiation and maintenance of evoloxic 1-cents. Neutrophils (i.e., oxidative burst and destructive capacity) [18].	on tyrosine phosphorylation).
MGI JA	Monocute granulo-	transduction.	produced later than IL-1		cells but mIL-6 cannot		
	cyte inducer type 2A	IL-6R complex can transduce	and TNFa in vitro as well	Two alternatively suliced forms of	stimulate human cells.	Shortens: G. phase in hematopoletic progenitor cells.	LPS (also independent of TNFa in whole
LC LC L		I signals independent of the presence of the cytoplasmic	· 0/1// /// CD	hIL-6 mRNA: 26-	Half-life of mRNA		blood).
PCI-GF	Plasmacytoma	domain of the gp80 subunit.		29 kDa and 17 kDa.	enhanced by porins from	Promotes:	
		LIT CDD. EOT an artennollinlan		The 1/kDa form misses the gp130	saimonetta typnimurtum.	Crowin and differentiation of D-cens (nito fight and fig- secreting B-cells) and T-cells. Ig secretion by activated B-cells.	Flatelet derived growth factor (PDGF).
CDF	Cytotoxic T-cell	domain. 22 aa transmembrane		signal transducing		IL-6 (separate or together with IL-5) greatly augments IgA	~
				domain but retains		production (plays a critical role in IgA B-cell development, i.e. terminal differentiation of already IgA-committed B-cells) [11,	Muramyl dipeptide.
BCDF2	B-cell growth	domain.		domain. Therefore,		59, 112].	CD40 Ligand or anti-
	differentiating factor	mII -68 cr: 460 aa 69% / 54%		it may act as natural		Growth of mesangial cells.	CD40 in SV80
	7	homology with hIL-6R at		antagonist.		1. r. t. t	(transformed fibroblast
	TRF-like Factor	DNA/protein levels.		Delonce to the LIF		Innibits: Droliferation of untransformed small intestinal IFC18 cells	cell line), NFKB-
				CNTF, OSM, CT-1,		(reversible). No inhibition of transformed SW260 or HT29	dependent.
	26 kDa protein	with hIL-6RB at aa level.		and IL-11 cytokine		colonic cell lines. Inhibitory response is lost during	Histamine.
	Monocyte derived	-		tamily (based on		carcinogenic transiorination. Titus, 11-0 is involved in nonnation or control of intestinal emithelium	Co iononhora
	human B-cell growth			aa-sequence similarity).		Vascular contraction (through increased cAMP synthesis),	
	factor	consists of the extracellular				production of IL-1 and TNF α (regulatory feedback loop),	Endothelin-1 + throm-
		kDa glycosylated / 41-44 kDa		Bioassay:		neutrophil apoptosis (dependent on neutrophil concentration).	bin (synergistically
		non-glycosylated). It enhances		T1165.85 2.1 cells		Enhances:	HIIVECs)
		IL-6 activity by transporting		(m + h) or B9 cells		Antibody response to sheep red blood cells in mice.	
		$\ $ IL-6 to the IL-6R β .		(h).			Leustroducsin-B.
						Augments: Cellular resistance to <i>Listeria</i> infection by activating T-cells to	Selegiline (monoamine
[Refs. 8, 19, 32,						produce IFNy.	oxidase B inhibitor)
89, 103, 104, 105, 110, 121, 177, 179, 190]		[Refs. 85, 89, 94, 103, 106, 1981				Miscellaneous: IL-6 is an endogenous pyrogen; it mediates pyrogenic effects of	
						LFS and IL-1p.	monometer cens.

^a Abbreviations: aa, amino acid; ACTH, adenocorticotropic hormone; EBV, Epstein-Barr virus; sol, soluble; HUVEC, human umbilical vein endothelial cells.

r roducers blochemistry	Receptors Producers Biochemistry Molecular biology	Biochemistry		Molecular biology		Major effects	Inducers
and miscellaneous information	and miscellaneou information	and miscellaneou information	and miscellaneon information	and miscellaneo information	SI		
Interleukin-7 IL-7R / CDw127. Bone marrow stromal hIL-7: 22-25 kDa, 152 aa (h) - 149 aa (m) cells, fetal liver cells, glycosylated,	Bone marrow stromal hIL-7: 22-25 kDa, cells, fetal liver cells, glycosylated,	hIL-7: 22-25 kDa, glycosylated,		i 152 aa (h) - 149 aa (m).		Promotes: Pre-B- and pre-T-cell growth and maturation (crucial factor),	Constitutive, increased by LPS.
Lymphopoietin-1 h: 75-79 kDa and 159-162 kDa intestinal epithelial cells. chromosome 8q. hIL-7 and mIL-7 share 60% aa sequence	intestinal epithelial cells. chromosome 8q.	chromosome 8q.		hIL-7 and mIL-7 she 60% aa sequence	ure	mature (activated) T-cell (CD4 and CD8) growth only together with ConA. proliferation and differentiation of CTL and LAK	
Pre-B-cell growth 107 kDa chain). Transcripts found in Specific activity: homology.	Transcripts found in Specific activity: thymus and spleen. $4 \times 10^6 \text{ U/} \mu g$.	Specific activity: 4x10 ⁶ U/μg.		homology.		cells, NK cell function (induces TNF α production and CD56 extression).	
Member of hematopoietic cytokine receptor superfamily.		Active at a half-	Active at a half-			Stimulates:	
Binding studies with hIL-7 to tration of 10 ⁻¹³ M.		maximal concen- tration of 10 ⁻¹³ M.	maximal concen- tration of 10 ⁻¹³ M.			Tumoricidal activity of monocytes and macrophages, mobilization of pluripotent stem cells and mycloid progenitors.	
		2013C.1.11m	ml1 -7- 75 bDa			proliferation of yo intra-epithelial lymphocytes, secretion of	
		glyocosylated Contraine	glycosylated.			LL-1 α /b, LL-9 and 1 NF α by monocytes (only in the absence of IL-4), NK1.1 ⁺ cells (exquisitely sensitive to IL-7).	
		residues which are invoctant for	residues which are				
List officier II 719 (75 00		biological activity.	biological activity.			ICAMP-1 (LUD-4) expression on pre-B-cells, mKNA for IL-8 and MIP-1 β in monocytes (cytokine gene expression), CD4 and	
I the mgn attrinty IL-YK (72-90 RDa) is mainly found on T- cells, whereas the low-affinity		Bioassay: Proliferation of	Bioassay: Proliferation of			CD8 expression within 1 day and CD3 expression after 2 days (IL-7 is survival-factor for triple negative CD3 ⁻ CD4 ⁻ CD8 ⁻ cells)	
IL-7R (62-70 kDa) is PHA-activated PBL predominantly expressed on B- (m + h).		PHA-activated PBL (m + h).	PHA-activated PBL (m + h).			Enhances:	
		~	<u> </u>			T-cell function, IL-7R expression on $\gamma\delta$ intra-epithelial	
hIL-7R gene maps to	gene maps to					lymphocytes, IL-1-induced proliferation of murine thymocytes.	
chromosome 5p13.	some 5p13.					Miscellaneous:	
Soluble IL-7R present (derived from the low affinity IL-7R)	· IL-7R present (derived					LL-7 differentially modulates IFN γ and IL-4 expression in activated T-cells by transcriptional and post-transcriptional	
Accorditated Abrin identical with	to the second seco					IL-7 is suggested to function through IL-2 production on mature	
Associated chain recinical with IL-2R γ -chain.						T-cells (not thymocytes). IL-7 is directly mitogenic for thymocytes and acts as a	
						lymphopoictin.	
						IL-7 stabilizes mRNA for IL-3 and GM-CSF in T-cells after ConA stimulation	
						L-7 stimulates protective immunity in mice against intra-	
						cellular Toxoplasma gondii: enhances IFNy response, reverses	
[12]af 81]						parasue-mentated down-regulatory response on IL-2 and	

killer cells. ਸ਼ 4 2 Ŋ 20 ıympr Ś 4 4 pnytonemaggiui PHA, iympnocyte; _ XIC -ytot ĵ ر 2 q. ō, lations: K_d, Abbrev

			0 Pri	<u> </u>					<u> </u>	
	Inducers	LPS. Viruses.	Cytoknice (1191, 11-1). Tissue invasion.	monocytes). Candida albicans.	IgG.					
	Major effects	Chemotactic for: Neutrophils (activates also), T-lymphocyte subsets, basophils (and activates histamine release), keratinocytes (and activates), melanoma evils.	Lingueses. Injourpoissonases, u-manostaase, p-gueuromaase. Induces: Degranulation (lysosomal enzymes) by neutrophils, respiratory hirts in neutronbills. Inductriene. R. of TR.). enlance form	neutrophils, adherence of peripheral mononuclear culturation of the multiplication of the mononuclear culturation of unstimulated endothelial cells through enhanced expression of CD11/CD18 (these cells do not bind well to TNF-stimulated endothelial cells), adherence of mononuclear cells to endothelial cells.	cells, cellular shape change, calcium mobilization, upregulation of complement receptors CR1 & CR3 in human neutrophils, infection-induced malnutrition.	Stimulates: Transendothelial chemotaxis of CD3 ⁺ T-cells.	Monodansyl cadaverine (MDC): 70% inhibition of IL-8-IL-8R endocytosis, 70% inhibition of IL-8-mediated chemotaxis, 66% inhibition of IL-8-induced neutrophil oxidative burst.			
9. IL-8 ^a	Molecular biology and miscellaneous information	69-77 aa (h) (99 aa pre- cursor).								
TABLE 9	Biochemistry	hill-8: 8-10 kDa, chromosome 4q12- 21. n1 8 0-8 5	Forms homodimer with intersubunit disulfide bonds.	4 cysteine residues. Heat-stable and resists extreme pH.	Multiple forms that differ in truncation	at N-terminus (dependent on source).	Member of the inflammatory and growth regulatory protein family / chemokine α or CXC family.	Bioassay: Proliferation of human neutrophils (hIL-8).		
	Producers	Monocytes / macrophages, activated alveolar macrophages, T-cells, fibroblasts, chondrocytes, svnovial cells,	keratinocytes, endothelial cells, epithelial cells, hepatocytes, neoplastic cells, neutrophils,	mesangial cells, smooth muscle cells, amnion cells, astrocytes, eosinophils (C5a, FMLP), respiratory	epithelial cells (in response to diverse <i>Pseudomonas</i> <i>aeruginosa</i> gene products).					
	Receptors	IL-8R / Cdw128. 58 kDa and 67 kDa. IL-8Rα (IL-8RA / CXC-CR1) and II -8R8 /II -8R8 / CXC-CR1)	CR2). CR2). IL-8R α : K ₄ = 0.8-4 nM, binds IL-8 exclusively. IL-8 R8-8 K = 0.3-2 nM also	binds GROa and NAP-2. Thus, 2 distinct (recycling) receptors with seven membrane-snanting domains	coupled to G-protein receptor family, shared with other members of the inflammatory	protein family. IL-8R is coupled to specific hetero- trimeric G-proteins, incl. G(i)	and ct(1.6). L-8R is transcriptionally enhanced by G-CSF. LL-8R is transcriptionally and post-transcriptionally down- regulated by LPS.	IL-8RA/B: 77% az identity. At 37°C the IL-8~IL-8R complex is rapidly internalized (Ca ²⁺ -dependent).	Serum-activated LPS (10 ng /ml) induces expression of functionally active IL-8R expression by 120% within 30 min. through <i>de novo</i> protein synthesis; these receptors are downregulated within 90 min. at 37°C by metalloproteases or aminopeptidases.	[Refs. 107, 201]
	Full Name	Interleukin-8 Neutrophil attractant activating protein-1	Monocyte-derived neutrophil chemotactic factor	Monocyte-derived neutrophil activating peptide	Neutrophil activating factor	otein	T-lymphocyte chemotactic factor Leukocyte adhesion inhibitor			
	Acronym or synonym	IL-8 NAP-1	MDNCF	MDNAP	NAF	GCP			[Refs. 19, 24,	32, 40, 79, 107, 113, 141, 177]

 $^{\alpha}$ Abbreviations: K_d, dissociation constant; GRO α , growth-related oncogene α ; FMLP, formyl-Met-Leu-Phe; aa, amino acid; incl., including.

				TABLE 10. IL-9 ^a). IL-9 ^a		
Acronym or synonym	Full Name	Receptors	Producers	Biochemistry	Molecular biology and miscellaneous	Major effects	Inducers
					information		
0-11	Interleukin-9	hIL-9R: 64 kDa, member of	T (T _H 2) cells (IL-2	hIL-9: 32-39 kDa,	126 aa (h).	Promotes growth of:	Antigen / mitogen.
		hematopoietic cytokine	mediated).	glycosylated,		T-cells, mast cells (when combined with IL-3), erythroid)
MEA	Mast cell growth-	receptor superfamily.		chromosome 5q31-	chromosome 5q31- High sequence homology	progenitors (synergizes with EPO), megakaryocytes.	
	enhancing activity	Associated chain identical with		35.	between mIL-9 and hIL-9		
	,	IL-2R γ-chain, K _d ~100 pM.		_	(56% at aa and 69% at	Enhances:	
TUGE III	T_call arouth factor			mIL-9: 20-30 kDa,	nucleotide levels).	Mast cell activity, T-cell survival, IgG and IgE production	
		hIL-9R: 522 aa (53%		glycosylated,		synergistically with IL-4.	
		homology with mIL-9R), 231		chromosome 13.		Differentiation of hippocampal progenitors.	
n40		aa cytoplasmic domain.					
ord -				mIL-9 - hIL-9: 55%			
-		mIL-9R: 468 aa, 2 hydropho-		homology at			
		bic regions (signal & trans-		protein level.			
		membrane domain), 233 aa					
		extracellular domain., 177 aa					
		cytoplasmic domain.		Bioassay:			
				hIL-9: proliferation			
			-	of M07e cells.			
Dof 171 1501			-	mlL-9: proliferation			
[VGI, 121, 127]		[[Refs. 94, 159]	1	of TS-1 cells.			
^a Abbreviation:	»: K _d , dissociation co	^a Abbreviations: K _d , dissociation constant; aa, amino acid; EPO, erythropoietin.	erythropoietin.				

typical proinflammatory cytokine. IL-6 possesses some antiinflammatory properties as well: it inhibits the synthesis of IL-1 and TNF- α in response to several stimuli, it suppresses the production of macrophages induced by macrophage CSF (M-CSF), it protects against lung damage during pulmonary inflammation, and it induces inhibitors of matrix metalloproteases. Even during allergic inflammation, IL-6 suppresses the formation of IgE-producing plasma cells (88, 103). Studies with IL-6-deficient mice revealed an impaired immune and acute-phase response in deficient animals (109). Furthermore, in several animal models of infection IL-6 appears to be involved in protection, e.g., in infections with Helicobacter felis (20), Listeria monocytogenes (42), Escherichia coli (43), and Candida albicans (162). The lack of protection in these models is linked to inefficient neutrophilia, impaired T_H1 development, or both.

IL-7

In 1988, a factor called lymphopoietin-1 was first described. This factor was capable of supporting the growth of pre-B cells in the absence of other cytokines or stromal cells. Later it became clear that this cytokine, now designated IL-7, displays stimulatory effects on many types of lymphocytes (Table 8) (17, 31, 146). Indeed, studies with IL-7 transgenic mice pointed out that IL-7 is important for B- and T-cell development in vivo. More specifically, IL-7 stimulates development of pro-B cells into pre-B cells, common B/T-cell progenitors into prethymic pre-T cells and intrathymic pre-T-cells into mature thymocytes, CD4⁻ CD8⁺ thymocytes into CTL or LAK cells, and NK cells into NK-LAK cells (3). IL-7 has also been reported to have T-cell growth factor activity for early T-cell progenitors; in this effect, stem cell factor synergizes with IL-7. Inhibitory regulation of IL-7-induced pre-B-cell colony formation is displayed by IL-1 α and transforming growth factor β (TGF- β) (3).

No data from clinical studies with IL-7 have been published yet, and one can expect a variety of side effects to occur, as has been shown for IL-2. However, IL-7 holds promise as a treatment for human cancers because of its effects on LAK cells and CTL. The stimulation of lymphoid regeneration in patients with lymphopenia as a result of B- and T-cell immunodeficiency disorders or chemotherapy may be another therapeutic application of IL-7 (108).

IL-8

In the late 1980s, several laboratories independently isolated a novel protein with neutrophil-activating capacity, and hence this protein was called neutrophil-activating protein-1 (NAP-1) (Table 9). Based on its chemotactic properties (141), this protein was categorized within a newly identified group of other chemotactic proteins, the chemokines (described below).

IL-8 is produced by macrophages (together with IL-1, IL-6, and TNF- α) soon after infection or tissue injury. Several investigators found that neutrophils not only respond to IL-8 but also are capable of synthesizing IL-8 and other chemokines under the appropriate conditions. Therefore, the classic view of neutrophils as being terminally differentiated cells with high phagocytic and low protein-synthesizing activities had to be adjusted. The biosynthetic activity of these cells must be considered an important source of cytokines during acute infection, since neutrophils may comprise up to 70% of the circulating pool of leukocytes. In addition, localized inflammatory responses are usually characterized by the influx of neutrophils into the affected tissue followed by the recruitment of mononuclear cells, indicating that neutrophils may play a role in mononuclear cell elicitation. Vascular endothelial cells are involved in the control of leukocyte trafficking during diapedesis,

Inducers		Antigen / mitogen.	LPS (7-8 h, max. after 24 h).	ot II3- mitoria 201	LFS-Induction of IL-10 mediated by TNFo		Suppressed by IL-4.	Respiratory syncytial	virus induces IL-10	alveolar macrophages.																		-				
Major effects		IL-10 is a pleiotropic cytokine that modulates the functions of many immunocompetent cells including T- B- and NK cells	monocytes / macrophages, and neutrophils.	Coactivates: T_cells and thymorytes (with IL_2 and/or IL_A)	B-cells: MHC class II expression, viability, Ig secretion (IgG).	IgG ₃ and IgA) and thus stimulates B-cell proliferation and	differentiation but not Ig-class switch and proliferation of LPS- stimulated B-cells.	Mast cells (growth), stem cells, T-cell growth.	IL-10 & anti-CD40: B-cells → plasma cells. Peritoneal B-1 (Tv-1) cells (for antibody moduction as II_5)	1 victorized $D^{-1}(D^{-1})$ victorized victorial production, as 12^{-2}).	Inhibits (through inhibition of IL-1 β and/or IL-12): [44]	IFNY production by T _H I cells, antigen presenting cell function.	IL-1, IL-0 and 1 NF α production of macrophages in response to	Monocytes / macronhages and NK cells (MHC II II -1 II -6	TNFα, nitric oxide, reactive oxygen but not nitrogen	intermediates, parasite killing).	Macrophage-dependent development of T _H 1 cells and cytokine	Production by 1 _H I cells. CDI expression	Prevents antigen-specific T-cell proliferation.	TNF α - or IL-1 β - or LPS-induced expression of IL-6 and IL-8	on human umbilical vein endothelial cells.	Induces:	IL-11R in human myeloma cell lines (HMCL produce IL-10	and express 1⊥-10K → 1⊥-11K). IL-1ra production by human neutrophils synergistically with	$TNF\alpha$ and $IL-4$.	Stimulates:	Murine antibody responses (except IgE) correlating with a $T_{H}I$ towards T_{-2} shift	Differentiation and proliferation of BFU-E and CFU-E colony	growth synergistically with erythropoietin.	Enhances:	TNF-R2 mRNA and soluble TNF-R2 release by activated	uneveryments are expression of human monocytes Augments growth and differentiation of human monocytes
Molecular biology	and miscellaneous information	178 aa including 18 aa leader sequence (h).	•																													
Biochemistry Molec		hIL-10: 18 kDa, forms homodimers,	non-glycosylated, chromosome 1.	mIL-10: 17 kDa	non-glycosylated	form and two	glycosylated forms (19 and 21 kDa).	-	Homologous to Epstein Barr virus	gene (BCRF1).	7307 homology	between mIL-10	and hIL-10.		hIL-10 acts on	mouse and human	species specific.	-	i	Bioassay: MC/9 cells (m + h).	·(m · m) mm · mm											
Producers		T-cells: Human T _H 0, T _H 1, T _H 2.	Murine T _H 2 (delayed production).	CD8 ⁺ T-cells.	B-cells:	Ly-1 B-1-cells (CD5 ⁺ , the	Germinal center and	mantle zone B-cells.	Activated monocytes	(monocytes that fail to	secrete IL-10 may express II _10 on their surface	[66]), Kupffer cells	(expression in response to	LPS), keratinocytes, mast	cells, thymocytes, various	tumor cell lines, certain	colon carcinomas.		Enhanced in serum during	Uraves' disease.	IL-10 mRNA after LPS	(h): CD14 ⁺⁺ monocytes	monocytes no mRNA after	4 h (high TNF) but low	expression atter 10 nrs.	IL-10 production is up- regulated by cAMP and	PGE2.	Phosphodiesterase (PDE)	IV is positively involved in	the production of IL-10.	IL-10 release elicited by	LPS is not mediated by PAF or IL-6.
Receptors		IL-10R: 90-110 kDa, related to IFN receptors.	Characteristics of the receptor	remain to be defined.																	_											
Full Name		Interleukin-10	Cytokine synthesis				<u> </u>																									
Acronym,	or synonym	IL-10	CSIF																				-									

TABLE 11. IL-10^a

parasitic infections (T_H1 [cellular] / T_H2 [humoral]). IL-10 is not needed for development of $T_{\rm H2}$ cells but limits the development develop anemia but no differences can be observed in T- and Bendotoxin tolerance [13]. Endogenous IL-10 protects mice from IL-10 inhibits osteoclastogenesis by inhibiting differentiation of No adverse effects with up to 50 $\mu g kg.$ Peripheral blood monunclear cells from IL-10-treated volunteers: lower levels of mRNA expression in activated human monocytes. Thus, IL-10 IL-10 up-regulates monocyte phagocytosis in the presence of IL-4 and IFNy; it increases FcyRI expression (not RII and RIII) dampening of Ag-driven cellular immune responses which may cultured in M-CSF, i.e., higher expression of FcyRI, II, III and IL-10 is not essential for the generation of $CD4^+$ and $CD8^+$ T-Production of IL-10 by monocytes is down-regulated by IL-4, IL-1, IL-6, and TNF α production for 48 h after injection of IL-10. No changes in serum-1g levels up to 96 h after injection. up-regulated by IFNY or by IL-4 but not if up-regulated by GM-CSF + IL-4. IL-10 does not down-regulate MHC class II IL-10 depresses splenocyte functions in murine endotoxemia: enhanced Fc γ -mediated phagocytosis, increased O₂ and H₂O₂ IL-10 deficient mice (IL-10T) develop chronic enterocolitis / IL-10 down-regulates MHC class II molecules on monocytes cell subsets in thymus, spleen, bone marrow and peritoneum. augment susceptibility to repeated or continuous invasion of osteoclast progenitors into pre-osteoclast-like cells (rat bone IL-13 and IFN γ . Furthermore, IL-10 down-regulates IL-10 IL-10 has no decisive function for the induction of antibody Furthermore, no differences in antibody production or class enterotoxin B (SEB)-induced shock but it is not involved in proliferation, IL-2, IL-6 and IFN γ release. This implicates a inflammatory bowel disease. They are growth retarded and Surface IL-10 regulates macrophage's bactericidal activity Controls the type of immune response that develops upon production and development of B-cell memory during the IL-10 protects mice from lethal LPS- and staphylococcal has important autoregulatory negative feedback activity. Bcl-2 expression and survival in primary human CD34⁺ and FcyR-mediated cytotoxic activity of monocytes. of T_H1 cells during a parasite-induced T_H2 response. beteween IL-10T and normal mice are found. (zymosan), and IL-6 (LPS) production. hematopoietic progenitor cells [197]. cell subsets nor for B- or B-1-cells. interaction of T_H2 and B-cells. death during septic peritonitis. expression on B-cells. Phase I studies: [93] Miscellaneous: In vivo effects: microorganisms. (negatively). marrow). [Ref. 138] [Refs. 13, 32, 44, 60, 66, 121, 139, 168, 177

" Abbreviations: aa, amino acid; T_o, cytotoxic T cell; max, maximum; PGE₂, prostaglandin E₂; PAF, platelet-activating factor; CFU-E, erythroid colony-forming units; BFU-E, erythroid burst-forming units; Ag, antigen; PBMNC, peripheral blood mononuclear cells.

Account	Eull Name	Docontour	Ducdwoone	Diachamicture	Malanlar biolan.		
or synonym		receptors	TINUNCIS	DIOCHERING I	and miscellaneous	IMAJUF ELIECIS	Inducers
					information		
IL-11	Interleukin-11	IL-11R.	Fibroblasts (stromal cells),	hIL-11: 24 kDa	h: 199 aa including 21 aa	as IL-6 (LIF and OSM).	IL-1.
			trophoblasts, bone marrow	single polypeptide,	leader.	Activates:	
AGIF	Adinopenesis	α-chain (h): 151 kDa, 422 aa,	stromal cells, fetal lung.	chromosome		Megakaryocyte colony formation (synergistically with IL-3),	Leustroducsin-B.
	inhibitory factor	83% aa homology between		19q13.3-q13.4.	hIL-11 is biologically	platelet and neutrophil precursors.	
		human and murine chain, K _d =			active in mice and rats.	_	
	Deno momono	350 pM, chromosome 9p13		Specific activity		Stimulates:	
		(h). 4 (m).		hrecIL-11: 2.1x10 ⁶		Mvelopoiesis, ervthropoiesis, lymphopoiesis, Ig production hy	
				U/me.		B-cells, acute phase protein synthesis, production of II -6	
	growth factor	B-chain: m130 / CD130)		mRNA in Tri-cells and monocytes	
	_	Choned with IT & I IF CNTEN		Belongs to the II -6			
	Multifunctional			THE CHITE DOM			
	hematopoietic			LIF, CIVIF, USM		Snortens:	
	cutokine	An unidentified third chain is		and CT-1 cytokine		G ₀ in early progenitor cells.	
	Amanda	involved in IL-11 signal		family (based on			
		transduction.		aa-sequence		Inhibits:	
				similarity).		Preadipocyte differentiation. proliferation of untransformed	
	_			•		small intestinal IFC18 cells (reversible) No inhibition of	
						transformed CW760 or UT70 colonic call lines Tabibiton	
	_			ç			
				Bloassay:		response is lost during carcinogenic transformation. Thus,	
	_			T11 proliferation		IL-11 is involved in normal growth control of intestinal	
				assay (h). T11 is a		epithelium.	
				subline of the IL-6			
				dependent murine		Enhances:	
				plasmacytoma cell		Proliferation of IL-6-dependent plasmacytoma cells,	
				line T1165.85.1.		proliferation and differentiation of hematopoietic progenitor	
•						cells synergistically with IL-3 and IL-4.	
						In vivo effects.	
						Limits chemo/radiation therapy-induced intestinal mucosal	
						cytotoxicity.	
[27] 100 172 E		[Ref. 45]				Enhances gastrointestinal absorption of iron in rats.	
[Kets. 100, 147]						Does not induce IL-6.	

TABLE 12. IL-11^a

 a Abbreviations: aa, amino acid; $\mathrm{K}_{\mathrm{d}},$ dissociation constant; CNTF, ciliary neurotrophic factor.

and IGIF ^a
IL-12
13.
TABLE

Mathematical Biologyces Monocycle (1): 5, 20, 30, 30, 40, 50, 30, 40, 50, 33, 40, 50, 33, 40, 50, 33, 40, 50, 33, 40, 50, 33, 40, 50, 33, 40, 50, 50, 30, 30, 40, 50, 33, 40, 50, 50, 50, 30, 30, 40, 50, 50, 50, 50, 30, 30, 40, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5	Acronym or synonym	Full Name	Receptors	Producers	Biochemistry	Molecular biology and miscellaneous information	Major effects	Inducers
Total statutions Arross frameworks Arross frameworks Devices frameworks Devices fra	IL-12 NKSF (NKCF)	Interleukin-12 NK cell stimulatory factor	hIL-12R: 110 kDa, homologous to β-chain of IL-6R (gp130) but no binding of IL-12 to gp130 or of IL-6 to	Monocytes / macrophages, NK cells, phagocytic cells, B-cells, keratinocytes, Langerhans cells (dendritic	hIL-12 / mIL-12: disulfide-linked heterodimer of p35 (35 kDa) and p40	h p35: 219 aa. h p40: 328 aa. homologies (aa):	Activates: CD4 T-cells: T _{it} 1 induction and maturation, IFN ⁴ production (synergizes with IL-2) → cell-mediated immunity [99]. NK cell induction, growth and IFN ⁴ production (enhances lysis	LPS. Antigens (bacterial and parasitic).
Cytonic services of many polynological for the data is a constrained source of many polynological for the data is a constrained source of many polynological for the data is a constrained source of many polynological for the data is a constrained source of many polynological for the data is a constrained source of many polynological for the data is a constrained source of many polynological for the data is a constrained source of many polynological for the data is a constrained source of many polynological for the data is a constrained source of many polynological for the data is a constrained source of many polynological for the data is a constrained source of many polynological for the data is a constrained source of many polynological for the data is a constrained polynological for the data is a constrained by a constrained polynological for the data is a constrained polynological for th	TSF	T-cell stimulating factor	LL-12R. Relative low affinity of IL-12 for IL-12R suggests	APCs). Production of IL-12 by monocytes in response to	(40 kDa) glyco- sylated subunits, homologous to IL-6 / IL-6R.	m - h p35: 70%. m - h p40: 60%. mIL-12 active on murine	by NK and LAK cells). Enhances: Cytolytic activity of CTL, NK cells, LAK cells and	Bacterial double stranded DNA.
And Bill Constrained and Section Structures are specification of the L-13R combation of the Section are specification of the L-13R combation of the Section are specification of the L-13R comparison of the Section are specification of the L-13R comparison of the Section are specification of the L-13R comparison of the L-13R comparison of the Section and the Section of the L-13R comparison of the L-14R comparedoperison of the L-13R comparison of the L-13R compa	CLMF	Cytotoxic T-lympho- cyte maturation		LPS depends on the presence of leukocytes.	Bioactivity linked to p40 (p70 dimer).	and human lymphocytes, whereas hIL-12 is active only on human cells.	macrophages, FasL-mediated cytotoxicity of murine Th ₁ cells. IL-10 gene expression and IL-2R expression [99].	Microbial heat shock proteins.
coll line factor consolution for the factor of participant of partiparticipant participant participant partipart participant partic		Lactor EBV-transformed B-		IL-12 production is down- regulated by cAMP and DGF.	Level of bioactive p70 (LPS - mono's)	Species specificity linked	Inhibition: IL-4 induced IgE synthesis from B-cells.	Crude bacterial extracts.
or construction to the second relation of cyclic or By restriation of cyclic or By restriation of cyclic or By restriation of the second of the L1-12R, Expressed on the L1-12R, Expressed of the Expressed of the Expressed of the Expressed of the L1-12R, Expressed of the Express of th		cell line factor	upreguated by anti-cup monoclonal antibody (activation).	1.012.	is uccenting of p35 expression.	.ccd on	Induces: IFNv moduction bv NK cells and T-cells (ontimal with II - 18	Bacterial superanugens. Yeast extracts.
The LL-L2R by Particular strate and a contract of the LL-L2R by Particular of the L2R by Part by Particular by Particul		cyte maturation factor	IL-12R _{β2} is the binding and		p40 found on monocytes / macro-		TNF α_i or B7 costimulation), differentiation of T _H 1 cells from naive Th cells, IL-2R α expression on T _H 1 cells.	IFN _Y .
Table Constructions Constructions <td></td> <td></td> <td>of the IL-12R. Expressed on Th₁ cells (not T₁₂2). Induced by</td> <td></td> <td>(highly regulated) while p35 is more</td> <td></td> <td>Acts synergistically with other growth factors to enhance proliferation of hematopoietic stem cells. Regulation of cytokine synthesis and proliferation of T- and NK</td> <td></td>			of the IL-12R. Expressed on Th ₁ cells (not T ₁₂ 2). Induced by		(highly regulated) while p35 is more		Acts synergistically with other growth factors to enhance proliferation of hematopoietic stem cells. Regulation of cytokine synthesis and proliferation of T- and NK	
The Name of the second method of the second of th			[1L-12 and type I interferons [161]. Continuous stimulation with		uoiquitousiy and constitutively exmessed		cells, differentiation of CD8 ⁺ cells.	
chain: thus, the default is loss chromosome 11A5- of the IL-12R(2) chain and thus Bioassay: T_2 development [67]. T_2 development [67]. mp55: mp55: chromosome 6C. File IL-12R(2) chain and thus Bioassay: mp55: chromosome 6C. Ref. 26] Bioassay: profileration of profileration profileration profileration profilerati			continuous summaries with antigen is required to maintain expression of the $IL-12R\beta 2$		m p40:		<i>In vivo</i> effects: IL-12 is a costimulatory cytokine for leukemic CD3 ⁺ large granular lymphocytes activated by the TCR.	10, IL-13 and 10rb.
Instruction of the accomparent (p). Bioassay: Stimulation of Profinentation of Provention of Prove			of the IL-12Rβ2 chain and thus		chromosome 11A5- B2. m n35·		IL-12 functions as adjuvant for heat-killed <i>L. monocytogenes</i> and the generation of an antigen-specific T-cell response and	
Ref. 26] Bioassay: Simulation of proliferation of PHA-activated human T-lympho- blasts (h). IFNy Inducing Factor Ref. 26] Immunoassay: Fish Signaling possibly involves Kupffer cells, activated macrophages. hIGIF: 18-19 kDa. Interleukin-1y Determinis 5 at leader sequence (h). Interleukin 18 Precursor 192 an including to IL-1R. 10. IL-1R. Interleukin 18 Protein structure theretekin 18 10. IL-1R. Interleukin 18 Precursor 192 an including to IL-1R. 11. IL-1R. Interleukin 18 Precursor 192 an including to IL-1R. 10. IL-1G. Interleukin 18 Protein structure theretekin 18 10. IL-1G.					chromosome 6C.		protective immunity against <i>L. monocyogenes</i> [15]. LL-12 has proven to be of therapeutic value in a variety of	
Ref. 26] Stimulation of politeration of pulleation of human T-lympho-blast (h). FRA-activated PFA-activated IFNy Inducing [Ref. 26] IFNy Inducing Signaling possibly involves Kupffer cells, activated hIGIF: 18-19 kDa. Factor IL-IR subunits. Interleukin-1y macrophages. Interleukin-1y Protein structure Interleukin 18 to II-1a. Interleukin 18 Precursor 192 aa including Interleukin 18 Protein structure Interleukin 18 ID-1a. Interleukin 18 Precursor 192 aa including Interleukin 18 ID-14.					Bioassay:		including and other in some forms of immunopathology including endotoxin-induced shock and antimume diseases	
Immunoasay: PrA-sectivated Immunoasay: blasts (h). If Ref. 26] Immunoasay: IFNy Inducing Signaling possibly involves Kupffer cells, activated hIGIF: 18-19 kDa. Factor IL-1R subunits. Interleukin 18 Protein structure Interleukin 18 IL-1R. Interleukin 18 Protein structure Interleukin 18 IL-1R.					Stimulation of proliferation of		associated with aberrant T _{it} 1 activity. U-12 is associated with the development of diabetes mellitus in	
IPAGE 101 Immunoassay: p75 ELISA. IFNy Inducing [Ref. 26] [Ref. 26] IFNy Inducing Signaling possibly involves Kupffer cells, activated IL-IR subunits. Increteukin-1y Interleukin-1y Protein structure Interleukin-18 IL-IR subunits. Interleukin 18 Protein structure Interleukin 18 IL-Ira. Interleukin 18 Precursor potein Interleukin 18 IL-Ira. Interleukin 18 IL-Ira. Interleukin 18 IL-Ira.					PHA-activated human T-lympho- blocte (b)		non-obese diabetes mice. <i>In viv</i> o antiviral activity mediated by IFNy.	
Factor P75 ELISA. P75 ELISA. [Ref. 26] [Ref. 26] Precursor 192 as including Factor Signaling possibly involves Kupffer cells, activated hIGIF: 18-19 kDa. Factor IL-IR subunits. macrophages. 35 aal leader sequence (h). Interleukin-1Y IL-IR subunits. macrophages. 35 aal leader sequence (h). Interleukin-1Y IL-IR subunits. incrophages. 12.1 fa.nd Interleukin 18 IL-Ira. Precursor potein cleaved by ICE Imact 1341. Ita-f tan. Precursor potein					Diasts (n). Immunoassav:		IL-12 protects normal and SCID mice against <i>Cryptosporidium</i> parvum infection (IFNy-dependent protective effect) [15].	
[Ref. 26] [Ref. 26] IFNy Inducing [Ref. 26] Fractor Signaling possibly involves Kupffer cells, activated InIGIF: 18-19 kDa. Fractor IL-IR suburits. macrophages. 35 aa leader sequence (h). Interleukin-1y IL-IR suburits. 35 aa leader sequence (h). Interleukin-1y Interleukin 18 IL-In. Interleukin 18 IL-In. Precursor protein Revef 1501 IL-In. Precursor protein	[Refs. 15, 26, 44, 49, 87, 121,				p75 ELISA.		IL-12 strongly amplifies the influence of MHC class I antigens on mixed lymphocyte reaction-induced IFNy production. IL-12 expression is enhanced in gastric mucosa of <i>Helicobacter</i>	
Factor IL-IR suburits. macrophages. 35 at lader sequence (h). synergistic but mechanistically independent (no homology). Interleukin-ly Interleukin-ly Augments NK-activity in spleen cells and induces IFNy production by T-cells (more potentity in through an IL-12 and through and induces IL-2 and linterleukin 18 35 at lader sequence (h). Augments NK-activity in spleen cells and induces IFNy production and thrus enhances IL-2 and GM-CSF production and thrus enhances IL-2 and GM-CSF production and thrus enhances IL-2 and CM-CSF production and thrus enhances IL-2 and CM-CSF production and inhibits the production of IL-10 by concanavalin A-stimulated peripheral licenter (II-34). Inset 15.1 Inset 15.0 Inset 16.0 Interleukin 18 IL-16 and IL-16 and IL-2 dependent pathway. Interleukin 18 Interleukin 18 IL-16.1 IL-16.1 IL-16.1 IL-16.1 Interleukin 18 IL-16.1 IL-16.1 IL-16.1 <td>125, 176, 177, 186, 187, 205]</td> <td></td> <td>[Ref. 26] Signaling nossibly involves</td> <td>Kunffer cells. activated</td> <td>hIGIF: 18-19 kDa</td> <td>Precursor 192 aa includino</td> <td><i>pylori</i> infected patients. Activity hroadly similar to II -1 2 IGIF and II -1 2 are</td> <td></td>	125, 176, 177, 186, 187, 205]		[Ref. 26] Signaling nossibly involves	Kunffer cells. activated	hIGIF: 18-19 kDa	Precursor 192 aa includino	<i>pylori</i> infected patients. Activity hroadly similar to II -1 2 IGIF and II -1 2 are	
Interleukin-1y Augments NK-activity in special solutions Interleukin-1y Augments NK-activity in special solutions Interleukin-1y Sportauction by T-cells (more potently than IL-12 and through sportauction by T-cells (more potently than IL-12 and through IL-1ra. Sportauction and thus enhances IL-2 and GM-CSF production and thus enhances T-cell proliferation through an IL-2 dependent pathway. Precursor protein GM-CSF production and thus enhances T-cell proliferation through an IL-2 dependent pathway. Precursor protein GM-CSF production and thus enhances T-cell proliferation through an IL-2 dependent pathway. II-1ra. II-1ra. II-1ra. II-1ra. II-1ra. III-1ra. II-2 and through an IL-2 dependent pathway. II-2 and through an IL-2 dependent pathway. II-3 and through an IL-2 dependent pathway. II-4 and II-10 by concanavalin A-stimulated peripheral blood mononuclear cells. II-4 and II-3 and II-3 and through an IL-2 dependent pathway. II-4 and II-3 and through an IL-2 dependent pathway. II-4 and II-3 and	IGIF	Factor	IL-1R subunits.	macrophages.		35 aa leader sequence (h).	synergistic but mechanistically independent (no homology).	
Interleukin 18 IL-Ira. Precursor protein cleaved by ICE [134].	IL-1	Interleukin-17			shows similarities		Augments NK-activity in spleen cells and induces IFNy production by T-cells (more potentity than IL-12 and through a concords achyword: Euchermone 17211: 544-552 ft 2 and	
Precursor protein cleaved by ICE [134].	IL-18	Interleukin 18			IL-Ira.		separate pairway), runtermore, rotr mutees 11-2 and GM-CSF production and thus enhances T-cell proliferation	
- [10]					Precursor protein cleaved by ICE		utrough an trz dependent pauway. IGIF enhances Th, cytokine production and inhibits the production of L1-10 by concanavalin A-stimulated peripheral blood momentors colle.	
	[Ref. 133, 150]		[Ref. 150]				oroou monouncteat cons. Enhances FasL-mediated cytotoxicity of murine T _n I cells. IGIF may be involved in development of T _n I cells and in merbanisms of fisture initry in inflammatory reactions	

Vol. 10, 1997

Acronym	Full Name	Recentors	Producers	Biochemistry	Molecular hiology	Maior effects	Inducina
or synonym					and miscellaneous		condition
					information		
11_13	Interleukin-13	hIL-13R consists of 3 subunits: Human	Human activated T-cells:	hIL-13: 10 kDa,	132 aa (h).	Promotes:	Activation of T _H 2 cells.
		130 kDa, 75 kDa and 65 kDa.	CD4 ⁺ , CD8 ⁺ , CD45RA ⁺ ,	non-glycosylated,		B-cell growth and differentiation (IgE, IgG ₄ production), IL-1ra	
D 600			CD45RO ⁺ , activated T _H 2-	chromosome 5.	Relatively high aa	production by monocytes, IL-1RII expression and release by	
000-J		hIL-4R and hIL-13R are	cells (mouse and human),		homology with IL-4.	human neutrophils, production of 15-HETE (IFNy mediated),	
	_	similar but distinct and the	mast cells.	mIL-13: 10-12 kDa,		MHC class II expression on monocytes (down-regulated by	
		IL-13R is also a functional		chromosome 11.	etween	IL-10), CD23 expression on B-cells (CD23 expression and	
		receptor for IL-4.	Optimal production by T-		hIL-13 and mIL-13.	sCD23 secretion by B chronic lymphocytic leukemia cells),	
			cells with anti-CD28 and			CD11b, CD11c, CD18, CD29, CD49e, CD13, and CD23	
		The IL-13R is structurally	PMA. Additional ligation	Bioassay: $(h + m)$	between	expression on monocytes, differentiation of dendritic cells from	
		different on various cell types.	of CD3 inhibits IL-13	proliferation of	hIL-13 and hIL-4.	circulating precursors in concert with GM-CSF.	
			production.	human TF-1 cells			
		Murine NR4 encodes IL-13Ra		(human erythro-		Inhibits:	
		which binds IL-13 with low	Cyclosporine enhances IL-	leukemic cell line).		IL-1α, IL-1β, IL-6, IL-8, IL-10, IL-12 p35+p40, MIP-1α,	
		affinity but does not bind IL-2,	13 production by CD4 ⁺			GM-CSF, G-CSF, IFNa, and TNFa production by monocytes.	
		-4, -7, -9, and -15. This is the	and CD8 ⁺ T-cells.	hIL-13 and mIL-13		CD64 (FeyRI), CD32 (FeyRII), CD16 (FeyRIII), and CD14	
		primary binding subunit for		are equally active		expression on monocytes.	
		IL-13 and may be a component		on human cells, but		IFNv production by IL-2 activated NK cells. IL-2-induced	
		of the IL-4R. Binding induces		mIL-13 is the		proliferation of chronic lymphocytic leukemia B-cells, bone	
		the high-affinity IL-13R.		preferred agent for		resorption through inhibition of PGE ₂ synthesis in	
				mouse cells.	_	osteoclasts, cyclooxygenase-2 (COX2)-dependent PGE2	
[Refs. 47, 102,						synthesis in osteoclasts.	
121, 137, 192]		[Bef 47 140]				Regulates phenotype and function of human monocytes [50,	
		[TAT: 11, 113]				192].	

^a Abbreviations: aa, amino acid; PGE₂, prostaglandin E₂; PMA, phorbol myristate acetate.

12
Q
\odot
щ
1
5
7
5
Ξ
nc
an
+
4
5
Ц
ý.
Τ
Ш
5
ABLE
7
Η

			TA	TABLE 15. IL-14 and LMW-BCGF ^{a}	nd LMW-BCGF ^a		
Acronym,	Full Name	Receptors	Producers	Biochemistry	Biochemistry Molecular biology	Major effects	Inducing
or synonym					and miscellaneous information		condition
IL-14	Interleukin-14	Not defined.	T-cells.	60 kDa (h).	468 aa (h).	Induces: Activation Differentiation and proliferation of activated B-cells (not resting (mitogen). B-cells).	Activation of T-cells (mitogen).
HMW-BCUF	Hign molecular weight B-cell growth factor				. –	Inhibits	
[Refs. 1, 2, 121]			-			Ig secretion of mitogen-stimulated B-cells.	
LMW- BCGF	Low molecular weight B-cell growth		T-cells.	12-15 kDa (h + m). 124 aa (h).	124 aa (h).	Stimulates: Growth of activated B-cells.	Activation of T-cells (mitogen).
BSF-I	B-cell stimulatory			.0.0 - 0.0 - 1d			
[Ref. 172]	BCGF of 12 kDa						

^a Abbreviation: aa, amino acid.

	Inducing condition	Bacterial infection.
	Major effects	 Activates: T-cells and NK cells. Ritmulates: Proliferation and activity of CD3⁺ T-cells and CD56⁺ NK cells, IFN'p production by NK [29] cells synergistically with hrecLI-12, GM-CSF and TNFα production by NK cells, hrecLI-12, GM-CSF and TNFα production by NK cells, activated by anti-IgM, locomotion and chemotaxis of normal T-cells. Induces: Development of LAK cells. Promotes: Development of T-cells induced by Salmonella infection [148]. Development cell-mediated cyto- toxicity, recruitment and activation of T-cells into synovial membrane [128]. In vivo: Enhanced IL-15 protein and mRNA in granulomata of patients with granulomatous leprosy in contrast to lepromatous leprosy. Ma vivo: Ienvae: Therefore, IL-15 may be involved in immuno- modulation of T-cell responses in intracellular infection [97].
. IL-15 ^a	Molecular biology and miscellaneous information	hIL-15 and mIL-15. No significant sequence homology with IL-2.
TABLE 16. IL-15 ^a	Biochemistry	the formation of the fo
	Producers	produced by IL-2 produced by IL-2 cells, fibroblasts, endothelial cells, epithelial cells, muscle cells (myocytes), placental tissue, kidney cells (mRNA), bone marrow stromal cells.
	Receptors	dispensable for mitogenic signaling). IL-2Rβ, (see: IL-2R8). (see: IL-2-2R8). IL-2 – IL-2-2Rβγ forms a much more stable receptor ligand complex than IL-15 ~ IL-2Rβγ. (Refs. 6, 48, 63, 72, 77]
	Full Name	Interleukin - T
	Acronym or synonym	IL-T IL-T (Refs. 6, 29, 58, 72, 77, 121, 128, 148]

" Abbreviations: aa, amino acid; TGF, transforming growth factor; NK cells, natural killer cells, LAK cells, lymphokine-activated killer cells.

and it is therefore not surprising that endothelial cells can also produce IL-8.

It is obvious that IL-8 plays an important role during infection (40, 79, 194). This can be demonstrated by the correlation between IL-8 and survival in septic patients, disease severity in patients with meningococcal infection, and endotoxin-induced pleurisy. In contrast, patients with *Pseudomonas pseudomallei* sepsis have a poor prognosis when IL-8 levels rise above 100 pg/ml, and in an animal model of parasitic infection (*Plasmodium berghei*), IL-8 appears to have a deleterious effect (194).

IL-9

Whereas murine IL-9 was isolated and identified in 1988 from culture supernatants of T-cell clones that contained an unusual autocrine growth factor, human IL-9 was obtained by expression cloning of factors produced by a human T-cell lymphotropic virus type 1-transformed T-cell line. This factor was named P40/TGFIII (Table 10) and could support the longterm growth of certain T-cell clones in the absence of IL-2, IL-4, or antigen. Two years later, a factor obtained from pokeweed mitogen-stimulated spleen cells was found to have a mast cell growth-enhancing activity and appeared to be identical to IL-9. Apart from its effect on T cells and mast cells, IL-9 has been found to enhance the production of IgG and IgE in synergism with IL-4 (159). Of special interest is its role in the differentiation of hippocampal progenitor cells, indicating links between the central nervous system and the immune system (130).

The role of IL-9 as an autocrine growth factor for T cells implies that it has therapeutic value in T-cell lymphomas. Indeed, blockade of IL-9 expression and IL-9-Rs has led to a subsequent growth arrest of Reed-Sternberg cells in Hodgkin's lymphoma, although IL-9 is probably not involved in the pathogenesis of most peripheral B- and T-cell lymphomas (131).

IL-10

In 1989, Fiorenzo et al. (65) found that a factor produced by activated T cells was able to inhibit cytokine production by T_H1 T-cell clones. After cloning, it became apparent that this factor exerted a large number of effects on different cell types (Table 11) (139), and it was subsequently named IL-10. Some years earlier it had become clear that the reason why strong immune responses are often biased towards either cellular or humoral reactivity is the functional dichotomy of T-helper cells (138, 139). The development of an immune response often results in a shift towards either a T_H1 or T_H2 type response. T_H1 responses are predominantly cellular, whereas T_H2 responses are characterized by strong humoral reactivity. Interestingly, these T-helper cell subsets can be distinguished by their cytokine production profile. IL-10 is typically produced by T_H2 cells and may therefore steer a developing immune response towards the humoral side. In line with this is the potent stimulatory effect of IL-10 on B cells, especially with respect to antibody production.

Effects of IL-10 on other cell types include the inhibition of proinflammatory cytokine production by activated monocytes/ macrophages (32, 60), and IL-10 may therefore be involved in the negative regulation or control of the inflammatory response that is otherwise characterized by several autoamplifying loops. Enhanced proliferation of mast cells and inhibition of IFN- γ production by NK cells are two other major effects of IL-10 (44).

Because of the suppressive effects of IL-10, there are several promising clinical applications (138, 139). Its suppressive effect

Interletion Interletion Interletion Interletion Interletion CD4 on T-cells (CD4 'T-cells) CD8' T-cells in lysate of and secreted by histamics CD8' T-cells in lysate of the one one of the one of the one one of the one of the	Acronym	Full Name	Recentors	Producers	TABLE 17. IL-16 ^a Biochemistry Moleci	. IL-16 ^a Molecular hiology	Mainr effects	Inducers
CD4 on T-cells (CD4 'T-cells, in lysate of interminated CD8' calls and secreted by histamicated CD8' calls are intravelled and secret by histamicated CD8' calls and secret by histamicated CD8' calls are intravelled and stored in the call of call-cycle change (no call vision), migration (13.1). of CD8' CD8' Calls are intravelled and calls are intravelled are intravel of colls and intravelled are intravelled are intravelled are intravel intravelled are intraveled are intravelled are intravelled are int			receptors	1 1 000001 5	proclientsury	and miscellaneous information	Major enecus	Inducers
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Interleukin-16	CD4 on T-cells (CD4 ⁺ T-cells).	CD8 ⁺ T-cells: in lysate of unstimulated CD8 ⁺ cells	hIL-16: 14-17 kDa, chromosome	130 aa.	Suppresses: CD4 ⁺ T-cells: replication of HIV and SIV (transcription), mixed	Mitogen / antigen.
Of Indextor of Indextor of Indexton Indextor of Indexton I		Immunodeficiency virus suppressing lymphokine		and secreted by histamine- stimulated $CD8^{+}$ cells \rightarrow constitutively synthesized	15q26.1 (80 kDa precursor protein).	Human and green monkey (Ceropithecus aethiops) IL-16 differs in 7 non-	lymphocyte reaction, antigen-induced proliferation. Induces:	Histamine (asthma). Serotonin (CD8 ⁺ T-
Bioactive protein. pl 9.1. Bioactive protein release pl 9.1. after 18.24 f following hrecLl-16: activation. bioactivity 10.3 - GM-CSF-treated cosino- 10 ¹² M(peak 10.3 - phils. Tracheal epithelial cells and T-cell clones from 10 ¹⁰ M(). mRNA determined in hnmulation. mRefs 20.151 plean, blood leukocytes		Lymphocyte chemoattractant / lymphotactic factor		and stored in CD8 cells. CD4 ⁺ T-cells: constitutive mRNA and 80 kDa	biological activity linked to 56 kDa homotetrameric form.	clustered aa changes.	CD4 1-cells: adresoin, CU22 (IL-2Rd) and HLA-DR expression, cytokine synthesis, G ₀ to G ₁ cell-cycle change (no cell division), migration [153]. CD4-dependent intracytoplasmic signaling in lymphocytes.	cells).
GM-CSF-treated eosino- phils. Tracheal epithelial cells and T-cell clones from asthma patients within 4 h after histamine stimulation. mRNA determined in human brain, thymus, spleen, blood leukocytes					pl 9.1. hrecIL-16:		Kuses in intracellular Ca ^{**} and inositol (1,4,5)-triphosphate. Miscellaneous: Chemoattractant for CD4 ⁺ T-cells, monocytes and eosinophils.	
				SF-treated eosino-	bioactivity 10 ⁻⁹ - 10 ⁻¹² M (peak 10 ⁻⁹ - 10 ⁻¹⁰ M).			
				Tracheal epithelial cells and T-cell clones from asthma patients within 4 h after histamine stimulation.				
			[[Refs. 30, 115]	mRNA determined in human brain, thymus, spleen, blood leukocytes and pancreas.				

	Inducers	gen.	CD3.	anti-CD28. Ionomycin								
_		/. Mitogen.	anti-CD3.	anti-(Ionor								
A.K	Major enects	Acts on many cells and tissues in a pro-inflammatory way.	Activates: T-cells.	Induces: III-6 (fibrohlasts) and II8 production.	Enhances: ICAM-1 expression on human fibroblasts.	Stimulates: Co-stimulates T-cell proliferation (with PHA).						
Malaulau hialam.	Molecular plology and miscellaneous information	155 aa (m & h).	N-terminal signaling sequence.	77% aa homology between hIL-17 and	HVS13 and 63% aa homology with rat CTLA8.	rCTLA8 and HVS13 57% aa homology.						
Diahamistur Mala	BIOCHEMISUY	hIL-17: 15-20 kDa.	Forms disulfide- linked dimers (30-	38 kUa). mIL-17: 17-21 kDa.	glycosylated, chromosome 6.							
Ducdroom	r rouucers	Activated (primarily CD4 ⁺) T-cells.										
Docontour	veceptors	IL-17R (h). 97.8 kDa / 864 aa.	pI = 4.85.	N-terminal signal peptide with cleavage site after aa 31 (Ala)	followed by a 291 aa extra- cellular domain, a 21 aa trans- membrane domain and a 521	aa cytoplasmic tail. Eight potential N-linked glycosylation sites in the extracellular domain.	No significant homologies with any known nucleotide and protein sequences.	Also binds HVS13.	IL-17R mRNA found in: fetal liver epithelial cells (D11), fibroblasts (373), rat intestinal	epintenal cens (LDCO), spience B-cells, muscle cells (BB4), mast cells (H7), triple negative thymus cells (CD3-CD4-CD8 ⁻)	(TN), pre-B-cells (702/3), T- cell thymoma (EL4) and T-cell clones 7C2 and D10.	[Ref. 204]
EII Nome	r un Name	Interleukin-17	Murine T-cell derived molecule	(mIL-17)	VIL-1// HVS13 VITal IL-1// Herpes virus saimiri gene 13 (57% homologeous	10 C 11 A 0)						
A account	ACTORYIN Or Synonym	IL-17	CTLA8		VIL-1// HV313							[Refs. 203, 204]

TABLE 18. IL-17^a

 a Abbreviations: aa, amino acid; r, rat; PHA, phytohemagglutinin.

and LT- β^a
TNF-β,
NF-α,
19.
TABLE

Acronym	Full Name	Receptors	Producers	Biochemistry	Molecular biology	Major effects	Inducers
or synonym					and miscellaneous information	,	
$TNF\alpha$	Tumor necrosis	TNF-R55 / CD120a / TNF-R1	Monocytes / macrophages,	$h + m TNF\alpha$: 17	157 aa.	TNF is a potent paracrine and endocrine mediator of	LPS and other bacterial
	i factor-α	/ p55 / TNF-R/b (K ₄ 500 pM). TNE-R75 / CD120h / TNF-R2	activated alveolar macronhages. T-cells	kDa.	Svnthesized as large	inflammatory and immune functions; it modulates endothelial cell functions and moterts against infection in general	products (such as DNA and Klabsialla
	Cachectin	/p75/TNF-Rα (K _d 100 pM).	(T _H 1), large granular	Expressed as 26	precursor (233 aa).		pneumoniae K1 and K3
		-	lymphocytes, B-cells,	kDa trans-		Activates:	capsular antigens).
		Members of TNF-R / NGF-R superfamily (such as Fas	keratinocytes, neutrophils, NK cells, astrocytes,	membranous precursor protein		Macrophages, lymphocytes, neutrophils (enhances FcyR & CR3 expression), eosinophils, endothelial cells, fibroblasts.	Viruses.
		antigen and CD40).	endothelial cells, smooth	from which 17 kDa		chondrocytes, osteoclasts, and nerve cells.	
		TNE-Re present on almost all	fihrohlasts mesanoial cells	subunit is released after protectivitie		Induces:	Candida species.
		Infr-rs present on annost an nucleated cell types.	(kidney), germinal center	cleavage.		Freueres: Fever and shock-like symptoms, IL-1 and IL-6 in many cell	Aspergillus species.
			and man-tle zone B-cells.	9		types, parathyroid hormone-related protein (PTHrP), infection-	
		TNF-R1 is ubiquitously	PCF 1-11-1-4	Biologically active		induced malnutrition, MHC class II expression on monocytic	Antigen / mitogen.
		expressed whereas TNF-K2 is	of TME of from 1 pc.	as non-covalently		cell line C119/9 (derived from U937), expression of adhesion	Cumanosti anno
		hematonoietic and endothelial	stimulated macrophages	and as precursor		morecures (*CAM-1 and E-selecun unougn p55), hactericidal/nermeability increasing motein (R/DI) release in	ouperanugens.
		cells and shows a tightly	via a feedback mechanism	(precursor is not		whole blood, NFkB activation and apoptosis through TNF-RI.	Cytokines.
		regulated expression. In vivo	involving IL-10.	secreted).		IL-1ra production by human neutrophils synergistically with	
		analysis of TNF-R deletions	II 10 II 1 and II & and	Manchana		IL-10 and IL-4.	Immune complexes.
		hias revealed a more severe henotype of TNF_R1	notent inhihitors of TNFo	associated form is		Cutotorio for:	Mucchinem membrane
		compared with TNF-R2	synthesis by PBMC.	presumably also		Transformed and virus-infected cells, tumor cell lines and	lipoproteins (monocyte)
		knockout.		trimeric and is		endothelial cells.	through a mechanism
			TNF α is produced by	active on both			distinct of LPS
		TRADD = TNF-RI-associated	CD4 ⁺ cells in the presence	receptors.		Enhances:	(involves post-
		signal transducer.	of MHC class-II ⁺ cells in	Chromosome fin		CD14 expression on polymorphonuclear cells, PGE ₂ synthesis	translational events and critically demands on
		TNF activated cell signaling	and exotoxins (CD8 ⁺ cells	(h), linked to MHC		or mesangiat cents (kluney), nz-10 production in response to LPS. oxidative hurst hv neutronhils, verotoxin recentor (Gh3)	tyrosine
		primarily through TNF-R1 and	produce only small	gene.		expression on human umbilical cord vascular endothelial cells,	phosphorylation).
		to a lesser extend by TNF-R2.	amounts of TNF α under			proliferation and differentiation of human B-cells, primary	
		Transmembranous form of	the same circumstances).	h I NF & Only interacte with		antibody response to 1-cell-dependent Ag but not to T-cell-	Neuropeptide substance D (aa region 4-11)
		TNFG is superior to sTNF in	Peritoneal macronhages of	mTNF-R55 and not		mucpenuent Ags, anoreacuve cytotoxic 1-cent responses, Feyre- mediated nhacocytosis by human PMN virus-enecific IoG	1 (mm 10210m 1-11).
		activating TNF-R2 in various	mice produce increasing	with mTNF-R75.		response after primary and secondary immunization with	Lignin derivatives
		systems such as T-cell	amounts of $TNF\alpha$ with	į		inactivated rabies vaccine.	increase TNF α mRNA.
		activation, thymocyte	increasing age.	Bioassay:			5 COLD
		proliferation and GM-CSF	_	cytolysis of L929	-	Stimulates:	sCD23 (in monocytes,
		production.		fibrosarcoma cells.		Late sneuding of 1.NF-K2 from human monocytes, not 1.NF-K1.	Infinition by 11-4 and IL-10).
		Diversity of TNFa effects can				Regulates:	
				New TNFα		Activated synovial T-cell growth by driving them into S-phase.	GM-CSF primes
		TUF-R0 for 2 soluble forms of		originates irom: - small intracellular		In hihite.	monocytes for 1 NFα &
				pool of mRNA.		Collagen synthesis in human and rat granulation tissue	response to LPS.
		physiological role for TNFα in		- newly transcribed		fibroblasts.	
		local inflammatory responses.		mRNA.		:	Listeriolysin-O causes
		Both TNF-R's disnlav		TENiv controle		Miscellaneous: Increase in AAAD summesses TNEss modulation and increases in	sustained transcription
		differential cooperation. The		TNFor conthesis at		ancrease in czawr suppresses anyr a proudenti and increase in oGMP increases TNFor production	of the LINFOR gene and production of TNEA by
		ability of TNF-R2 to cooperate		the translational		TNF α is involved in control of the monocyte-mediated	macrophages in vitro.
		with TNF-R1 in TNF-R1-		level.		regulation of cytokine production by T-cells, i.e., $TNF\alpha$) -
		mediated cytotoxicity could be				enhances the monocyte's ability to induce IFNy production and	TNFa mRNA is
		TNF-R-associated factor 2		mRNA synthesis		TNF α is also involved in LPS-induced apoptosis of CD4 ⁺ CD8 ⁺	inhibited by tenidap,
		(TRAF2)[199].		LPS injection.		thymocytes (mouse). TNFr: overcomes PGFinduced down-reculation of neritoneal	corticosteroids, and pentoxifylline.
		TD A D1 and TD A D7 from		11 J		macrophage activation.	······································
		heterodimeric complexes and		rentoxiryline inhibits TNFor		TNFc plays a critical role in non-steroidal anti-inflammatory	Indomethacin increases I PS_induced TNFc
		associate with the cytoplasmic		synthesis (20-500		arug-maucea gastric mjury.	plasma levels in rats
	_	domain of INF-KZ. A third member is CD40bb (CRAF1		μg/rat after 1 μg			whereas LPS-induced
	_		_	.(617			I NF α is inhibited by

[Refs. 9, 10, 14, 19, 22, 46, 78, 83, 97, 185,		LAP1 or TRAF3) that associates with the cytoplasmic domain of CD40.				PGE_2 , dexamethasone and pentoxifylline.
193, 196]		[Refs. 10, 22, 78, 81, 83, 97]				Platelets (autologous).
TNFB	Tumor necrosis	As for TNF α : homotrimer	T-cells (T _H 1), B-cells,	hTNFB: 20-180	as TNF α (with certain exceptions).	Antigen / mitogen.
	factor-ß	binds to TNF-R1 and TNF-R2.	-	kDa, x3-n polymer,	Endogenous pyrogen, stimulates catabolism, activates	
			(small quantities),	chromosome 6p.	peripheral blood lymphocytes and vascular endothelial cells.	LPS (B-cells).
1 T.o	I vmnhotovin-o		astrocytes.		Wide variety of effects on diverse cell types due to modulation	
3	n-myonohin (r			Soluble or secreted	of gene expression for growth factors, cytokines, transcription	Pyrogenic exotoxin A
			Coordinately produced	form: homotrimer.	factors, cell surface receptors and acute phase proteins.	(high levels $TNF\beta$).
[Refs 9 10 14			with IFN ₇ .		Plays important role in host detense against intection and tumor	
1931				Biologically active	growth and plays key role in lymph node development. Is not	
[cor		[Kets. 10, 22, 80, 81]		as homotrimer.	readily detected in circulation \rightarrow locally acting paracrine factor.	
LTR	Lymphotoxin-β	bind	T-cells.	hLTβ: 33 kDa,	as TNF α / LT α .	As LTα.
1		to LTB-R (= TNF-Rrp =		glycosylated,	Surface LTαβ complex is required for development of	
		TNF-R related protein,		chromosome 6p.	peripheral lymphoid organs.	
		member of TNF-R / NGF-R				
		superfamily).		Integral membrane		
				LT.		
		hLTB-R and mLTB-R: 66% aa				
		homology.		Forms hetero-		
				trimeric complexes		
		mLTB-R gene is located very		with LT α : α 1: β 2		
		close to the TNF-R1 gene on		and α2:β1.		
		chromosome 6.				
[Refs. 10, 193]		Befs 10 38 81 1451				
^a Abbreviatio	ns: K _d , dissociation	^{<i>a</i>} Abbreviations: K ₄ , dissociation constant; NGF, nerve grov	wth factor; PGE ₂ , prost	aglandin E.; PBMC, peripheral	growth factor; PGE,, prostaglandin E.; PBMC, peripheral blood mononuclear cells; aa, amino acid; VCAM-1, vascular cell adhesion molecule	cell adhesion molecule
1: Ag. antigen:	PMN, polymorph(1: Ag. antigen: PMN, polymorphonuclear leukocyte.	ì	i ì	• •	
(0(0(

on T_{H1} cells may be of use in the prevention of transplant rejection and T-cell-mediated autoimmune diseases such as multiple sclerosis and type I diabetes. Furthermore, its antiinflammatory effect could be beneficial in sepsis, rheumatoid arthritis, and psoriasis. The observation that enhanced IL-10 production is deleterious in several intracellular parasitic infections in which macrophage- or cell-mediated immunity is involved in protection (i.e., leishmaniasis, schistosomiasis, and trypanosomiasis) implies therapeutic value for IL-10 antagonism. Furthermore, antagonism of IL-10 may be expected to have beneficial effects during the polyclonal B-cell activation and hyperglobulinemia observed in AIDS patients because IL-10 is a potential factor influencing dysregulation of B-cell growth.

IL-11

In 1989 a protein with multifunctional activity was detected in the conditioned medium of a primate bone marrow stromal cell line, and this was followed by the cloning of the human cDNA from a human fetal lung fibroblast cell line. This protein, initially called bone marrow-derived stromal growth factor, was shown in vitro to influence lymphohematopoietic stem cell and megakaryocyte progenitor cell proliferation and differentiation, erythroid progenitor cell proliferation, B-lymphocyte maturation, hepatocyte acute-phase protein synthesis, and adipogenesis (Table 12) (100, 147). This protein, now named IL-11, has a unique and slightly unusual structure but nevertheless shares some functional activities with IL-6 and even induces IL-6 mRNA synthesis in T-helper cells and monocytes. Directly or through IL-6 induction, IL-11 can enhance antibody production in primary as well as secondary antigen-specific responses and therefore can play a significant regulatory role in Ig production (147). As described for IL-9, IL-11 is involved in the differentiation of hippocampal progenitor cells, thereby linking immune and neural network development (130). The multiple activities of IL-11 in vitro prompted further investigation in nonhuman primates. Administration of IL-11 to normal primates, especially in combination with IL-3 and GM-CSF, results in increased platelet and neutrophil levels. Interestingly, in none of these studies were side effects such as fever observed. These preclinical studies imply that IL-11 may be a promising candidate for treatment of thrombocytopenia and leukopenia (i.e., as an adjunct to chemotherapy or bone marrow transplantation) (75, 76, 147).

IL-12 and IGIF

A factor produced by a human Epstein-Barr virus-transformed B lymphoblastoid cell line was found to mediate several biological effects on human T and NK cells (Table 13). Unlike other cytokines, this factor appears to be composed of two different proteins (p35 and p40) encoded by separate genes. The production of this cytokine is particularly complex because the expression of both genes is required to produce biologically active IL-12. Produced predominantly by macrophages and B lymphocytes in response to a variety of stimuli, its main effect appears to be the regulation of T-cell and NK cell functions (cytotoxicity) (187). In contrast to IL-4 and IL-10, IL-12 has been implicated in polarizing the maturation of T cells to the T_{H} 1 phenotype (186), which through production of IL-2, lymphotoxin, and IFN- γ orchestrates the cellular immune response (26, 176). It is therefore not surprising that IL-12 produced early during infection is critically involved in protection against an array of intracellular pathogens (Leishmania major, Toxoplasma gondii, Schistosoma mansoni, Listeria monocytogenes, Yersinia enterocolitica, Cryptococcus neofor-

Acronym	Full Name	Receptors	Producers	Biochemistry	Molecular biology	Maior effects	Inducers
or synonym					and miscellaneous		
					information		
IFNa1/a2	Interfero.n-a	IFN $\alpha\beta$ -R / CD118 (h)	T-cells, B-cells, NK cells, monocytes / macronhages.	hIFNα: 16-27 kDa, chromosome 9a	165 / 166 aa (h).	Activates macrophages, NK cells, T _c and B-cells + other cells. Modulates MHC class I and II evenession	Viruses.
(>20 subtypes		51 kDa, forms homodimers,	fibroblasts, lymphoblastoid			Antiviral and antiparasitic activity.	Double-stranded RNA.
(mu 11 10	Leukocyte interferon		cells.			Enhances Ig synthesis.	
		IFN receptor ramity.				by human CD4 $^+$ T-cells.	Bacteria.
						Inhibits IL-12 and IFNy production.	LPS (in macrophages).
						<i>In vivo</i> effects (human):	
[Refs. 7, 37,						Decreases total cholesterol, HDL-C, LDL-C and Apo-A1 and increases Apo-B100, Apo-B100 / Apo-A1, total cholesterol /	
[171		[Ref. 7]				HDL-C ratio, triglyceride levels and Lp(a).	
IFNB	Interferon-β	IFNαβ-R / CD118 (h).	Many virus-infected cells,	hIFNβ: 20 kDa,	166 aa.	Similar to IFNo.	Microorganisms.
$(= IFN\beta 1)$		51 kDa. see IFN-o.	macrophages.	curomosome 94.		Activates macrophages and NK cells. Modulates MHC class I and II expression	Double-stranded RNA
IDafe 7 37	Fibroblast interferon) •	Significant		Antiviral activity.	
121]		Ē		homology to		Inhibits IL-12 and IFN γ production.	Cytokines.
	, ,	Ket. /]	H H (H) H .	ILIN-CLS.		Interrupts IL-o-dependent signaling events in myeloma cells.	
IFNY	Interteron-y	IFNY-K / CD119 (h). 00 bDa	1-cells (1HU, 1H1, and 1C), CD8 > CD4	hlFNY: 17-25 kDa,	100 aa (n), 23 aa hydro- nhohie signaling sequence	Antiviral activity (weak).	Superantigens.
	Tvpe II interferon		CD8 ⁺ and IL-2-producing	-8.7. chromosome	provise and mining and action	Activates:	Microorgansims
	- I /-	2 chains:	CD4 ⁺ T-cells (only CD45	12q.	136 aa (m). Contains one	Monocytes, macrophages, neutrophils, NK cells, vascular	
	Immune interferon	- binding chain:	RO ⁺ cells, not CD45RA ⁺		cysteine which may result	endothelium (with promotion of CD4 ⁺ T-cell adhesion),	Antigen / mitogen,
		human chromosome 6.	cells), large granular	mIFNy: 26-25 kDa,	in a disulfide bond	fibroblasts, smooth muscle cells (vasoconstriction), T _s and B-	augmented by IL-2.
		murine chromosome 10.	lymphocytes, endothelial	glycosylated,	(implied by its decreased	cells (differentiation).	
		- signal transduction chain.	cells, smooth muscle cells,	chromosome 10.	thermolability compared to	MHC class I and MHC class II expression (on many	IL-12 increases IFN γ
			NK cells, dendritic cells,	Larger forms (38-	htFNy).	cells).ICAM-1 gene activation.	production by CD45
		IF Ny-Kα is required for JAK-1 hinding and is therefore critical	B-cell lines (CUU)), macronhage (cell lines)	80 kDa) due to		Primes IL-12 p40 gene promoter in monocytic cells.	RO ^T and CD45RA ^T
		for signal transduction.	myelomonocytic cells,	aggreganon.		Inhibits:	cells.
		0	astrocytoma cell lines,	Noncovalent homo-		General inhibition of cell growth, IL-4-induced B-lymphocyte	mRNA in response to
		IFNy produced during the	tumor cells of non-	dimer formation.		proliferation and Ig synthesis, growth of CD4 IL-4 producing	inducers for IFNa/B
		generation of the CD4 ⁺ T _H 1	lymphoid origin, mouse			T _H 2 population, tumor growth.	(poly ICLC, Newcastle
		subset extinguishes expression	cells (low levels)	No structural		Down-room of ac.	disease virus).
		I of the lF/Ny-K p-subunit resulting in T _u 1 cells that are	·(relation to IFIN-00/p.		Surface CD14 expression on purified monocytes.	mRNA inhihited hv
		unresponsive to IFNy. This loss	PGE ₂ inhibits acquisition	Species specific			tenidap.
		also occurs in IFNy-treated T _H 2	of ability to produce IFN γ	biological action.		Induces: IEN/v mDNA (its and monored) monored differentiation of	
		cells. I hese effects define a				CDA^+ TEM: and T 2 are desired 1 are desired on 01	
		desensitization where a	Peripheral blood mono-			expression on mitogen-activated T-cells. TNF-R and VI.A-1	
		cytokine down-regulates	nuclear cells produce			$(\alpha_1\beta_1$ -integrin) expression on monocytes, high-affinity FcyR	
		expression of a receptor	increased amounts of IFNy			expression on polymorphonuclear neutrophils, synthesis of	
		subunit required primarily for	(in response to PHA) after			enzymes that mediate respiratory burst (directly), rapid	
		=	-	-	-	-	•

TABLE 20. Interferon^a

and extensive differentiation of human neuroblastoma cells combined with TNF α [157].	Stimulates: Immune (T-cell) cytotoxicity (synergistically with TNF α), expansion and recruitment of early myeloid progenitors.	Enhances: Macrophage killing of intracellular pathogens, antiviral effect of IFN α /β, antigen-specific T _{it} cell activity, MHC class II expression on antigen presenting cells, IL-12 production from phagocytic cells, TNF α synthesis at transcriptional level, superoxide production and pathogen killing by neutrophils (as cofactor in combination with LPS or TNF).	Miscellaneous: Possible B-cell-specific survival/growth factor. Possible B-cell-specific survival/growth factor. Necessary for T-cell apoptosis in response to anti-CD3- stimulation in the absence of accessory cells. Depending on cytokine expression in a localized micro- environment, IFNy by stelf, apoptosis occurs, but in combination with other stimuli, proliferation and differen- tiation occur. Overcomes PGE ₂ -induced down-regulation of peritoneal macrophage activation.
cryo-preservation, monocyte and NK cell elimination or irradiation.	This results from the inactivation of cryosensitive suppressor monocytes These	monocytes exert their effect through a subset of radiosensitive immuno- downregulatory T-cells.	
signaling and not ligand c binding.			[Refs. 7, 62, 121, 177, 206]
			[Reîs. 7, 44, 63, 96, 121, 177]

mans) (15, 87, 125). Most, if not all, of these protective effects are mediated by IFN- γ . The present evidence suggests that IL-12 represents a bridge between innate resistance and adaptive immune responses and that the bias of the immune system to either a T_{H1} or T_{H2} response is regulated by the balance of IL-12 and IL-4 early during the immune response (15, 126).

Preclinical studies have shown that in vitro treatment of depressed NK cells from HIV-seropositive patients with IL-12 results in up-regulation of cytotoxicity within a few hours. In addition, the cytotoxicity of IL-12-treated peripheral blood leukocytes (PBL) from HIV-infected patients was also efficiently enhanced with respect to tumor-derived target cells as well as to cytomegalovirus-infected cells, and this cytotoxicity was at least as high as in PBL from healthy donors. In conclusion, the central role of IL-12 in the biology of immune responses suggests possibilities for therapeutic use in infectious diseases, allergic diseases, tumors, and immunodeficiencies and as an adjuvant in vaccinations (126). IL-12 antagonism may be beneficial in autoimmune diseases (15, 87).

A protein with effects broadly similar to those of IL-12 has recently been isolated from Kupffer cells of the liver of mice injected with Propionibacterium acnes followed by a challenge with lipopolysaccharide (LPS) which leads to toxic shock. This protein, named IL-y, or IFN-y-inducing factor (IGIF), proved to protect these mice against liver damage. Indeed, its IL-12like activities appeared to be stronger than those of IL-12 itself, especially with respect to induction of IFN- γ production by T_H1 and NK cells (150). Its actions are independent of IL-12, but synergism with IL-12 has been observed. Its effects on T_H1 cells indicate a regulatory function in the development of immune reactions. Based on structural and functional differences from any known cytokines, it was recently proposed that this cytokine be designated IL-18 (133).

IL-13

Discovered in 1993, human IL-13 (the homolog of murine P-600) was first reported as a cytokine with IL-4-like activities and the potential to regulate inflammatory and immune responses (Table 14) (137). Like IL-4 and IL-10, human IL-13 is predominantly produced by CD4⁺ T cells with T_H2 characteristics. Its stimulatory effect on B cells together with its effects on monocytes led to its inclusion in the IL family of cytokines (47). IL-13 inhibits the production of a large array of cytokines by monocytes in response to LPS (IL-1 α , IL-1 β , IL-6, IL-8, IL-10, IL-12 p35 and p40, macrophage inflammatory protein 1α [MIP-1α], GM-CSF, granulocyte CSF [G-CSF], IFN-α, and TNF- α) and increases the production of IL-1ra; therefore, IL-13 can be regarded as an anti-inflammatory cytokine (50). Apart from inhibition of cytokine production, it also induces significant changes in the phenotypes of monocytes (50, 192). The effects of IL-13 on B cells are in part also found with IL-4 (e.g., the switch to IgG4 and IgE). The fact that IL-4 and IL-13 share a large number of biological effects without noticeable synergism implies that these cytokines may have common receptor components (but not the IL-4-R-binding protein) (149). However, IL-13 acts independently of IL-4, because the activities of IL-13 cannot be blocked by anti-IL-4 neutralizing antibodies. Differences between IL-4 and IL-13 include the inability of IL-13 to support the proliferation of mitogen-induced blasts or T-cell clones and the lack of induction of $CD8\alpha$ expression on CD4⁺ T-cell clones.

IL-14 and LMW BCGF

Enhancement of B-cell proliferation has been ascribed to many lymphokines, including IL-1, IL-2, IFN, and several BCGFs or B-cell-stimulatory factors. One of the human

A automatic	E.H Name	Decenterie	Bucktonee	Diashamiatur.	Malaarlar Lialaar		
or synonym		receptors	s ionno i i	biocnemisuly	and miscellaneous information	Major carecus	Inducers
GM-CSF	Granulocyte macrophage colony- stimulating factor	GM-CSF-R / CDw116 (h). ca-chain 85 kDa, glycosylated. β-chain (KH97) 130 kDa, shared with IL-3Rα and IL-5Rα. Both members of hemato- both cSF-Rgh: signal transduction. Soluble hGM-CSF-Rgh: signal transduction.	T-cells (T ₁₁ 2), fibroblasts, endotheline cells, mono- cytes, macrophages (low level of expression), mast cells, neutrophils, cosinophils (C5a, FMLP), mande zone B-cells.	h: 14-22 kDa, glycosylated, chromsome 5q, m: 23 kDa, glycosylated. Species-specific biological action.	144 aa (m) - 118 aa (m). hGM-CSF and mGM-CSF share 54% aa homology.	Activates and differentiates: Multipotential hematopoietic progenitor cells, T-lymphocytes, megakaryocytes, neutrophils and precursors, eosinophils, Enhances: Enhances: Function of mature monocytes / macrophages, physiological activity of eosinophils and neutrophils, CR3 expression and granulocytes, CD14 expression on PMA, expression and granulocytes, CD14 expression on PMA, expression and or neutrophils and thereby enhances MHC dast It expression on neutrophils and thereby enhances MHC dast It expression on neutrophils and thereby enhances MHC dast It expression on neutrophils and thereby enhances MHC dast It expression phagocytic cells, endothelial cell proliferation and migration. Down-regulates: Surface CD14 on purified monocytes, Antagonizes: TGF p-induced CD16 expression on human monocytes.	Antigen / mitogen. LPS. Cytokines. sCD23 (monocytes). Leustroducsin-B (bone marrow stromal cells).
[Refs. 35, 80, 119]						Inhibits: Neutrophil migration and apoptosis of polymorphonuclear cells.	
G-CSF GM-DF CSF-β CSF-β (SF-β (SF-β) M-CSF CSF-1 CSF-1	Granulocyte CSF Granulocyte macrophage differentiation factor Macrophage CSF.	16-CSF-R (h): single 150 kDa subunit protein. mG-CSF-R: 150 kDa, 62% protein similarity to h-G-CSF-R. Two membranous forms generated by alternative splicing. Member of hematopoietic cytokine receptor superfamily. On human neutrophils: K _d = 250 pM, 560/cell. M-CSF-R./CDW115 (h), found on virtually all monouclear phagocytes, K _d = 30 pM. 165 kDa tyrosine kinase capable of auto- phosphorylation.	Monocytes / macrophages, fibroblasts, endothelial cells, T-calls, fou keval of expressions, in eutrophils, germinal center B-cells, large granular lympho- cytes, and and and and and cells, granulocytes, epithelial cells, granulocytes, epithelial cells, granulocytes, epithelial	hG-CSF: 18-22 kDa, pl 5.5, etromosome 17q, mG-CSF: 24-25 mG-CSF and hG-CSF and mG-CSF and biological cross- reactivity.	207 aa (h). hG-CSF and mG-CSF: 73% aa homology. 544 aa precursor / 189 aa mature protein (h). mature cells, but mM-CSF is not reactive on human cells.	Activates and differentiates: Neutrophils and granulocytes and their precursors (colony formation), macrophages <i>in vitro</i> . Enhances: Physiological activity and survival of mature neutrophils, CD14 expression on peripheral mononuclear cells, oxidative burns and alkaline phosphatase synthesis by neutrophils, production of TNFG, 2, and L1 rita by LPS-stimulated human monocytes, antigen-dependent cytotoxicity, proliferation and migration of endothelial cells. Polarizes T-cells of mice towards T ₁ ,2 cytokine production and attenuates graft versus host disease. Activates and differentiates: Monocytes / macrophages and precursors. Induces: Cytokine synthesis by monocytes / macrophages. Enhances: Enhances: Enhances: and macrophages.	LPS. Cytokines. Leustroducsin-B. Leustroducsin-B. LPS. Cytokines. Fc,R ligation (mRNA).
				to alternative splicing.		Inhibits: Bone resorption by osteoclasts.	
[Refs. 5, 80]		[Ref. 5]		May also exist as integral membrane protein.			

CSF^{a}	
TABLE 21.	

^a Abbreviations: FMLP, formyl-Met-Leu-Phe; aa, amino acid; PMN, polymorphonuclear leukocytes; K₄, dissociation constant.

:	acids.
	amino
	aa.
	Abbreviation:

IL-8 Interleukin-8, see Table 9 MIG Monocyte chemotactic protein GCP-2 Granulocyte chemotactic protein PF4 Platel factor 4 MIF-1α/β Macropage infammatory protein GC0-2/βT Granulocyte chemotactic protein PF4 Platel factor 4 MIF-1α/β Macropage infammatory protein GR0-2/βT Granulocyte chemotacie PF4 Platel factor 4 MIF-1α/β Macropage infammatory protein BN-7 ENA-78 Finiteficial neutrophil activating protein RFN-inducible protein CFT3 CC-chemokine 1 DBP Platele basic protein RFN-1/2/β Stromal cell-derived factor-1 CFT8 CC-chemokine 1 RA-7 Napoz Napoz Remoline F18 RATES Regulated on activation, normal T-cypressed and secreted MAP2 Low-affinity platelet factor 4 1309 Remoline F18 Remoline F18 β-Thrombogobulin Low-affinity platelet factor 4 Eostanin Eostanin
Granulocyte chemolactic protein 2 IP4 Platelet factor 4 MIP-1ac/β Growth regutated oncogene IP-10 IFNy-inducible protein HCC1 Epithelial neurophil activating protein 7 SDF-1ac/β Stromal cell-derived factor-1 RANTES Platelet basic protein 2 III Neurophil activating protein 2 III Neurophil activating protein 2 Neurophil activating protein 2 Eotaxin Low-affinity platelet factor 4 Eotava Eotaxin
Growth regulated oncogene IP-10 IF/Ny-inducible protein HCC1 Epidhefial neurophil activating protein 78 SDF-1α/β Stromal cell-derived factor-1 CCF18 Plate all activating protein 11 Neurophil activating protein 2 Stromal cell-derived factor-1 CTF18 Neurophil activating protein 2 Low-affinity platelet factor 4 1309 Eotaxin
Epithelial neutrophil activating protein SbE-lack Stromal cell-derived factor-1 CCF18 Platete basic protein RANTES Connective fissue activating protein II Neurophil activating protein II Neurophil activating protein II Low-affinity platetet factor 4 Low-affinity platetet factor 4 Eotaxin
Platelet basic protein Connective tissue activating protein III Neutrophil activating protein 2 Low-affinity platelet factor 4 globulin
Connective tissue activating protein II Neurophil activating protein 2 Low-affinity platelet factor 4 globulin
Neutrophil activating protein 2 Low-affinity platelet factor 4 globulin
LAPF4 Low-affinity platelet factor 4 B-Thromboglobulin
B-Thromboglobulin

of chemokines	
Classification of	
TABLE 22.	

769

Acronym	Full Name	Recentors	Producers	Biachemistry Malacular	Molecular hiolom	Major officits	Induced
or synonym	T ULL MAINE	sundana	11000013		and miscellaneous		THUUCELS
					information		
GROG	Growth regulated	GROorR / CXC-CR1 and	Fibroblasts, chondrocytes,	8 kDa (h).	73 aa (h).	Chemotactic factor for neutrophils.	Infection.
	oncogene	CXC-CR2: low and high	epithelial cells, monocytes/				
		affinity receptors on	macrophages, neutrophils		GROB and GROy share 93	Stimulates proliferation of melanoma cells.	
MGSA	Melanoma growth	neutrophils.	(in response to LPS, TNF α			GROy induces myeloperoxidase release from cytochalasin-B	
[Ref. 33, 70]	stimulating activity.		platelets.		UNOU at Ithereoure level.	u carca il cua opinio.	
ENA-78	Epithelial neutrophil activating peptide		Human pulmonary epithelial cells (A549).	8.3 kDa (h).	78 aa (h).	Shares several properties of neutrophil activation with NAP-2 and IL-8.	TNF-α.
	78				4 cysteines positioned		IL-18.
					identical to those of IL-8.	Induces:	
					53% sequence homology with NAP-2 and 52% with	Chemotactic activity in neutrophils.	
	-	-			GROa.	Induces:	
[Ref. 33, 113]						Release of elastase from cytochalasin-B pretreated neutrophils. Cytosolic Ca ²⁺ -release.	
IP-10	IFNy-inducible Protein-10		T-cells, monocytes, endothelial cells,	8.5 kDa (h)		Chemotactic factor for monocytes and T-cells.	
	-		keratinocytes.			Stimulates:	
[Refs. 24, 33,						Transendothelial chemotaxis of CD3 ⁺ T-cells.	
129, 164, 182, 183]						Promotes: T-cell adherence to endothelial cells.	

Ful	Full Name	Receptors	Producers	Biochemistry	Molecular biology	Major effects	Inducers
					and miscellaneous information		
Macrophage inflammatory protein-10		CC-CKR1 (also receptor for MCP-3 and RANTES, found on monocytes > neutronhils >	T-cells, B-cells, monocytes, mast cells, fibroblasts, neutronhils	8.0 kDa (h), non- glycosylated.	69 aa (h). 75% aa similarity hetween	Chemotactic for: Monocytes (activates for IL-1, IL-6 and TNF production), T- cells mentronhile accimantile	Infection.
Stem cell inhibitor	hibitor	eosinophils). CC-CKR4.		hMIP-1 α is active on mMIP-1 α cells.	h and mMIP-1 α .		
		nc-nwo.				Expression of b ₁ -integrins on endothelial cells, endogenous pyrogen (not inhibited by cyclooxygenase inhibitors).	
						Inhibits: Dentificantion of condry homotocociotic storm colle	
						a touroauon or early nemacoporere stem cens. Augments:	
Macronhage	e e	[Ref. 24] [CC-CKR1]	T-cells B-cells	8 kDa (h)	60 aa (h)		- footion
inflammatory protein-1β	2° SIO	CC-CKR5.	fibroblasts, neutrophils.	glycosylated.	07 dd (II).	ates for IL-1, IL-6 and TNF production), T-	mrection. Endotoxin.
						Induces:	
						Expression of β_1 -integrins on endothelial cells.	
						Stimulates: Adhesion of T-lymphocytes to endothelial cells.	
						Augments: CTL and NK cell cytolytic responses.	
						MIP-1 β can counteract the ability of MIP-1 α to suppress stem- cell growth.	
Macrophage inflammatory protein-1 γ	tory	Same receptor as for MIP-1 α on neutrophils. Most other CC chemokine receptors.	Expressed constitutively by a wide variety of tissues in mice. Therefore, most CC chemokine receptors in the vascular compartment are occupied.	10 kDa (h).	100 aa (h).	ctivity if injected intracerebrally.	Infection.
		[Refs. 24, 156]	In blood compartment of normal mice: ~1 μg/ml (90 nM).				
Regulated on activation, no	Regulated on activation, normal T-	CC-CKR1. CC-CKR3.	T-cells, platelets, renal epithelium, mesangial	8 kDa (h), non- glycosylated.	68 aa (h).	Chemotactic for: Monocytes, CD4*CD45RO* T-cells, eosinophils, and basophils	
expressed and secreted	and	CC-CKR4. CC-CKR5.	cells.		Expression down- regulated by T-cell	(and enhances histamine release).	
		Duffy blood-group antigen.			activation.	Augments: CTL and NK cell cytolytic responses.	
	-	_	_	_	_		-

TABLE 24. CC chemokines^a

chodhelial cells, chromosome 17 (h). Signaling sequence (h). Induces release of yossomal enzymes and superoxide amion. keratinovytes, smooth muscle cells, neoplastic Nagments cytostatic activity. nuscle cells, neoplastic Stimulates histamine release from basophils. cells. Stimulates histamine release from basophils. residues. Regulates cytokine production in monocytes and expression of adhesion molecules on marcophages. More in increase during greates. McCP-1 increased during greates. S KDa (h). 74 aa (h). 74 aa (h). S KDa (h). 74 aa (h). 74 aa (h). Regulates cosinophils and basophils. Increased during greates. Monocytes, NK cells, basophils, cosinophils, ostinophils, and basophils. Epithelial cells, endothelial Activates: Produced by mucosal Stimulates histamine release from basophils. Produced by mucosal Chemoattractant for monocytes and estinophils. Produced by mucosal Stimulates histamine release from basophils.	MCP-1	Monocyte chemo- tactic protein-1	CC-CKR2a. CC-CKR2b.	Monocytes / macrophages, fibroblasts, B-cells,	8-10 kDa, glycosylated,	-		Fc,R ligation (mRNA).
activating factors activating factors (Reci 156) (Ref.	MCAF	Monocyte chemotactic and	Duffy blood-group antigen.	endothelial cells, keratinocytes, smooth muscle cells, neoplastic	chromosome 17 (h).	signaling sequence (h). Mature form: 4 cysteine residues.	Induces release of lysosomal enzymes and superoxide anion. Augments cytostatic activity. Stimulates histamine release from basophils.	TNF α and LL-1.
Ref. 156] MC-1 Increased during sepsis. Monocyte chemo- CC-CKR1. 8.5 kDa (h). 74 aa (h). Enhanced during sepsis. Monocyte chemo- CC-CKR1. 8.5 kDa (h). 74 aa (h). Simulates eosinophils and basophils. Monocyte chemo- CC-CKR2.h 8.5 kDa (h). 74 aa (h). Activates: Monocyte chemo- CC-CKR2.h 8.5 kDa (h). 76 aa (h). Activates: Monocyte chemo- CC-CKR2.h 8.5 kDa (h). 76 aa (h). Activates: Monocyte chemo- CC-CKR2.h 8.5 kDa (h). 76 aa (h). Activates: Monocyte chemo- CC-CKR2.h 8.5 kDa (h). 76 aa (h). Activates: Monocyte chemo- CC-CKR2.h 8.5 kDa (h). 76 aa (h). Activates: Monocyte chemo- CC-CKR3.h Activates: Monocytes, NK cells, basophils, cosinophils, cosinophils, cosinophils, cosinophils, and cosinophils, cos		activating factor		cells.			Regulates cytokine production in monocytes and expression of adhesion molecules on macrophages.	
Monocyte chemo- lactic protein-2Monocyte chemo- tectorSt. kDa (h).74 aa (h).Stimulates cosinophils and basophils.Monocyte chemo- cC-CKR2hCC-CKR1.8.5 kDa (h).76 aa (h).Activates: honocytes, lymphocytes, NK cells, basophils, eosinophils, neutrophils, and dendritic cells.Monocyte chemo- CC-CKR2hCC-CKR2h8.5 kDa (h).76 aa (h).Activates: honocytes, lymphocytes, lymph	[Refs. 33, 141, 156, 158]		[Ref. 156]				MLCF-1 Increased during sepais. Enhanced during infection and inflammation characterized by leukocyte infiltration.	
Monocyte chemo- CC-CKR1. 8.5 kDa (h). 76 aa (h). Activates: Itactic protein-3 CC-CKR2a. 8.5 kDa (h). 76 aa (h). Activates: Itactic protein-3 CC-CKR2a. 8.5 kDa (h). 76 aa (h). Activates: Itactic protein-3 CC-CKR2a. 8.5 kDa (h). 76 aa (h). Activates: Itactic protein-3 CC-CKR2a. 8.5 kDa (h). 76 aa (h). Activates: Monocyte chemo- CC-CKR3. Epithelial cells, endothelial Itactic protein-4 Chemoattractant for monocytes and eosinophils. Monocyte chemo- CC-CKR3 Epithelial cells, endothelial Epithelial cells, endothelial Chemoattractant for monocytes and eosinophils. Itactic protein-4 CC-CKR3 Produced by mucosal Epithelial cells form Stimulates histamine release from basophils. Itactic protein-4 CC-CKR3 Produced by mucosal Epithelial cells form Etergic and Til non-allergic and Til non-allergic Stimulates histamine release from basophils. Etergic and Til, non-allergic	MCP-2	Monocyte chemo- tactic protein-2			8.5 kDa (h).	74 aa (h).	Stimulates eosinophils and basophils. Increased during sepsis.	
Monocyte chemo- tactic protein-3CC-CKR1.Activates: Monocytes, lymphocytes, NK cells, basophils, eosinophils, monocytes, lymphocytes, NK cells, basophils, eosinophils, mentrophils, and dendritic cells.Izeric protein-3CC-CKR2b.B.5 kDa (h).76 aa (h).Activates: Monocytes, NK cells, basophils, eosinophils, neutrophils, and dendritic cells.Izeric protein-4CC-CKR2Epithelial cells, endothelial tactic protein-4CC-CKR2Epithelial cells, endothelial cells.Imonocyte chemo- tactic protein-4CC-CKR3Epithelial cells, endothelial epithelial cells, endothelialChemoattractant for monocytes and eosinophils, stimulates histamine release from basophils.Ind Tall contein-4CC-CKR3Epithelial cells from patients with Tri2 altergic and Tall non-altergicStimulates histamine release from basophils.	[Refs. 33, 156, 158]							
CU-CKRD. CU-CKRD. CC-CKR3. CC-CKR3. Refs. 36, 156 Ineutrophils, and dendritic cells. Monocyte chemo- CC-CKR2 Epithelial cells, endothelial Chemoattractant for monocytes and eosinophils. Itactic protein-4 CC-CKR3 CC-CKR3 Produced by mucosal Produced by mucosal Stimulates histamine release from basophils. and T _{al} Inon-altergic and T _{al} Inon-altergic	MCP-3	Monocyte chemo- tactic protein-3	CC-CKR1. CC-CKR2a.			76 aa (h).	Activates: Monocytes, lymphocytes, NK cells, basophils, eosinophils,	
Refs. 36, 156 Epithelial cells, endothelial Monocyte chemo- CC-CKR2 Epithelial cells, endothelial Chemoattractant for monocytes and eosinophils. tractic protein-4 CC-CKR3 CC-CKR3 cells. Produced by mucosal Stimulates histamine release from basophils. Produced by mucosal printiates histamine release from basophils. and Tail non-altergic and Tail non-altergic	[Refs. 33, 36,		CC-CKR2b. CC-CKR3.				neutrophils, and dendritic cells.	
A Monocyte chemo- tactic protein-4 CC-CKR2 Epithelial cells, endothelial cells. Chemoattractant for monocytes and eosinophils. ractic protein-4 CC-CKR3 Epithelial cells, endothelial epithelial cells from patients with T ₂ 2 allergic and T ₄₁ non-allergic sinustits. Chemoattractant for monocytes and eosinophils.	156, 158]		[Refs. 36, 156]					
Produced by mucosalProduced by mucosalepithelial cells frompatients with T_{H2} allergicand T_{H1} non-allergicsinusitis.	MCP-4	Monocyte chemo- tactic protein-4	CC-CKR2 CC-CKR3	Epithelial cells, endothelial cells.			Chemoattractant for monocytes and eosinophils. Stimulates histamine release from basophils.	TNFα, IL-1 (IFNγ and IL-4 synergize with
epithetiat cells from patients with $T_{\mu2}^{2}$ allergic and $T_{\mu1}$ non-allergic sinusitis.				Produced by mucosal				$TNF\alpha$ and IL-1 in increasing MCP-4
and T _H 1 non-allergic sinusitis.				epithelial cells from patients with T _H 2 allergic				mRNA in epithelial and
	[Ref. 69]			and T _H 1 non-allergic sinusitis.				

BCGFs that is capable of stimulating the growth and differentiation of activated B cells only (by antigen or cross-linking of surface membrane Ig) was purified and characterized in 1985 (2). With a molecular weight of 60,000 and homology to the murine low-molecular-weight (LMW) BCGF (12 kDa), it was initially named high-molecular-weight (HMW) BCGF and was later designated IL-14 (Table 15) (1). HMW-BCGF activity was first identified in culture supernatant of mitogen-stimulated acute lymphocytic leukemia T cells and Namalva (human B-cell lymphoma) cell lines (2). Its BCGF activity was reported to be completely independent of the presence of other BCGFs. Apart from being secreted, HMW BCGF may also be a putative intracellular precursor for another mature BCGF (1).

Human LMW BCGF was isolated in 1987 and represents the predominant molecular species released by normal lectinactivated human T cells. LMW BCGF has been defined by its comitogenic effect on activated T-cells. Studies performed by Sharma et al. (172) indicate the possibility that the BCGF gene either belongs to a multigene family or represents a differentially spliced single gene.

IL-15

Being purified from the culture supernatant of a simian kidney epithelial cell line, IL-15 represents a cytokine with biological actions similar to those of IL-2 (Table 16) (72). In fact, IL-15 activity was first determined with the assay for murine IL-2 (IL-2-dependent T-cell line CTLL). Human IL-15 was obtained by using the simian gene sequence to probe a cDNA library from the human stromal cell line IMTLH (77); murine IL-15 was obtained by similar techniques. Although human IL-2 and IL-15 share several biological effects, no significant sequence homologies were found. In contrast to IL-2, the most abundant sources of IL-15 appear to be nonlymphoid cells (i.e., muscle and placenta). No expression of IL-15 can be detected in (activated) peripheral T cells, but abundant mRNA levels were found in monocytes (29, 47), epithelial cells, muscle cell lines, and stromal cell lines derived from bone marrow and thymus. The IL-15-R is composed of three subunits, and the β and γ chains are shared with the IL-2-R and are necessary for signal transduction (6, 48, 72). The IL-15-R α chain is unique for IL-15, and the differences in distribution compared with IL-2 imply that IL-15 may have unique roles in the development and activation of some lymphocyte subpopulations as well as additional activities outside the immune system (72, 128).

In animal models, IL-15 appears to contribute to the pathogenesis of rheumatoid arthritis by recruitment of IL-15-responsive T cells into the synovial membrane (128), whereas in humans IL-15 may be involved in modulation of immune reactivity during intracellular infection (e.g., leprosy) (97).

IL-16

Originally called lymphocyte chemoattractant factor (30), IL-16 appeared to be biologically active only in its tetrameric form, which is composed of 14- to 17-kDa chains. Although expression of the IL-16 precursor mRNA is found in CD4⁺ as well as CD8⁺ T cells, fully assembled bioactive tetrameric protein is present only in CD8⁺ T cells. Structurally, IL-16 bears no resemblance to other cytokines or chemokines. The sequence and structure of the secreted form appear to be strongly conserved across species, and the predicted amino acid homology of murine IL-16 (mIL-16) with human IL-16 (hIL-16) is >85% (secreted peptide). Furthermore, mIL-16 has chemoattractant bioactivity for human CD4⁺ T cells (153), and this activity is inhibited by antibody to human recombinant IL-16 (hrecIL-16).

acid.

Abbreviation: aa, amino

Although IL-16 is predominantly secreted by CD8⁺ T cells it is not clear yet whether these cells are classic cytotoxic lymphocytes or other CD8⁺ subsets (115). IL-16 displays a variety of effects on CD4⁺ T cells, monocytes, and eosinophils (Table 17). The chemotactic effect of IL-16 leading to tissue infiltration by CD4⁺ T cells has been investigated in several disease states (30). In asthmatics, IL-16 secretion by airway epithelial cells is augmented by histamine, which suggests that IL-16 is involved in the full development of inflammatory responses. Moreover, IL-16 appears to be the only lymphocyte chemoattractant factor in the airways of persons with atopic asthma. IL-16 also appears to be involved in granulomatous inflammatory responses such as delayed-type hypersensitivity granuloma formation, sarcoidosis, and Mycobacterium tuberculosis-induced granuloma formation. This effect implies a possible role for IL-16 inhibitors in suppressing diseases in which IL-16 plays a prominent part. In addition, its ability to inhibit HIV replication together with the priming effect of CD4⁺ T cells (for IL-2-induced proliferation) suggests possibilities for IL-16 in treatment of HIV infection (153).

IL-17

A protein named CTLA8 was first cloned (rodent cDNA sequence) and described in 1993, and its predicted amino acid sequence showed 57% homology with that of HVS13 of *Herpesvirus saimiri*. Recombinant HVS13 and mCTLA8 exhibit similar activities on a variety of cell types (Table 18), which was the basis for terming them viral IL-17 and mIL-17, respectively. In 1995 human IL-17 was cloned and described by Yao et al. (204). IL-17 is produced almost exclusively by activated CD4⁺ T cells and is able to induce production of IL-6 and IL-8 by and expression of intercellular adhesion molecule-1 (ICAM-1) on human foreskin fibroblasts. The biologic activities of IL-17, its role in immune regulation, and its mechanism of action remain to be determined.

TNF AND LT

More than 20 years ago it was found that an endotoxininduced serum factor was able to cause hemorrhagic necrosis of tumors. Isolation and characterization of two factors capable of tumor necrosis, TNF- α and LT- α (also called TNF- β), occurred 10 years later. It then became evident that TNF- α was identical to the macrophage-secreted factor cachectin, a factor first described as a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. Both TNF- α and LT- α are biologically active as homotrimers. LT- β is a cytokine with actions similar to those of $LT-\alpha$; in fact, $LT-\beta$ is bioactive as a heterotrimeric protein composed of one $LT-\alpha$ and two LT- β molecules or as a complex of two LT- α and one LT- β subunits. Whereas TNF- α and LT- α are mostly secreted, LT- β is strictly a transmembrane protein that acts chiefly through cell-to-cell contact. The two LT are produced mainly by T cells, whereas TNF- α is secreted predominantly by monocytes in response to inflammatory stimuli (Table 19). TNF- α and LT- α have the same receptors, TNF-RI and TNF-RII (9, 10, 22), whereas LT- β binds to its own unique receptor, LTβ-R, also named TNF-R-related protein (38, 145). The receptors initiate signals for cell proliferation and apoptosis, and these signals are required for the normal development and function of the immune system. Excessive signaling can cause severe inflammatory reactions and tissue injury and may even lead to shock. In contrast, mutations in the receptor or ligand genes can cause characteristic disturbances of lymphocytes, derangement of the immune response, or autoimmune disease

(81, 83). The role of TNF- α during infection has been described in numerous studies (185). TNF- α -dependent resistance to infections has been demonstrated (e.g., Listeria monocytogenes infection) but, on the other hand, TNF- α has also been implicated in the pathogenesis of diseases such as endotoxic shock. Due to its high toxicity for animals as well as humans, TNF- α did not fulfill initial expectations for therapeutic application in the treatment of cancer, for example. Extensive clinical trials have been conducted to test TNF- α neutralizing antibodies in the treatment of septic shock, but no substantial benefit was observed (185). In patients with rheumatoid arthritis, anti-TNF- α treatment has proved to lessen pain, joint swelling, anemia, and erythrocyte sedimentation rates. Potential problems for this antibody-based therapy are the lack of neutralization of LT- α , the antigenicity of murine monoclonal antibodies that prevents long-term therapy, the formation of TNF- α -anti-TNF- α immune complexes that may be harmful, and the requirement for high doses of anti-TNF- α antibodies for neutralization of TNF- α (81). A different, more promising approach for inhibition of TNF- α -mediated effects in vivo is the development of chimeric inhibitor molecules in which the extracellular domain of the TNF-R is spliced to an Ig heavy-chain fragment. Such molecules are as stable as Igs and are minimally antigenic because they are composed of two nonantigenic elements. In addition, they block the effects not only of TNF- α but also of LT- α , since their binding domain is the receptor, which has the added advantage of a higher affinity for the ligand than monoclonal antibodies.

IFN

Type I, or viral, IFN (IFN- α , or leukocyte-derived IFN, and IFN- β or fibroblast-derived IFN) were originally described as factors capable of inducing RNA and protein in target cells. They are produced during viral or bacterial infection and have significant structural and functional homologies. Type II, or immune, IFN (IFN- γ) is primarily produced by T lymphocytes in response to antigen or mitogen and has a higher molecular weight than type I IFN (Table 20) (7, 63).

Although initial clinical studies with IFN- α suggested therapeutic activity against malignant melanoma, osteosarcoma, and various lymphomas, subsequent trials demonstrated significant activity only against less common tumor histiotypes such as hairy cell leukemia, chronic myelogenous leukemia, and a few types of lymphoma. Despite IFN- α 's activity against some specific leukemias and lymphomas, it has limited activity against solid tumors.

IFN- γ plays a critical role in the immune response and is the earliest detectable cytokine at the site of immunization with protein antigens. It plays a major role in the generation and regulation of the immune response and is one of the T_H1specific cytokines that promote T_H1 responses and inhibit T_H2 responses. Enhancement of MHC class II expression on antigen-presenting cells leading to more efficient antigen presention is also ascribed to IFN- γ . Apart from these effects, IFN- γ priming and activation of macrophages lead to enhanced production of proinflammatory cytokines in response to several stimuli. Furthermore, IFN- γ displays some adjuvant properties and plays a significant role in the control of several infections (e.g., M. tuberculosis and L. major). Apart from its value in cancer chemotherapy (157), IFN- γ has also proved effective for treatment of a variety of other diseases, such as rheumatoid and psoriatic arthritis (117), chronic granulomatous disease (170), and hepatitis B. One difficulty of the use of IFN- γ in therapy is the side effects produced (117, 170).

TABLE 25. C chemokine^a

Acronym or synonym	Producers	Biochemistry	Molecular biology and miscellaneous information	Major effects
Lymphotactin	T-cells.	10 kDa (h).	92 aa (h).	Chemotactic factor for T-cells.
[Refs. 33, 101]				

^a Abbreviation: aa, amino acid.

CSF

The major CSF comprise GM-CSF (119), M-CSF (80), G-CSF (119), and multi-CSF. The last, better known as IL-3, is described above.

In general, GM-CSF acts on bipotential stem cells to produce granulocytes and mononuclear phagocytes (119), G-CSF acts on the bone marrow to induce granulocyte colony formation (41), and M-CSF induces mononuclear phagocyte colony formation (80) (Table 21).

GM-CSF and G-CSF have proven to be of therapeutic value in the treatment of neutropenia arising from various causes (e.g. cancer chemotherapy, bone marrow transplantation, or infectious diseases), and generally, the duration as well as degree of neutropenia is reduced (120). In patients with myelodysplastic syndrome, recombinant GM-CSF has proven to increase not only numbers of monocytes and eosinophils but also numbers of killer T cells and nonactivated T-helper cells (phase I/II clinical trial) (68). On the other hand, the therapeutic benefit of M-CSF seems to be more modest. It had only slight effects on circulating-leukocyte levels when given to leukopenic patients. Beneficial effects of M-CSF, such as activation of host defenses against viral, bacterial, parasitic, and fungal infections, can be expected because of its enhancement of monocyte function. In addition, M-CSF induced the terminal differentiation of peripheral blood blast cells from some patients with acute myeloid leukemia in vitro and may therefore hold promise for treatment of leukemia (140).

CHEMOKINES

Basically, chemokines can be considered proinflammatory cytokines with chemotactic properties. They are involved in the initiation and propagation of inflammatory responses that are characterized by sequestration of neutrophils at the site of infection or tissue injury (113, 135). The chemokines have been divided into two groups of related polypeptides (supergene families) based on structural similarities in their primary amino acid sequences: CXC, or α , chemokines and CC, or β , chemokines. The CXC and CC chemokine genes cluster on chromosomes 4 and 7, respectively, except the gene for CXC chemokine stromal-cell-derived factor-1, which is located on chromosome 10 (16).

Over 12 different CXC chemokines, most of which have strong neutrophil chemotactic and activating properties, have been described. This property appears to be based on a specific amino acid sequence immediately preceding the first cysteine, the so called ELR motif (Glu-Leu-Arg) (33, 164). Indeed, chemokines lacking this motif (MIG, PF4, and IP-10 [see Table 22]) have relatively weak neutrophil-activating capacities. Table 22 lists the CXC and CC chemokines, and Tables 23 and 24 describe the properties of some representatives of CXC and CC chemokines, respectively. The members of the CC supergene family (Table 24) have relative specificity for the elicitation of mononuclear cells (macrophages and T cells), and some members appear to be potent chemotactic factors for eosinophils and basophils. Lymphotactin is a structurally unique chemokine that bears only minor similarities to some CC chemokines. In contrast to the other chemokines it is mainly produced by T lymphocytes and is a strong chemotactic factor for T cells (Table 25). Due to its effects and structure it may represent a third supergene family of chemokines (C chemokines) (101).

MISCELLANEOUS CYTOKINES

Cytokines involved in the development and regulation of immune responses that cannot easily be categorized in other groups are summarized in Table 26.

CYTOKINE RECEPTORS

Characteristic features of cytokines are their functional pleiotropy and redundancy. This can in part be explained by the molecular biology of the cytokine receptor systems (45, 62, 85, 122). Most cytokine receptors consist of two or more membrane proteins, and generally only one of these subunits displays specific binding properties (private ligand-specific receptor). The others have no ability to bind the ligand but are associated with signal generation and transduction (public class-specific signal transducer). Binding of the ligand to the ligand-specific subunit leads to oligomerization of the subunits, which juxtaposes their cytoplasmic domains and allows the receptor to engage the intracellular signaling machinery. Several cytokine receptor systems use a common signal transducer; e.g., gp130 is used by IL-6, leukemia-inhibitory factor (LIF), oncostatin M (OSM), and IL-11. Therefore, different cytokines can mediate similar functions on various tissues, or a tissue-specific effect can be realized by different cytokines. With few exceptions (e.g., IL-8-R, M-CSF-R, and TGF-β-R), cytokine receptors do not contain classical signaling domains and hence do not use signaling pathways such as cyclic AMP (cAMP)-protein kinase A, inositol lipid hydrolysis with Ca²⁺ mobilization followed by protein kinase C activation, cGMPprotein kinase G, or receptor tyrosine kinase activation. Instead, dimerization of the cytokine receptor components results in the activation of receptor-associated cytoplasmic protein tyrosine kinases, the so-called JAKs (Janus family of tyrosine kinases [95]), that in turn activate members of the STAT family (signal transducers and activators of transcription) or induce the Ras-mitogen-activated protein kinase cascade (95). Several review articles on cytokine receptors (5, 10, 45, 62, 105, 111, 118, 122, 136, 143, 200, 201) and cytokine signal transduction (21, 89, 95, 98, 106, 107, 142, 145, 151, 155, 169, 171) have been published recently.

Based on structural similarities, cytokine receptors can be divided into several superfamilies: the Ig receptor superfamily (e.g., IL-1-R), the hematopoietin receptor superfamily (e.g., IL-2-R, -4-R, -5-R, -6-R, and -9-R, GM-CSF-R, LIF-R, and OSM-R), the TNF receptor superfamily (e.g., TNF-R, LT- α -R, and LT- β -R), the G-protein-coupled receptor superfamily (e.g., IL-8-R and many other chemokine receptors), the

Miscellaneous cytokines ^a	
TABLE 26.	

		B	4				,
ACTONYM Or synonym	Full Name	Keceptor(s)	L roducers	Blocnemistry	Molecular Diology and miscellaneous information	Major effects	Inducers
TGFB	Transforming growth factor β	TGF-RI (53-65 kDa). TGF-BII (83-110 kDa)	Megakaryocytes / platelets, monocytes / macrophages,	12.5 kDa (h), chromosome 19q,	112 aa (h).	Induces: Isotype shift in B-cells (IgA, and IgA ₂ production) together with tr in crute comparison	Infection.
	Cartilage inducing factor A	contains functional kinase.	sets of T- bblasts.	гтч. Biologically active		while i.i.e. u. i.e. (1) is the second of number monocytes. A citicates	
	Cartilage inducing	TGF-RIII (250-310 kDa, β- glvcan). no signaling motive	~	as dimer.		Osteoblasts and inflammatory cells.	
	factor B	and may function as reservoir for surplus TGFB or as	ills.	Three homodimer isoforms in human:		Chemotactic for: Fibroblasts.	
		regulator of figato-officing ability or surface expression of RI or RII.		TGFB3.		Inhibits: Macrophage killing of intracellular parasites, endothelial cell	
		TGF-RIV (60 kDa, only on pituitary cells).		Bioassay: proliferation of Mv1Lu or HT-2		proliferation, NK cell activity, $TNF\alpha$ - or IL-1 β - or LPS-induced expression of IL-6 and IL-8 in human umbilical vein endothelial cells [32].	
		TGF-RV (400 kDa).				Inhibits growth of: Osteoclasts. NK cells. henatocytes. enithelial cells. T- and B-	
		On most cells TGF-R's I, II, III and V are co-expressed.				cells (and functions).	
		The loss of cellular response to TGFB correlates with loss of				Stimulates: Growth of cells of mesenchymal origin in general, osteoblasts, formation of extracellular matrix, adhesion of intra-epithelial	
		type I and / or type II receptors.TGF-RII contains functional binase				lymphocytes (IEL) to epithelial cells by up-regulation of CD103 $(\alpha_{\rm E}\beta)$ integrin) $\alpha_{\rm E}$ chain on IEL (ligand E-cadherin). Enhanced more obtain the the model on IT 10 in a more of and	
[Refs. 32, 127,						Dunances matchyinge annity to produce 11-10 m normal and tumor-bearing mice.	
[6/1		[Ref. 127]				Interacts with EGF, FGF, TGF-α, PDGF and IL-2.	
LIF	Leukemia inhibitory factor	LIF-R (120 and 250 kDa form).	Bone marrow stromal cells, fibroblasts, T-cells,	50-58 kDa glycoprotein (h),	179 aa (h).	as IL-6 (IL-11 and OSM).	TNFα.
	-	en130 / CD130 / 8 chain.		÷	79% aa homology between h and mLIF.	Promotes survival of: Sensorv neurons (shiffs from adreneroic to cholineroic	IL-1.
HILDA	Human interleukin for DA cells					phenotype).	Leustroducsin-B.
DSF	Differentiation	Expressed on nematopoletic cells and cell lines originating		weight is composed of oligosaccharides.		Activates growth of:	
	stimulating factor	rrom bone marrow, urymus spleen liver, placental tissue		Belongs to the IL-6,		riproplasts. Kaposi sarcoma cells in AIDS.	
DIF	Differentiation inducing factor	and peritoneum. Additionally on blood mononuclear cells except lymphocytes, NK cells,		and IL-1, CN1F, USIM and IL-11 cytokine family (based on		Suppresses: Differentiation of pluripotent hematopoietic stem cells and of	
DIA	Differentiation inhibition activity for			aa-sequence similarities).		murine M1 myeloid leukemia cell line.	
	murine embryonic			Bioassay:		Potentiates: IL-3 dependent proliferation of hematopoietic progenitor cells.	
	stem (E-S) cetts			TF-1 cell line (h),		Stimulates:	
HSF III	hepatocyte stimulating factor III			proliferation of M1 cell line (m).		Production of acute phase proteins by hepatocytes.	
CNDF	Cholinergic neuronal differentiation factor					Induces: Macrophage differentiation, IL-6 expression, cachexia, cossoive bone formation, <i>in vivo</i> expansion of bone marrow economient colle	
MLPLI	Melanoma-derived lipoprotein lipase					Miscellaneous:	
[Refs. 5, 132, 191]	inhibitor	[Ref. 5, 94]				Plays an important role (along with IL-6 and G-CSF) in regulation of hematopoietic stem cells. Important in the release of Ca^{2*} from bone tissue.	
MSO	Oncostatin M	OSM-R (150 kDa). gp130 / CD130.	T-cells, monocytes / macrophages, histiocytic lymphoma cells.	26 kDa (h). Thermostable at	226 aa (h). Structurally related to LIF,	ertain solid endothelial	LPS. Leustroducsin-B.
_	_		-	-		-	-

				Infection, stress, and glucocorticoids.					Clotting.														-					
cell plasminogen activator synthesis, IL-1-induced expression of IL-8 and GM-CSF by synovial and lung fibroblasts.	Stimulates: Growth of normal fibroblasts and AIDS-related Kaposi's sarcoma-derived cells, LDL receptor expression and uptake by hepatoma cells, L-6 production by cultured human endothelial	cells, growth of IL-6-dependent plasmacytomas. Induces:	11-6 production by human endothelial cells, fibroblasts and Kaposi's sarcoma cells.	/ macrophages (inhibits migration). ⁷ α. otoxemia.	Counter-regulates the inhibitory effects of glucocortiooids on inflammatory cytokine production (controls steroid axis).					onal cens, vascutal smooti muscre cens (vascouistrictor), endothelial cells, epithelial cells, glial cells and chondrocytes.	Granule release from neutrophils and monocytes. Potent mitogen for (dermal and tendon) fibroblasts (collagen	synthesis).	Inhibits: NK cell activity.		Cuemotactor for: Fibroblasts, smooth muscle cells, neutrophils, monocytes, entitheil and endothelial cells.		Stimulates: Degranulation by neutrophils and monocytes, collagen	synthesis, muogenesis of mesoderm-derived cells, extracellular matrix synthesis.		Activates and differentiates: Multipotential progentior cells. mast cells (proliferation and	survival and differentiation into connective tissue mast cells).	E nhances: IL-7R expression on yô intra-epithelial lymphocytes	thymocyte proliferation with IL-2 and IL-7.	Miscellancous: Synergizes with other hematopoietic growth factors (G-CSF, M-CSF GM-CSF II3 II -6) to etimulate meshoid bromboid	and erythroid progenitor cells.	Plays an important role in survival, proliferation or migration of primordial germ cells and melanoblasts.	Induces: Liver acute phase response:	hepatoma cells - fibrinogen mRNA expression (rat). - haptoglobin mRNA (human). - α ₂ -macroglobulin mRNA (rat).
to pH 2-11. G-CSF, IL-6, and CNTF.									A chain: 160 aa.	D CHAIN, 110 aa.										237 aa precursor (h).							Belongs to the IL-6, LIF, CNTF, OSM and IL-11	cytokine family (based on aa-sequence similarity).
56°C) and resistant to pH 2-11.	Bioassay: proliferation of TF-1 cells.	Belongs to the IL-6, LIF, CNTF, CT-1, and IL-11 cvtokine	family.	12 kDa.				·	28-32 kDa (h), chromocome 7 (A)	22 (B).	Dimers composed	of combinations of 2 different gene	products (16 kDa A chain and 14 kDa B	chain): 3 different	AB).	Bioassay:	Swiss 3T3 cells or	nko-313 fibroblasts.		18.5 kDa (h).	Forms glycosylated homodimers.	Glycosylation not essential for	biological activity.	Soluble and membrane-bound forms.		Bioassay: proliferation of TF-1 cells		
				Activated T-cells, monocytes / macrophages and anterior pituitary oland	Rat: constitutively	expressed in lung, liver, kidney, spleen, adrenal oland and skin Sionificant	quantities of MIF protein present in various cell	types and MIF is readily released after LPS stimulation.	Platelets, endothelial cells,	monocytes / macrophages,	fibroblasts, neurons, cytotrophoblasts.									Bone marrow stromal cells, endothelial cells,	fibroblasts, Sertoli cells.							
			[Ref. 25, 94]						PDGF-R (170-180 kDa),		Dimers consisting of α and β subunits which may combine	to form one of three non-	complexes $[(\alpha)_2, (\beta)_2, or (\alpha)_1(\beta)_1]$.	The summit time of the A	It is a suburit binds clurct A of B chain whereas the β subunit binds only the B chain	Therefore, different isoforms	bind to different receptor classes and this would	determine the differential activity of PDGF isoforms on various cell tynes	[Ref. 86]	SCF-R / CD117 (145 kDa).						[Ref. 202]	Signal transduction through gp130.	
				Migration inhibitory factor					Platelet derived											Stem cell factor	Steel factor	<i>c-kit</i> ligand	Mast cell growth	tactor			Cardiotrophin-1	Hepatocyte stimulating factor
		_	[Ref. 25]	MIF				[Ref. 27]	PDGF										[Refs. 86, 163, 195]	SCF	SF	KL	MGF			[Ref. 202]	CT-1	HSF

^a Abbreviations: aa, amino acids; EGF, epidermal growth factor; FGF, fibroblast growth factor; CNTF, ciliary neurotrophic factor; CT-1, cardiotrophin-1; EBV, Epstein-Barr virus; PBMNC, peripheral blood mononuclear cells; ER, endoplasmic reticulum.

TGF-B-R superfamily (e.g., TGFB-R), and the IFN receptor superfamily (IFN- α -R, IFN- β -R, and IFN- γ -R).

Not only are the biological actions of cytokines regulated by cytokine or receptor expression, but also the presence of soluble receptors (23, 85, 198) can influence the effects of a specific cytokine; e.g., sIL-6-R α (the extracellular portion of IL-6-R α) enhances IL-6 activity by transporting IL-6 to the IL-6-R β (198). Furthermore, not all receptors are capable of signal transduction; e.g., IL-1-RII is devoid of signaling and may act as a decoy receptor, thereby attenuating the effects of IL-1 β (55). In addition, naturally occurring autoantibodies to cytokines may affect cytokine actions (12, 82).

Remarkable discoveries that linked cytokine receptors to HIV infection were made in 1996 and have been extensively reviewed by Fauci (64). Apart from the induction or suppression of HIV expression by numerous individual cytokines, it appears that several receptors for CC and CXC chemokines can act as coreceptors for HIV; i.e., T-tropic (T-cell-tropic) HIV strains use CXC-CKR4 (also known as LESTR or fusin), M-tropic (monocyte- or macrophage-tropic) HIV-1 strains use CC-CKR5, and M-tropic and dually tropic HIV-1 strains use CC-CKR2b and CC-CKR3 as coreceptors (57, 64). As a consequence, the chemokines RANTES (regulated on activation, normal T expressed, and secreted), MIP-1 α , and MIP-1 β suppress M-tropic viral replication while stromal-cell-derived factor-1 suppresses T-tropic viral replication (16). Furthermore, people with a defect in the gene encoding CC-CKR5, leading to a truncated version of the receptor that is not expressed on the cell surface, have been shown to be partially protected against certain strains of HIV.

CONCLUSIONS

Over the last 2 decades our understanding of the biology and biological significance of cytokines has dramatically increased and some cytokines have been introduced into clinical practice (e.g., IFN- γ and G-CSF). Apart from cytokines, one may expect that treatment with cytokine inhibitors, anticytokine antibodies, receptor antagonists, or substances that inhibit cytokine signaling (171) may be of therapeutic value. Treatment with such biological response modifiers generally means modulating an array or cascade of events. Therefore, in-depth investigation of possible effects and accurate determination of the optimal immunomodulatory doses of these modifiers are absolutely necessary. However, many questions on cytokine biology remain unanswered. Until the mechanisms responsible for the control of cytokine biological activities are further elucidated, clinical trials should be designed carefully and the results obtained should be interpreted and evaluated with caution. Basic and animal research on cytokines must be continued in addition to investigations of therapeutic applications in clinical trials.

REFERENCES

- 1. Ambrus, J. L., L. Chesky, T. Chused, Y. Young, P. McFarland, A. August, and E. J. Brown. 1991. Intracellular signaling events associated with induction of proliferation of normal human B-lymphocytes by two different antigenically related human B-cell growth factors (high molecular weight B-cell growth factor [HMW-BGF] and the complement factor 3b). J. Biol. Chem. 266:3702-3708.
- 2. Ambrus, J. L., C. H. Jurgensen, E. J. Brown, and A. S. Fauci. 1985. Purification to homogeneity of a high molecular weight human B-cell growth factor: demonstration of specific binding to activated B-cells; and development of a monoclonal antibody to the factor. J. Exp. Med. 162: 1319-1335.
- 3. Appasamy, P. M. 1993. Interleukin-7: biology and potential clinical applications. Cancer Invest. 11:487-499.
- Arai, K., F. Lee, A. Miyajima, S. Miyatake, N. Aria, and T. Yokota. 1990. Cvtokines: coordinators of immune and inflammatory responses. Annu. Rev. Biochem. 59:783-836.

- Baird, P. N., R. J. D'Andrea, and G. J. Goodall. 1995. Cytokine receptor genes: structure, chromosomal location, and involvement in human disease. Leuk. Lymphoma 18:373–383.
- 6. Bamford, R. N., A. J. Grant, J. D. Burton, C. Peters, G. Kurys, C. K. Goldman, J. Brennan, E. Roessler, and T. A. Waldmann. 1994. The interleukin (IL) 2 receptor β chain is shared by IL-2 and a cytokine, provisionally designated IL-T, that stimulates T-cell proliferation and the induction of lymphokine activated killer cells. Proc. Natl. Acad. Sci. USA 91:4940–4944.
- Baron, S., S. K. Tyring, W. R. Fleischmann, D. H. Coppenhaver, D. W. Niesel, G. R. Klimpel, G. J. Stanton, and T. K. Hughes. 1991. The interferons: mechanisms of action and clinical applications. JAMA 266:1375– 1383.
- Barton, B. E. 1996. The biological effects of interleukin-6. Med. Res. Rev. 16:87–109.
- Bazzoni, F., and B. Beutler. 1995. How do tumor necrosis factors work? J. Inflamm. 45:221–238.
- Bazzoni, F., and B. Beutler. 1996. The tumor necrosis factor ligand and receptor families. N. Engl. J. Med. 334:1717–1725.
- Beagley, K., J. Eldridge, F. Lee, H. Kiyono, M. Everson, W. Koopman, T. Hirano, T. Kishimoto, and J. McGhee. 1989. Interleukins and IgA synthesis: human and murine interleukin-6 induce high rate IgA secretion in IgA-committed B-cells. J. Exp. Med. 169:2133–2138.
- Bendtzen, K., M. B. Hansen, C. Ross, L. K. Poulsen, and M. Svenson. 1995. Cytokines and autoantibodies to cytokines. Stem Cells (Dayton) 13:206– 222.
- Berg, D. J., R. Kuehn, K. Rajewski, W. Mueller, S. Menon, N. Davidson, G. Gruenig, and D. Rennick. 1995. Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Schwartzman reaction but not endotoxin tolerance. J. Clin. Invest. 96:2339–2347.
- Beutler, B., and A. Cerami. 1989. The biology of cachectin/TNF—a primary mediator of the host response. Annu. Rev. Immunol. 7:625–655.
- Biron, C. A., and R. T. Gazzinelli. 1995. Effects of IL-12 on immune responses to microbial infections: a key mediator in regulating disease outcome. Curr. Opin. Immunol. 7:485–496.
- Bleul, C. C., M. Farzan, H. Choe, C. Parolin, I. Clark-Lewis, J. Sodroski, and T. A. Springer. 1996. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382:829–833.
- Borger, P., H. F. Kauffman, D. S. Postma, and E. Vellenga. 1996. IL-7 differentially modulates the expression of IFN-γ and IL-4 in activated human T-lymphocytes by transcriptional and post-transcriptional mechanisms. J. Immunol. 156:1333–1338.
- Borish, L., R. Rosenbaum, L. Albury, and S. Clark. 1989. Activation of neutrophils by recombinant interleukin-6. Cell. Immunol. 121:280–289.
- Bradding, P. 1996. Human mast cell cytokines. Clin. Exp. Allergy 26:13–19.
 Bromander, A. K., L. Ekman, M. Kopf, J. G. Nedrud, and N. Y. Lycke. 1996. IL-6-deficient mice exhibit normal mucosal IgA responses to local immu-
- nizations and *Helicobacter felis* infection. J. Immunol. 156:4290–4297.
 21. Brooks, J. W., and S. B. Mizel. 1994. Interleukin-1 signal transduction. Eur. Cytokine Netw. 6:547–561.
- Brouckaert, P., C. Libert, B. Everaerdt, N. Takahashi, A. Cauwels, and W. Fiers. 1993. Tumor necrosis factor, its receptors and the connection with interleukin-1 and interleukin-6. Immunobiology 187:317–329.
- Brown, P. M., P. Tagari, K. R. Rowan, V. L. Yu, G. P. Oneill, R. C. Middaugh, G. Sanyal, A. W. Ford-Hutchinson, and D. W. Nicholson. 1995. Epitope-labeled soluble human interleukin-5 (IL-5) receptors—affinity cross-link labeling, IL-5 binding and biological activity. J. Biol. Chem. 270:29236–29243.
- 24. Broxmeyer, H. E., S. Cooper, N. Hague, L. Benninger, A. Sarris, K. Cornetta, S. Vadhanraj, P. Hendrie, and C. Mantel. 1995. Human chemokines: enhancement of specific activity and effects *in vitro* on normal and leukemic progenitors and a factor-dependent cell line and *in vivo* in mice. Ann. Hematol. 71:235–246.
- Bruce, A. G., P. S. Linsley, and T. M. Rose. 1992. Oncostatin M. Prog. Growth Factor Res. 4:157–170.
- 26. Brunda, M. J. 1994. Interleukin-12. J. Leukocyte Biol. 55:280-288.
- Bucala, R. 1994. Identification of MIF as a new pituitary hormone and macrophage cytokine and its role in endotoxic shock. Immunol. Lett. 43: 111–123.
- Butterworth, A. E. 1984. Cell mediated damage to helminths. Adv. Parasitol. 23:143–235.
- Carson, W. E., M. E. Ross, R. A. Baiocchi, M. J. Marien, N. Boiani, K. Grabstein, and M. A. Caligiuri. 1995. Endogenous production of interleukin-15 by activated human monocytes is critical for optimal production of interferon-γ by natural killer cells *in vitro*. J. Clin. Invest. 96:2578–2582.
- Center, D. M., H. Kornfeld, and W. W. Cruikshank. 1996. Interleukin-16 and its function as a CD4 ligand. Immunol. Today 17:476–481.
- Chazen, G. D., G. M. Pereira, G. Legros, S. Gillis, and E. M. Shevach. 1989. Interleukin 7 is a T-cell growth factor. Proc. Natl. Acad. Sci. USA 86:5923– 5927.
- Chen, C. C., and A. M. Manning. 1996. TGF-β1, IL-10 and IL-4 differentially modulate the cytokine-induced expression of IL-6 and IL-8 in human endothelial cells. Cytokine 8:58–65.

- Clark-Lewis, I., K. S. Kim, K. Rajarathnam, J. H. Gong, B. Dewald, B. Moser, M. Baggiolini, and B. D. Sykes. 1995. Structure-activity relationships of chemokines. J. Leukocyte Biol. 57:703–711.
- Clayberger, C., S. Luna Fineman, J. E. Lee, A. Pillai, M. Campbell, R. Levy, and A. M. Krensky. 1992. Interleukin 3 is a growth factor for human follicular B cell lymphoma. J. Exp. Med. 175:371–376.
- Cluitmans, F. H. M., B. H. J. Esendam, J. E. Landegent, R. Willemze, and J. H. F. Falkenburg. 1994. IL-4 down-regulates IL-2-, IL-3-, and GM-CSFinduced cytokine gene expression in peripheral blood monocytes. Ann. Hematol. 68:293–298.
- Combadiere, C., S. K. Ahuja, J. Vandamme, H. L. Tiffany, J. L. Gao, and P. M. Murphy. 1995. Monocyte chemoattractant protein-3 is a functional ligand for C-C chemokine receptors 1 and 2B. J. Biol. Chem. 270:29671– 29675.
- Cousens, L. P., J. S. Orange, H. C. Su, and C. A. Biron. 1997. Interferonα/β inhibition of interleukin-12 and interferon-γ production *in vitro* and endogenously during viral infection. Proc. Natl. Acad. Sci. USA 94:634–639.
- Crowe, P. D., T. L. van Arsdale, B. N. Walter, C. F. Ware, C. Hession, B. Ehrenfels, J. L. Browning, W. S. Din, R. G. Goodwin, and C. A. Smith. 1994. A lymphotoxin-beta-specific receptor. Science 264:707–710.
- 39. Curfs, J. H. A. J., M. T. E. Vogels, W. M. C. Eling, and J. W. M. van der Meer. 1992. IL-1 receptor antagonist prevents cerebral malaria in *Plasmodium berghei*-infected mice, p. 105–111. *In P. Ghezzi and A. Mantovani* (ed.), The pathophysiology and pharmacology of cytokines. Biomedical Press, Augusta, Ga.
- Daig, R., T. Andus, E. Aschenbrenner, W. Falk, J. Scholmerich, and V. Gross. 1996. Increased interleukin-8 expression in the colon mucosa of patients with inflammatory bowel disease. Gut 38:216–222.
- Dale, D. C., W. C. Liles, W. R. Summer, and S. Nelson. 1995. Review: granulocyte colony-stimulating factor (G-CSF)—role and relationships in infectious diseases. J. Infect. Dis. 172:1061–1075.
- 42. Dalrymple, S. A., L. A. Lucian, R. Slattery, T. McNeil, D. M. Aud, S. Fuchino, F. Lee, and R. Murray. 1995. Interleukin-6-deficient mice are highly susceptible to *Listeria monocytogenes* infection: correlation with inefficient neutrophilia. Infect. Immun. 63:2262–2268.
- Dalrymple, S. A., R. Slattery, D. M. Aud, M. Krishna, L. A. Lucian, and R. Murray. 1996. Interleukin-6 is required for a protective immune response to systemic *Escherichia coli* infection. Infect. Immun. 64:3231–3235.
- 44. D'Andrea, A., M. Aste-Amezaga, N. M. Valiante, X. Ma, M. Kubin, and G. Trinchieri. 1993. Interleukin-10 (IL-10) inhibits human lymphocyte interferon-γ-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J. Exp. Med. 178:1041–1048.
 45. Danilkovich, A. V., and B. B. Dzantiev. 1995. Interaction of cytokines with
- Danilkovich, A. V., and B. B. Dzantiev. 1995. Interaction of cytokines with cellular receptors. Biochemistry (Engl. Transl. Biokhimiya) 60:1051–1060.
- Dayer, J.-M., and D. Burger. 1994. Interleukin-1, tumor necrosis factor and their specific inhibitors. Eur. Cytokine Netw. 5:563–571.
- Defrance, T., P. Carayon, and G. Billian. 1994. Interleukin-13 is a B-cell stimulating factor. J. Exp. Med. 179:135–143.
- 48. Dejong, J. L. O., N. L. Farner, M. B. Widmer, J. G. Giri, and P. M. Sondel. 1996. Interaction of IL-15 with the shared IL-2 receptor β and $\gamma(c)$ subunits—the IL-15/ $\beta/\gamma(c)$ receptor-ligand complex is less stable than the IL-2/ $\beta/\gamma(c)$ receptor-ligand complex. J. Immunol. **156**:1339–1348.
- Devergne, O., M. Hummel, H. Koeppen, M. M. Le Beau, E. C. Nathanson, E. Kieff, and M. Birkenbach. 1996. A novel interleukin-12 p40-related protein induced by latent Epstein-Barr virus infection in B lymphocytes. J. Virol. 70:1143-1153.
- de Waal-Malefyt, R., C. G. Figdor, R. Huijbens, S. Mohan-Peterson, B. Bennet, J. Culpepper, W. Dang, G. Zurawski, and J. E. de Vries. 1993. Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. J. Immunol. 151:6370–6381.
- Dinarello, C. A., and S. M. Wolff. 1993. The role of interleukin-1 in disease. N. Engl. J. Med. 328:106–113.
- Dinarello, C. A. 1994. The biological properties of interleukin-1. Eur. Cytokine Netw. 5:517–531.
- Dinarello, C. A. 1994. Interleukin-1 antagonists. J. Interferon Res. 14:307.
 Dinarello, C. A. 1994. The interleukin-1 family: 10 years of discovery.
- FASEB J. 8:1314–1325. 55. Dinarello, C. A. 1995. Interleukin-1 and interleukin-1 receptor antagonists.
- Nutrition 11:492–494.
- 56. **Disanto, J. P., R. Kuhn, and W. Muller.** 1995. Common cytokine receptor gamma chain γ (c)-dependent cytokines: understanding *in vivo* functions by gene targeting. Immunol. Rev. **148**:19–34.
- Dittmar, M. T., A. McKnight, G. Simmons, P. R. Clapham, R. A. Weiss, and P. Simmonds. 1997. HIV tropism and co-receptor use. Nature 385:495–496.
- Doherty, T. M., R. A. Seder, and A. Sher. 1996. Induction and regulation of IL-15 expression in murine macrophages. J. Immunol. 156:735–741.
- Dunkley, M. L., and A. J. Husband. 1991. The role of non-B-cells in localizing an IgA plasma cell response in the intestine. Reg. Immunol. 3:336–345.
- Ertel, W., M. Keel, U. Steckholzer, U. Ungethum, and O. Trentz. 1996. Interleukin-10 attenuates the release of proinflammatory cytokines but

depresses splenocyte functions in murine endotoxemia. Arch. Surg. 131:51-56.

- 61. Eugster, H.-P., M. Müller, U. Karrer, B. D. Carr, B. Schnyder, V. M. Eng, G. Woerly, M. Le Hir, F. di Padova, M. Aguet, R. Zinkernagel, H. Bluethmann, and B. Ryffel. 1996. Multiple immune abnormalities in tumor necrosis factor and lymphotoxin-α double-deficient mice. Int. Immunol. 8:23– 36.
- Falus, A. 1995. Cytokine receptor architecture, structure and genetic assembly. Immunol. Lett. 44:221–223.
- Farrar, M. A., and R. D. Schreiber. 1993. The molecular cell biology of interferon-γ and its receptor. Annu. Rev. Immunol. 11:571–611.
- Fauci, A. S. 1996. Host factors and the pathogenesis of HIV-induced disease. Nature 384:529–534.
- Fiorenzo, D. F., M. W. Bond, and T. R. Mosmann. 1989. Two types of mouse T-helper cell. J. Exp. Med. 170:2081–2095.
- Fleming, S. D., and P. A. Campbell. 1996. Macrophages have cell surface IL-10 that regulates macrophage bactericidal activity. J. Immunol. 156: 1143–1150.
- 67. Gallagher, R. 1997. Tagging T-cells: T_H1 or T_H2? Science 275:1615.
- Ganser, A., B. Volkers, J. Greher, O. G. Ottmann, F. Walther, R. Becher, L. Bergmann, G. Schulz, and D. Hoelzer. 1989. Recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndromes: a phase I/II trial. Blood 73:31–37.
- 69. Garcia-Zepeda, E. A., C. Combadiere, M. E. Rothenberg, M. N. Sarafi, F. Lavigne, Q. Hamid, P. M. Murphy, and A. D. Luster. 1996. Human monocyte chemoattractant protein (MCP) 4 is a novel CC chemokine with activities on monocytes, eosinophils, and basophils induced in allergic and nonallergic inflammation that signals through the CC chemokine receptors (CCR) 2 and 3. J. Immunol. 157:5613–5626.
- Gasperini, S., F. Calzetti, M. P. Russo, M. Degironcoli, and M. A. Cassatella. 1995. Regulation of GRO-α production in human granulocytes. J. Inflamm. 45:143–151.
- Geist, L. J., and G. W. Hunninghake. 1995. Cytokine gene regulation by viral gene products. J. Lab. Clin. Med. 126:517–520.
- Giri, J. G., D. M. Anderson, S. Kumaki, L. S. Park, K. H. Grabstein, and D. Cosman. 1995. IL-15, a novel T-cell growth factor that shares activities and receptor components with IL-2. J. Leukocyte Biol. 57:763–766.
- Gleich, G. J., and C. R. Adolphson. 1986. The eosinophilic leukocyte: structure and function. Adv. Immunol. 39:177–253.
- Glickstein, L. J., and B. T. Huber. 1995. Karoushi—death by overwork in the immune system. J. Immunol. 155:522–524.
- Gordon, M. S. 1996. Thrombopoietic activity of recombinant human interleukin-11 in cancer patients receiving chemotherapy. Cancer Chemother. Pharmacol. 38:S96–S98.
- 76. Gordon, M. S., W. J. McCaskill-Stevens, L. A. Battiato, J. Loewy, D. Loesch, E. Breeden, R. Hoffman, K. J. Beach, B. Kuca, J. Kaye, and G. W. Sledge. 1996. Phase I trial of recombinant human interleukin-11 (neumega rh IL-11 growth factor) in women with breast cancer receiving chemotherapy. Blood 87:3615–3624.
- 77. Grabstein, K. H., J. Eisenman, K. Shanebeck, C. Rauch, S. Srinivasan, V. Fung, C. Beers, J. Richardson, M. A. Shoenborn, M. Ahdieh, L. Johnson, M. R. Alderson, J. D. Watson, D. M. Anderson, and J. G. Jiri. 1994. Cloning of a T-cell growth factor that interacts with the β chain of the interleukin-2 receptor. Science 264:965–968.
- Greil, M., E. Douni, H. Wajant, M. Lohden, M. Clauss, B. Maxeiner, S. Georgopoulos, W. Lesslauer, G. Kollias, K. Pfizenmaier, and P. Scheurich. 1995. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83:793– 802.
- Grimm, M. C., S. K. O. Elsbury, P. Pavli, and W. F. Doe. 1996. Interleukin-8: cells of origin in inflammatory bowel disease. Gut 38:90–98.
- Groopman, J. E., J. M. Molina, and D. T. Scadden. 1989. Hematopoietic growth factors: biology and clinical applications. N. Engl. J. Med. 321:1449– 1459.
- Gruss, H. J., and S. K. Dower. 1995. The TNF ligand superfamily and its relevance for human diseases. Cytokine Mol. Ther. 1:75–105.
- Hansen, M. B., M. Svenson, M. Diamant, K. Abell, and K. Bendtzen. 1995. Interleukin-6 autoantibodies: possible biological and clinical significance. Leukemia 9:1113–1115.
- Hauser, S. L. 1995. Tumor necrosis factor: immunogenetics and disease. Ann. Neurol. 38:702–704.
- He, Y.-W., B. Adkins, R. K. Furse, and T. R. Malek. 1995. Expression and function of the γc subunit of the IL-2, IL-4, and IL-7 receptors. J. Immunol. 154:1596–1605.
- Heaney, M. L., and D. W. Golde. 1996. Soluble cytokine receptors. Blood 87:847–857.
- Heldin, C. H. 1992. Structural and functional studies on platelet-derived growth factor. EMBO J. 11:4251–4259.
- Hendrzak, J. A., and M. J. Brunda. 1995. Biology of disease. Interleukin-12: biologic activity, therapeutic utility, and role in disease. Lab. Invest. 72:619– 637.

- Herrod, H. G. 1989. Interleukins in immunologic and allergic diseases. Ann. Allergy 63:269–272.
- Hibi, M., K. Nakajima, and T. Hirano. 1996. IL-6 cytokine family and signal transduction: a model of the cytokine system. J. Mol. Med. 74:1–12.
- Hirao, T., H. Aoki, H. Ichikawa, and Y. Sato. 1997. Characterization of an interleukin-1 receptor antagonist protein released from ultraviolet irradiated epidermal sheet. J. Dermatol. Sci. 14:189–198.
- Horak, I., J. Lohler, A. Ma, and K. A. Smith. 1995. Interleukin-2 deficient mice: a new model to study autoimmunity and self-tolerance. Immunol. Rev. 148:35–44.
- Howard, M., J. Farrar, M. Hilfiker, B. Johnson, K. Takatsu, T. Hamaoka, and W. E. Paul. 1982. Identification of a T-cell-derived B-cell growth factor distinct from interleukin-2. J. Exp. Med. 155:914–920.
- Huhn, R. D., E. Radwanski, S. M. O'Connell, M. G. Sturgill, L. Clarke, R. P. Cody, M. B. Affrime, and D. L. Cutler. 1996. Pharmacokinetics and immunomodulatory properties of intravenously administered recombinant human interleukin-10 in healthy volunteers. Blood 87:699–705.
- 94. Idzerda, R. L., C. J. March, B. Mosley, S. D. Lyman, T. vanden Bos, S. D. Gimpel, W. S. Din, K. H. Grabstein, M. B. Widmer, L. S. Park, D. Cosman, and M. P. Beckmann. 1990. Human interleukin 4 receptor confers biological responsiveness and defines a novel receptor superfamily. J. Exp. Med. 171:861–873.
- Ihle, J., B. Witthuhn, F. Quelle, K. Yamamoto, W. Thierfelder, B. Kreider, and O. Silvennoinen. 1994. Signaling by the cytokine receptor superfamily: Jaks and Stats. Trends Biochem. Sci. 19:222–227.
- Joyce, D. A., and J. H. Steer. 1996. IL-4, IL-10 and IFN-γ have distinct, but interacting, effects on differentiation-induced changes in TNF-α and TNF receptor release by cultured human monocytes. Cytokine 8:49–57.
- Jullien, D., P. A. Sieling, K. Uyemure, N. D. Mar, T. H. Rea, and R. L. Modlin. 1997. IL-15, an immunomodulator of T-cell responses in intracellular infection. J. Immunol. 158:800–806.
- Karnitz, L. M., and R. T. Abraham. 1995. Cytokine receptor signaling mechanisms. Curr. Opin. Immunol. 7:320–326.
- Kato, T., T. Morokata, O. Igarashi, S. T. Yee, M. Inobe, T. Uede, M. Azuma, K. Okumura, and H. Naruchi. 1997. Costimulatory effect of IL-12 on the activation of naive, memory CD4⁺ T-cells, and T_H1 clone. Cell. Immunol. 176:50–58.
- Kawashima, I., and Y. Takiguchi. 1992. Interleukin-11: a novel stromaderived cytokine. Prog. Growth Factor Res. 4:191–206.
- 101. Kelner, G. S., J. Kennedy, K. B. Bacon, S. Kleyensteuber, D. A. Largaespada, N. A. Jenkins, N. G. Copeland, J. F. Bazan, K. W. Moore, T. J. Schall, and A. Zlotnik. 1994. Lymphotactin: a cytokine that represents a new class of chemokine. Science 266:1395–1399.
- 102. Kim, C., C. Schinkel, D. Fuchs, J. Stadler, A. Walz, S. Zedler, G. H. Von Donnersmarck, and E. Faist. 1995. Interleukin-13 effectively down-regulates the monocyte inflammatory potential during traumatic stress. Arch. Surg. 130:1330–1336.
- Kishimoto, T. 1992. Interleukin-6 and its receptor; from cloning to clinic. Int. Arch. Allergy Immunol. 99:172–177.
- Kishimoto, T., S. Akira, M. Narazaki, and T. Taga. 1995. Interleukin-6 family of cytokines and gp130. Blood 86:1243–1254.
- 105. Kishimoto, T., S. Akira, and T. Taga. 1992. Interleukin-6 and its receptor: a paradigm for cytokines. Science 258:593–597.
- Kishimoto, T., T. Taga, and S. Akira. 1994. Cytokine signal transduction. Cell 76:253–262.
- 107. Knall, C., S. Young, J. A. Nick, A. M. Buhl, G. S. Worthen, and G. L. Johnson. 1996. Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J. Biol. Chem. 271:2832–2838.
- Komschlies, K. L., K. J. Grzegorzewski, and R. H. Wiltrout. 1995. Diverse immunological and hematological effects of interleukin 7: implications for clinical application. J. Leukocyte Biol. 58:623–633.
- 109. Kopf, M., H. Baumann, G. Freer, M. Freudenberg, M. Lamers, T. Kishimoto, R. Zinkernagel, H. Bluethmann, and G. Köhler. 1994. Impaired acute phase and immune responses in interleukin-6-deficient mice. Nature 368:339–342.
- 110. Kopf, M., G. Legros, A. J. Coyle, M. Koscovilbois, and F. Brombacher. 1995. Immune responses of IL-4, IL-5, IL-6 deficient mice. Immunol. Rev. 148:45–69.
- 111. Kosugi, H., Y. Nakagawa, K. Arai, and T. Yokota. 1995. Gene structures of the α-subunits of human IL-3 and granulocyte-macrophage colony-stimulating factor receptors: comparison with the cytokine receptor superfamily. J. Allergy Clin. Immunol. 96:1115–1125.
- Kunimoto, D., R. Nordan, and W. Strober. 1989. IL-6 is a potent cofactor of IL-1 in IgM synthesis and of IL-5 in IgA synthesis. J. Immunol. 143: 2230–2239.
- Kunkel, S. L., L. Lukacs, and R. M. Strieter. 1995. Expression and biology of neutrophil and endothelial cell-derived chemokines. Cell Biol. 6:327– 336.
- 114. Kurzrock, R., M. Wetzler, Z. Estrov, and M. Talpaz. 1995. Interleukin-1 and its inhibitors: a biologic and therapeutic model for the role of growth regulatory factors in leukemias. Cytokine Mol. Ther. 1:177–184.

- 115. Laberge, S., W. W. Cruikshank, D. J. Beer, and D. M. Center. 1996. Secretion of IL-16 (lymphocyte chemoattractant factor) from serotoninstimulated CD8⁺ T-cells *in vitro*. J. Immunol. **156**:310–315.
- 116. Lee, J. D., K. Rhoades, and J. S. Economou. 1995. Interleukin-4 inhibits the expression of tumour necrosis factors α and β, interleukins-1β and -6 and interferon-γ. Immunol. Cell Biol. 73:57–61.
- 117. Lemmel, E. M., D. Brackertz, M. Franke, W. Gaus, P. W. Hartl, K. Machalke, H. Mielke, H. J. Obert, H. H. Peter, and J. Sieper. 1988. Results of a multicenter placebo-controlled double-blind randomized phase III clinical study of treatment of rheumatoid arthritis with recombinant interferon-gamma. Rheumatol. Int. 8:87–93.
- Leonard, W. J., E. W. Shores, and P. E. Love. 1995. Role of the common cytokine receptor γ-chain in cytokine signaling and lymphoid development. Immunol. Rev. 148:97–114.
- Lieschke, G. J., and A. W. Burgess. 1992. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. N. Engl. J. Med. 327:99–106.
- 120. Lieschke, G. J., D. Maher, J. Cebon, M. O'Connor, M. Green, W. Sheridan, A. Boyd, M. Rallings, E. Bonnem, and D. Metcalf. 1989. Effects of bacterially synthesized recombinant human granulocyte-macrophage colonystimulating factor in patients with advanced malignancy. Ann. Intern. Med. 110:357–364.
- Liles, W. C., and C. van Voorhis. 1995. Review: nomenclature and biologic significance of cytokines involved in inflammation and the host immune response. J. Infect. Dis. 172:1573–1580.
- 122. Lin, J.-X., T. S. Migone, M. Tsang, M. Friedmann, J. A. Weatherbee, Z. Li, A. Yamauchi, E. Bloom, J. Mietz, S. John, and W. J. Leonard. 1995. The role of shared receptor motifs and common stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2:1–23.
- 123. Lin, R., P. E. Tarr, and T. C. Jones. 1995. Present status of the use of cytokines as adjuvants with vaccines to protect against infectious diseases. Clin. Infect. Dis. 21:1439–1449.
- Lindemann, A., and R. Mertselmann. 1993. Interleukin-3: structure and function. Cancer Invest. 11:609–623.
- Locksley, R. M. 1993. Interleukin-12 in host defense against microbial pathogens. Proc. Natl. Acad. Sci. USA 90:5879–5880.
- 126. Lucey, D. R., M. Clerici, and G. M. Shearer. 1996. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin. Microbiol. Rev. 9:532–562.
- 127. McCartney-Francis, N. L., and S. M. Wahl. 1994. Transforming growth factor β : a matter of life and dead. J. Leukocyte Biol. 55:401–409.
- McInnes, I. B., J. Almughales, M. Field, B. P. Leung, F. P. Huang, R. Dixon, R. D. Sturrock, P. C. Wilkinson, and F. Y. Liew. 1996. The role of interleukin-15 in T-cell migration and activation in rheumatoid arthritis. Nat. Med. 2:175–182.
- McMillen, M. A., and B. E. Sumpio. 1995. Endothelins: polyfunctional cytokines. J. Am. Coll. Surg. 180:621–637.
- Mehler, M. F., R. Rozental, M. Dougherty, D. C. Spray, and J. A. Kessler. 1993. Cytokine regulation of neuronal differentiation of hippocampal progenitor cells. Nature 362:62–65.
- 131. Merz, H., F. A. Houssiau, K. Orscheschek, J. C. Renauld, A. Fliedner, M. Herin, H. Noel, M. Kadin, H. K. Mueller Hermelink, and J. van Snick. 1991. Interleukin-9 expression in human malignant lymphomas: unique association with Hodgkin's disease and large cell anaplastic lymphoma. Blood 78:1311–1317.
- 132. Metcalf, D. 1992. Leukemia inhibitory factor—a puzzling polyfunctional regulator. Growth Factors 7:169–173.
- 133. Micallef, M. J., T. Ohtsuki, K. Kohno, F. Tanabe, S. Ushio, M. Namba, T. Tanimoto, K. Torigoe, M. Fuji, M. Ikeda, S. Fukuda, and M. Kurimoto. 1996. Interferon gamma inducing factor enhances T helper 1 cytokine production by stimulated human T-cells: synergism with interleukin-12 for interferon gamma production. Eur. J. Immunol. 26:1647–1651.
- 134. Miller, D. K., J. Myerson, and J. W. Becker. 1997. The interleukin-1β converting enzyme family of cysteine proteases. J. Cell. Biochem. 64:2–10.
- Miller, M. D., and M. S. Krangel. 1992. Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit. Rev. Immunol. 12:17–46.
- Minami, Y., T. Kono, T. Miyazaki, and T. Taniguchi. 1993. The IL-2 receptor complex: its structure, function, and target genes. Annu. Rev. Immunol. 11:245–267.
- 137. Minty, A., P. Chalon, J.-M. Derocq, X. Dumont, J.-C. Guillemot, M. Kaghad, C. Labit, P. Leplatois, P. Liauzun, B. Miloux, C. Minty, P. Casellas, G. Loison, J. Lupker, D. Shire, P. Ferrara, and D. Caput. 1993. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature 362:248–250.
- Moore, K. W., A. O'Garra, R. de Waal-Malefyt, P. Vieira, and T. R. Mosmann. 1993. Interleukin-10. Annu. Rev. Immunol. 11:165–190.
- Mosmann, T. R. 1994. Properties and functions of interleukin-10. Adv. Immunol. 56:1–26.
- Motoyoshi, K. 1994. Macrophage colony-stimulating factor for cancer therapy. Oncology 51:198–204.

- 141. Mukaida, N., A. Harada, K. Yasumoto, and K. Matsushima. 1992. Properties of pro-inflammatory cell type-specific leukocyte chemotactic cytokines, interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF). Microbiol. Immunol. 36:773–789.
- 142. Murata, T., P. D. Noguchi, and R. K. Puri. 1995. Receptors for interleukin (IL)-4 do not associate with the common γ-chain, and IL-4 induces the phosphorylation of JAK2 tyrosine kinase in human colon carcinoma cells. J. Biol. Chem. 270:30829–30836.
- Murphy, P. M. 1994. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol. 12:593–633.
- 144. Muzio, M., N. Polentarutti, M. Sironi, G. Poli, L. De Gioia, M. Introna, A. Mantovani, and F. Colotta. 1995. Cloning and characterization of a new isoform of the interleukin-1 receptor antagonist. J. Exp. Med. 182:623–628.
- 145. Nakano, H., H. Oshima, W. Chung, L. Williams Abbott, C. F. Ware, H. Yagita, and K. Okumura. 1996. TRAF5, an activator of NF-kappaB and putative signal transducer for the lymphotoxin-beta receptor. J. Biol. Chem. 271:14661–14664.
- 146. Namen, A. E., D. E. Williams, and R. G. Goodwin. 1990. Interleukin-7: a new hematopoietic growth factor. Prog. Clin. Biol. Res. 338:65–73.
- 147. Neben, S., and K. Turner. 1993. The biology of interleukin-11. Stem Cells 11:156–162.
- 148. Nishimura, H., K. Hiromatsu, N. Kobayashi, K. H. Grabstein, R. Paxton, K. Sugamura, J. A. Bluestone, and Y. Yoshikai. 1996. IL-15 is a novel growth factor for murine γδ T-cells induced by *Salmonella* infection. J. Immunol. 156:663–669.
- 149. Obiri, N. I., P. Leland, T. Murata, W. Debinski, and R. K. Puri. 1997. The IL-13 receptor structure differs on various cell types and may share more than one component with IL-4 receptor. J. Immunol. 158:756–764.
- 150. Okamura, H., H. Tsutsui, T. Komatsu, M. Yutsudo, A. Hakura, T. Tanimoto, K. Torigoe, T. Okura, Y. Nukada, K. Hattori, K. Akita, M. Namba, F. Tanabe, K. Konishi, S. Fukuda, and M. Kurimoto. 1995. Cloning of a new cytokine that induces IFN-γ production by T-cells. Nature 378:88–91.
- Oneill, L. A. J. 1995. Interleukin-1 signal transduction. Int. J. Clin. Lab. Res. 25:169–177.
- Page, L. A., M. S. Topp, R. Thorpe, and A. R. Miresluis. 1996. An antiproliferative bioassay for interleukin-4. J. Immunol. Methods 189:129–135.
- 153. Parada, N. A., W. W. Cruikshank, H. L. Danis, T. C. Ryan, and D. M. Center. 1996. IL-16- and other CD4 ligand-induced migration is dependent upon protein kinase C. Cell. Immunol. 168:100–106.
- Paul, W. E. 1991. Interleukin-4: a prototype immunoregulatory lymphokine. Blood 77:1859–1870.
- Pfeilschifter, J. 1994. Cytokines and signal transduction. Clin. Invest. 72: 713–714.
- 156. Poltorak, A. N., F. Bazzoni, I. I. Smirnova, E. Alejos, P. Thompson, G. Luheshi, N. Rothwell, and B. Beutler. 1995. MIP-1 gamma: molecular cloning, expression, and biological activities of a novel C-C chemokine that is constitutively secreted *in vivo*. J. Inflamm. 45:207–219.
- 157. Ponzoni, M., A. Casalaro, M. Lanciotti, P. G. Montaldo, and P. Cornaglia Ferraris. 1992. The combination of gamma-interferon and tumor necrosis factor causes a rapid and extensive differentiation of human neuroblastoma cells. Cancer Res. 52:931–939.
- Proost, P., A. Wuyts, and J. Vandamme. 1996. Human monocyte chemotactic proteins-2 and -3: structural and functional comparison with MCP-1. J. Leukocyte Biol. 59:67–74.
- 159. Renauld, J. C., F. Houssiau, J. Louahed, A. Vink, J. van Snick, and C. Uyttenhove. 1993. Interleukin-9. Adv. Immunol. 54:79–97.
- 160. Richards, C. D., C. Langdon, D. Pennica, and J. Gauldie. 1996. Murine cardiotrophin-1 stimulates the acute-phase response in rat hepatocytes and H35 hepatoma cells. J. Interferon Cytokine Res. 16:69–75.
- 161. Rogge, L., L. Barberis-Maino, M. Biffi, N. Passini, D. H. Presky, U. Gubler, and F. Sinigaglia. 1997. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med. 185:825–831.
- 162. Romani, L., A. Mencacci, E. Cenci, R. Spaccapelo, C. Toniatti, P. Puccetti, F. Bistoni, and V. Poli. 1996. Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin-6-deficient mice infected with *Candida albicans. J. Exp. Med.* 183:1345–1355.
- 163. Ross, R., E. W. Raines, and D. F. Bowen-Pope. 1986. The biology of platelet-derived growth factor. Cell 46:155–169.
- 164. Roth, S. J., M. W. Carr, and T. A. Springer. 1995. C-C chemokines, but not the C-X-C chemokines interleukin-8 and interferon-γ inducible protein-10, stimulate transendothelial chemotaxis of T-lymphocytes. Eur. J. Immunol. 25:3482–3488.
- 165. Russell, S. M., A. D. Keegan, N. Harada, Y. Nakamura, M. Noguchi, P. Leland, M. C. Freedman, A. Miyajima, R. K. Puri, W. E. Paul, and W. J. Leonard. 1993. Interleukin-2 receptor γ chain: a functional component of the interleukin-4 receptor. Science 262:1880–1884.
- Ryffel, B. 1996. Gene knockout mice as investigative tools in pathophysiology. Int. J. Exp. Pathol. 77:125–141.
- 167. Sanderson, C. J., H. D. Campbell, and I. G. Young. 1988. Molecular and cellular biology of eosinophil differentiation factor (interleukin-5) and its effects on human and mouse B cells. Immunol. Rev. 102:29–50.

780 CURFS ET AL.

- Schall, T. J. 1991. Biology of the RANTES/SIS cytokine family. Cytokine 3:165–183.
- 169. Schindler, C. 1995. Cytokine signal transduction. Receptor 5:51-62.
- 170. Sechler, J. M., H. L. Malech, C. J. White, and J. I. Gallin. 1988. Recombinant human interferon-gamma reconstitutes defective phagocyte function in patients with chronic granulomatous disease of childhood. Proc. Natl. Acad. Sci. USA 85:4874–4878.
- 171. Sengupta, T. K., E. M. Schmitt, and L. B. Ivashkiv. 1996. Inhibition of cytokines and JAK-STAT activation by distinct signaling pathways. Proc. Natl. Acad. Sci. USA 93:9499–9504.
- 172. Sharma, S., S. Metha, J. Morgan, and A. Maizel. 1987. Molecular cloning and expression of a human B-cell growth factor gene in *Escherichia coli*. Science 235:1489–1493.
- 173. Sims, J. E., and S. K. Dower. 1994. Interleukin-1 receptors. Eur. Cytokine Netw. 5:539–546.
- 174. Sims, J. E., M. A. Gayle, J. L. Slack, M. R. Alderson, T. A. Bird, J. G. Giri, F. Colotta, F. Re, A. Mantovani, K. Shanebeck, K. H. Grabstein, and S. K. Dower. 1993. Interleukin-1 signaling occurs exclusively via the type I receptor. Proc. Natl. Acad. Sci. USA 90:6155–6159.
- 175. Sosroseno, W., and E. Herminajeng. 1995. The immunoregulatory roles of transforming growth factor beta. Br. J. Biomed. Sci. 52:142–148.
- Stern, A. S., J. Magram, and D. H. Presky. 1996. Interleukin-12: an integral cytokine in the immune response. Life Sci. 58:639–654.
- 177. Stevens, D. L. 1995. Cytokines: an updated compendium. Curr. Opin. Infect. Dis. 8:175-180.
- 178. Sugamura, K., H. Asao, M. Kondo, N. Tanaka, N. Ishii, K. Ohbo, M. Nakamura, and T. Takeshita. 1996. The interleukin-2 receptor γ chain: its role in the multiple cytokine receptor complexes and T-cell development in XSCID. Annu. Rev. Immunol. 14:179–205.
- Tafuto, S., I. Silvestri, P. D'Andrea, D. Ronga, and G. Abate. 1994. Interleukin-6: biological features and clinical implications. J. Biol. Regul. Homeostatic Agents 8:1–8.
- 180. Tai, P. C., S. J. Ackerman, C. J. Spry, S. Dunnette, E. G. Olsen, and C. J. Gleich. 1987. Deposits of eosinophil granule proteins in cardiac tissues of patients with eosinophilic endomyocardial disease. Lancet i:643–647.
- 181. Takatsu, K., A. Tominaga, N. Harada, S. Mita, M. Matsumoto, T. Takahashi, Y. Kikuchi, and N. Yamaguchi. 1988. T-cell-replacing factor (TRF)/ interleukin-5 (IL-5): molecular and functional properties. Immunol. Rev. 102:107–135.
- 182. Taub, D. D., A. R. Lloyd, K. Conlon, J. M. Wang, J. R. Ortaldo, A. Harada, K. Matsushima, D. J. Kelvin, and J. J. Oppenheim. 1993. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T-lymphocytes and promotes T-cell adhesion to endothelial cells. J. Exp. Med. 177:1809–1814.
- 183. Taub, D. D., J. R. Ortalo, S. M. Turkovski-Corrales, M. L. Key, D. L. Longo, and W. J. Murphy. 1996. β chemokines costimulate lymphocyte cytolysis, proliferation, and lymphokine production. J. Leukocyte Biol. 59: 81–89.
- 184. Thornberry, N. A. 1994. Interleukin-1β converting enzyme. Methods Enzymol. 244:615–631.
- Tracey, K. J., and A. Cerami. 1993. Tumor necrosis factor, other cytokines and disease. Annu. Rev. Cell Biol. 9:317–343.
- Trinchieri, G. 1993. Interleukin-12 and its role in the generation of T_H1 cells. Immunol. Today 14:335–338.
- 187. Trinchieri, G. 1994. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood 84:4008–4027.
- 188. van der Meer, J. W. M., M. T. E. Vogels, J. H. A. J. Curfs, and W. M. C. Eling. 1993. Interleukin-1 as a possible agent for treatment of infection.

Eur. J. Clin. Microbiol. Infect. Dis. 12:S73-S77.

- 189. van der Meer, J. W. M., M. T. E. Vogels, J. H. A. J. Curfs, B.-J. Kullberg, and W. M. C. Eling. 1993. Interleukin-1 and its receptor antagonist as candidate therapeutic agents for severe infections, p. 332–337. *In* H. Redl and D. L. Traber (ed.), Shock, sepsis, and organ failure. Springer Verlag, Berlin, Germany.
- van Snick, J. 1990. Interleukin-6: an overview. Annu. Rev. Immunol. 8: 253–278.
- Van Vlasselaer, P. 1992. Leukemia inhibitory factor (LIF): a growth factor with pleiotropic effects on bone biology. Prog. Growth Factor Res. 4:337– 353.
- Viale, G., and D. Vercelli. 1995. Interleukin-13 regulates the phenotype and function of human monocytes. Int. Arch. Allergy Immunol. 107:176–178.
- Vilcek, J., and T. H. Lee. 1991. Tumor necrosis factor: new insights into the molecular mechanism of its multiple actions. J. Biol. Chem. 266:7313–7316.
- 194. Vogels, M. T. E., I. J. D. Lindley, J. H. A. J. Curfs, W. M. C. Eling, and J. W. M. van der Meer. 1993. Effects of interleukin-8 on nonspecific resistance to infection in neutropenic and normal mice. Antimicrob. Agents Chemother. 37:276–280.
- 195. Wang, W. Z., H. J. Chen, K. N. Giedd, A. Schwartz, P. J. Cannon, and L. E. Rabbani. 1995. T-cell lymphokines, interleukin-4 and γ-interferon, modulate the induction of vascular smooth muscle cell tissue plasminogen activator and migration by serum and platelet-derived growth factor. Circ. Res. 77:1095–1106.
- 196. Watkins, L. R., S. F. Maier, and L. E. Goehler. 1995. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 63:289–302.
- 197. Weber-Nordt, R. M., R. Henschler, E. Scott, J. Wehinger, D. Behringer, R. Mertselsmann, and J. Finke. 1996. Interleukin-10 increases *bcl-2* expression and survival in primary human CD34⁺ hematopoietic progenitor cells. Blood 88:2549–2558.
- 198. Weiergraber, O., U. Hemmann, A. Kuster, G. Mullernewen, J. Schneider, S. Rosejohn, P. Kurschat, J. P. J. Brakenhoff, M. H. L. Hart, S. Stabel, and P. C. Heinrich. 1995. Soluble human interleukin-6 receptor—expression in insect cells, purification and characterization. Eur. J. Biochem. 234:661–669.
- 199. Weiss, T., M. Grell, B. Hessabi, S. Bourteele, G. Müller, P. Scheurig, and H. Wajant. 1997. Enhancement of TNF receptor p60-mediated cytotoxicity by TNF receptor p80. J. Immunol. 158:2398–2404.
- Wells, J. A. 1996. Binding in the growth hormone receptor complex. Proc. Natl. Acad. Sci. USA 93:1–6.
- 201. Wells, T. N. C., C. A. Power, M. Lustinarasimhan, A. J. Hoogewerf, R. M. Cooke, C. W. Chung, M. C. Peitsch, and A. E. I. Proudfoot. 1996. Selectivity and antagonism of chemokine receptors. J. Leukocyte Biol. 59:53–60.
- 202. Williams, D. E., P. de Vries, A. E. Namen, M. B. Widmer, and S. D. Lyman. 1992. The steel factor. Dev. Biol. 151:368–376.
- 203. Yao, Z. B., W. C. Fanslow, M. F. Seldin, A. M. Rousseau, S. L. Painter, M. R. Comeau, J. I. Cohen, and M. K. Spriggs. 1995. Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunology 3:811–821.
- 204. Yao, Z. B., S. L. Painter, W. C. Fanslow, D. Ulrich, B. M. Macduff, M. K. Spriggs, and R. J. Armitage. 1995. Human IL-17: a novel cytokine derived from T-cells. J. Immunol. 155:5483–5486.
- Yoshimoto, T., K. Kojima, T. Funakoshi, Y. Endo, T. Fujita, and H. Nariuchi. 1996. Molecular cloning and characterization of murine IL-12 genes. J. Immunol. 156:1082–1088.
- 206. Zhao, Y. X., and A. Tarkowski. 1995. Impact of interferon-γ receptor deficiency on experimental *Staphylococcus aureus* septicemia and arthritis. J. Immunol. 155:5736–5742.