Skip to main content
Heart logoLink to Heart
. 2001 Aug;86(2):188–192. doi: 10.1136/heart.86.2.188

Acute and chronic effects of surgical thromboendarterectomy on exercise capacity and ventilatory efficiency in patients with chronic thromboembolic pulmonary hypertension

T Iwase 1, N Nagaya 1, M Ando 1, T Satoh 1, F Sakamaki 1, S Kyotani 1, H Takaki 1, Y Goto 1, Y Ohkita 1, M Uematsu 1, N Nakanishi 1, K Miyatake 1
PMCID: PMC1729867  PMID: 11454839

Abstract

OBJECTIVE—To assess acute and chronic effects of surgical thromboendarterectomy on exercise capacity and ventilatory efficiency in patients with chronic thromboembolic pulmonary hypertension (CTEPH).
DESIGN—Cardiopulmonary exercise testing was performed in 20 patients with CTEPH before thromboendarterectomy (baseline), one month after (early phase), and four months after (late phase). Peak oxygen uptake (peak V̇O2) and the ventilatory response to carbon dioxide production (V̇E-V̇CO2 slope) were measured for assessment of exercise capacity and ventilatory efficiency. Right heart catheterisation was performed in all patients before and one month after surgery.
RESULTS—Baseline peak V̇O2 decreased and V̇E-V̇CO2 slope increased along with the increase in pulmonary vascular resistance in patients with CTEPH. After thromboendarterectomy, the V̇E-V̇CO2 slope decreased greatly from baseline to the early phase (mean (SD), 50 (9) to 37 (7), p < 0.05) and reached a steady level thereafter. In contrast, a continued increase in peak V̇O2 was noted from the early to the late phase (16.9 (4.1) to 21.1 (5.0) ml/kg/min, p < 0.05). The decrease in the V̇E-V̇CO2 slope from baseline to the early phase, but not the increase in peak V̇O2, correlated strongly with the decrease in pulmonary vascular resistance after surgery (r = 0.75, p < 0.01).
CONCLUSIONS—Thromboendarterectomy may cause an immediate improvement in ventilatory efficiency, possibly through its beneficial haemodynamic effects. In contrast, exercise capacity may continue to improve towards the late phase, reflecting peripheral adaptation to exercise.


Keywords: thromboendarterectomy; exercise capacity; pulmonary thromboembolism; pulmonary hypertension

Full Text

The Full Text of this article is available as a PDF (154.5 KB).

Figure 1  .

Figure 1  

Peak work load (left panel), peak V̇O2 (middle panel), and the V̇E-V̇CO2 slope (right panel) at baseline in patients with chronic thromboembolic pulmonary hypertension (CTEPH) and control subjects (Control). *p < 0.001 v control.

Figure 2  .

Figure 2  

Time course of changes in peak V̇O2 (empty circles) and the V̇E-V̇CO2 slope (filled circles) after thromboendarterectomy. *p < 0.05 v baseline; †p < 0.05 v early phase.

Figure 3  .

Figure 3  

Relations between changes in pulmonary vascular resistance (PVR) and changes in peak V̇O2 (left panel) and the V̇E-V̇CO2 slope (right panel) after thromboendarterectomy.

graphic file with name hrt-medm.f1.jpg

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen P., Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985 Sep;366:233–249. doi: 10.1113/jphysiol.1985.sp015794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ando M., Takamoto S., Okita Y., Matsukawa R., Nakanishi N., Kyotani S., Satoh T. Operation for chronic pulmonary thromboembolism accompanied by thrombophilia in 8 patients. Ann Thorac Surg. 1998 Dec;66(6):1919–1924. doi: 10.1016/s0003-4975(98)00910-2. [DOI] [PubMed] [Google Scholar]
  3. Auger W. R., Fedullo P. F., Moser K. M., Buchbinder M., Peterson K. L. Chronic major-vessel thromboembolic pulmonary artery obstruction: appearance at angiography. Radiology. 1992 Feb;182(2):393–398. doi: 10.1148/radiology.182.2.1732955. [DOI] [PubMed] [Google Scholar]
  4. Benotti J. R., Dalen J. E. The natural history of pulmonary embolism. Clin Chest Med. 1984 Sep;5(3):403–410. [PubMed] [Google Scholar]
  5. Chua T. P., Ponikowski P., Harrington D., Anker S. D., Webb-Peploe K., Clark A. L., Poole-Wilson P. A., Coats A. J. Clinical correlates and prognostic significance of the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol. 1997 Jun;29(7):1585–1590. doi: 10.1016/s0735-1097(97)00078-8. [DOI] [PubMed] [Google Scholar]
  6. Hambrecht R., Niebauer J., Fiehn E., Kälberer B., Offner B., Hauer K., Riede U., Schlierf G., Kübler W., Schuler G. Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol. 1995 May;25(6):1239–1249. doi: 10.1016/0735-1097(94)00568-B. [DOI] [PubMed] [Google Scholar]
  7. Jamieson S. W., Auger W. R., Fedullo P. F., Channick R. N., Kriett J. M., Tarazi R. Y., Moser K. M. Experience and results with 150 pulmonary thromboendarterectomy operations over a 29-month period. J Thorac Cardiovasc Surg. 1993 Jul;106(1):116–127. [PubMed] [Google Scholar]
  8. Keteyian S. J., Brawner C. A., Schairer J. R. Exercise testing and training of patients with heart failure due to left ventricular systolic dysfunction. J Cardiopulm Rehabil. 1997 Jan-Feb;17(1):19–28. doi: 10.1097/00008483-199701000-00003. [DOI] [PubMed] [Google Scholar]
  9. Moser K. M., Auger W. R., Fedullo P. F. Chronic major-vessel thromboembolic pulmonary hypertension. Circulation. 1990 Jun;81(6):1735–1743. doi: 10.1161/01.cir.81.6.1735. [DOI] [PubMed] [Google Scholar]
  10. Moser K. M., Auger W. R., Fedullo P. F., Jamieson S. W. Chronic thromboembolic pulmonary hypertension: clinical picture and surgical treatment. Eur Respir J. 1992 Mar;5(3):334–342. [PubMed] [Google Scholar]
  11. Nagaya N., Uematsu M., Oya H., Sato N., Sakamaki F., Kyotani S., Ueno K., Nakanishi N., Yamagishi M., Miyatake K. Short-term oral administration of L-arginine improves hemodynamics and exercise capacity in patients with precapillary pulmonary hypertension. Am J Respir Crit Care Med. 2001 Mar;163(4):887–891. doi: 10.1164/ajrccm.163.4.2007116. [DOI] [PubMed] [Google Scholar]
  12. Sullivan M. J., Higginbotham M. B., Cobb F. R. Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects. Circulation. 1988 Sep;78(3):506–515. doi: 10.1161/01.cir.78.3.506. [DOI] [PubMed] [Google Scholar]
  13. Sullivan M. J., Higginbotham M. B., Cobb F. R. Increased exercise ventilation in patients with chronic heart failure: intact ventilatory control despite hemodynamic and pulmonary abnormalities. Circulation. 1988 Mar;77(3):552–559. doi: 10.1161/01.cir.77.3.552. [DOI] [PubMed] [Google Scholar]
  14. Tamai J., Kosakai Y., Yoshioka T., Ohnishi E., Takaki H., Okano Y., Kawashima Y. Delayed improvement in exercise capacity with restoration of sinoatrial node response in patients after combined treatment with surgical repair for organic heart disease and the Maze procedure for atrial fibrillation. Circulation. 1995 May 1;91(9):2392–2399. doi: 10.1161/01.cir.91.9.2392. [DOI] [PubMed] [Google Scholar]
  15. Viner S. M., Bagg B. R., Auger W. R., Ford G. T. The management of pulmonary hypertension secondary to chronic thromboembolic disease. Prog Cardiovasc Dis. 1994 Sep-Oct;37(2):79–92. doi: 10.1016/s0033-0620(05)80044-1. [DOI] [PubMed] [Google Scholar]
  16. Wensel R., Opitz C. F., Ewert R., Bruch L., Kleber F. X. Effects of iloprost inhalation on exercise capacity and ventilatory efficiency in patients with primary pulmonary hypertension. Circulation. 2000 May 23;101(20):2388–2392. doi: 10.1161/01.cir.101.20.2388. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES