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Mutation analysis of GABRR1 and
GABRR2 in autosomal recessive
retinitis pigmentosa (RP25)

EDITOR—Retinitis pigmentosa (RP, MIM 268000) is the
most frequent form of retinal dystrophy world wide. The
clinical findings are night blindness and narrowing of the
visual field. Examination of the fundus of the eye in RP
patients usually shows bone spicula pigmentation of the
retina, waxy pallor of the optic disc, attenuation of the reti-
nal blood vessels, and no results detectable by
electroretinogram.1

RP shows notable allelic and non-allelic heterogeneity2

(RET-GEN-NET htp://www.sph.uth.tm.edu/Retnet/
home.htm). By using classical linkage strategies and the
direct and indirect candidate gene approach, the number of
RP loci identified has grown increasingly since 1989 and to
date more than 30 autosomal RP loci have been identified,
including syndromic and non-syndromic forms of the dis-
ease. Autosomal recessive RP (ARRP) is the commonest
form of RP and to date at least 13 independent ARRP loci
have been identified.3–15

Our group proposed the hypothesis that the alteration of
functions related to neurotransmission in the external
plexiform layer of the retina could be related to RP.14 In
order to test this model, we used homozygosity mapping to
analyse diVerent genes involved in retinal neurotransmis-
sion. Using this indirect candidate gene approach, we
identified the locus RP25 in an important subgroup of
ARRP patients from our cohort. In fact, around 14% of the
ARRP families from southern Spain showed linkage to
RP25.14 RP25 is an ARRP locus located on the long arm of
chromosome 6 between markers D6S257 and D6S1644
(MIM 602772). This chromosomal region contains the
GABRR1 and GABRR2 genes, both being expressed in the
retina. These genes encode the rho1 and rho2 subunits of
the C type receptor for ã-aminobutyric acid (GABAc
receptor).16 17 The GABAc receptor is expressed in the
horizontal and bipolar cells of the retina.18 19 For this
reason, we considered both genes to be attractive
candidates for mutation analysis.

In order to identify the intron-exon boundaries of
GABRR1, we selected the gene that encodes the â1 sub-
unit of the GABAa receptor whose complete genomic
structure is known (M59212). Comparing the cDNA of
the GABRR1 gene (M62323) and the cDNA of the
GABRB1 gene (X14767),20 we obtained regions of high
homology, approximately 59%, in the fragments corre-
sponding to exons 6, 7, 8, and 9. However, the homology
observed in the fragments corresponding to exons 1, 2, 3,
4, and 5 was less than 42%.

Afterwards, we localised by homology the diVerent
putative exons of the cDNA of the GABRR1 gene, which
permitted the design of exonic primers to amplify
exon-exon fragments containing all the introns. All the
primers had the universal M13 primers attached 5' (see
table 1 for more details). The large PCR products were
purified and then sequenced by the biochemical method of
Sanger using dideoxynucleotides as terminators
(fmol®DNA Sequencing System Promega, Madison, WI).
Electrophoresis was carried out in the automatic sequencer
Alf-Express (Amersham-Pharmacia Biotech) at 1500 V
and 50°C using Long Ranger SingelTM (FMC) matrix.

The sequences obtained were analysed with the
Alf-ManagerTM program and were aligned afterwards with
the cDNA sequence of the GABAc receptor (M62323)
using the command Bestfit for GCG or the Multalin pro-
grams (Multiple Alignment with Hierarchical Clustering)
or both.21

Using this approach, we identified the four fragments
corresponding to the last four introns of the GABRR1 gene
(table 1).The information regarding introns 1, 2, 3, 4, and
5 of the GABRR1 gene has been published elsewhere.22

In order to perform mutation screening of GABRR1 and
GABRR2, the index patients of the ARRP families that
showed linkage to RP25, RP5.II.1, RP73.II.1, RP167.II.8,
and RP214.II.5, were selected.14 The DNA samples were
PCR amplified using intronic primer pairs (tables 2 and 3).
The products obtained were analysed by direct sequencing
and fluorescent single strand conformational polymor-
phism analysis (SSCP) in the Alf-Express automatic
sequencer (Amersham-Pharmacia Biotech) at 15 W. The
migration patterns of each of the fragments were analysed
using the Fragment ManagerTM program. The DNA
fragments corresponding to exons 4 and 8 of the GABRR1

Table 1 PCR conditions of individual introns of the GABRR1 gene

Intron Forward primer (5'→3') Reverse primer (5'→3') Size Temp (°C) Cycles

Intron 6 M13F*-atggacttcagccgatttc M13R*-agtcattgccctttttcc ∼5 kb 59 42
Intron 7 M13F-cttaaagacagatgaacgg M13R-tggagcaagaagaagaag ∼4 kb 60 40
Intron 8 M13F-aacttatttccccgctac M13R-gaggaacacgaacacaaa 1.4 kb 57 35
Intron 9 M13F-tacctctgggtcagcttt M13R-gggatagtgaaaacatgg 1.6 kb 58 23

*M13F: cgccagggttttcccagtcacgac
M13R: tttcacacaggaaacagctatgac

Table 2 PCR amplification of individual exons of the GABRR1 gene

Exon Forward primer (5'→3') Reverse primer (5'→3') bp Temp (°C)

1 M13F*-gaacagaccaataatgtctt M13R*-cctaaatccttctatccc 291 50
2a M13F-cttggttgatctgagtacc M13R-ctttctgatccttggtg 272 49
2b M13F-caccccatcacacctatc M13R-gtcccttggctaatttcctgc 327 58
3 M13F-caagtaaaaacagtgaatgc M13R-ctttgtgaatccccctgc 202 53
4 M13F-cagtgggtttgtgtgtgtc M13R-gtgaaaccaatgcttttc 373 50
5 M13F-ctacatattggaaggaagc M13R-gaattatcaggagctgtgtg 275 49
6 M13F-ctgatgctggcccctgtc M13R-gctgaagcctgccctgac 256 62
7 M13F-aggagccatgatgtgtact M13R-tgcagatgcttggaatatgc 282 60
8 M13F-ggacaaatgagcagagac M13R-ttccagagctagatcagg 384 59
9a M13F-gagagatgatgctgagct M13R-gtatttatcaatggcgtggg 324 57
9b M13F-gctatgtgagcatgagaatc M13R-gggatagtgaaaacatgg 284 55
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gene were digested with the restriction endonucleases MspI
(Roche Diagnostic) and EagI (Amersham-Pharmacia Bio-
tech) respectively before SSCP analysis.

The sequences obtained were aligned with the previously
published cDNA sequence (M62323), the sequence we
obtained after the analysis of the intron-exon boundaries,
and the sequence provided by Hackam et al.22 A total of 12
variants were found, 10 in GABRR1 (table 4), four of
which are described in this work, and two in GABRR2
(table 5). However, none of them appear to be disease
causative since they were found in the controls.

All the polymorphisms detected (tables 4 and 5) were
confirmed by restriction analysis following the manufac-
turer’s instructions. The 5'UTR-RsaI and IVS2+45C→G
polymorphisms were genotyped by PCR digestion using a
RsaI (Roche Diagnostic) site and MaeIII (Amersham-
Pharmacia Biotech) site, respectively, introduced into the
PCR primer next to the nucleotide change (table 4).

The 12 polymorphisms identified in GABRR1 and
GABRR2 were genotyped in all families previously linked
to RP25. In the analysis of M20V of GABRR1 and V84V of
GABRR2 in the consanguineous family RP5, patients
RP5.II.1 and RP5.II.3 were observed to have homozygous
M20V and V84V changes, while a third patient, RP5.II.2,
was heterozygous for these variants. The analysis of the
other changes, namely IVS2+45C→G, IVS6-33C→T, and

A389A of GABRR1 and V84V of GABRR2, in the consan-
guineous family RP167, showed that patient RP167.II.8
was homozygous for the normal alleles, while patient
RP167.II.3 was homozygous for the mutated ones (fig 1).
These results exclude the GABRR1 and GABRR2 genes as
the cause of RP in both consanguineous families (RP5 and
RP167). Since the RP25 locus was identified by homozy-
gosity mapping, these data argue against the involvement of
these genes in RP25.

The RP25 locus is the third gene involved in RP and the
seventh one related to retinal degeneration localised on
chromosome 6. According to the data from the human
transcription map,24 the initial RP25 critical region
colocalises with two loci involved in retinal degeneration,
an autosomal dominant Stargardt-like locus (STGD3)25

and an autosomal dominant cone-rod dystrophy locus
(CORD7),26 sharing a region of 4.8 cM. These disorders
are diVerent, but it cannot be excluded that the same gene
could be responsible for STGD3, CORD7, and RP25. This
allelic heterogeneity has already been reported for the
peripherin/RDS gene, the ABCR gene, and the CRX
gene.27–30 Recently, a kindred with autosomal dominant
cone-rod dystrophy with features of Stargardt-like disease
where genetic analysis has shown linkage to CORD7 and
STGD3 on chromosome 6q14 has been identified.31 On the
other hand, linkage analysis in one family of Pakistani ori-
gin has refined the RP25 critical region from 16.1 cM14 to
2.4 cM between D6S1053 and D6S430.32 However,
according to the physical and genetic maps available, the
data provided by Khaliq et al32 would not be consistent with
the overlap of RP25 and CORD7/STGD3.

On the whole, the data reported argue against the
involvement of the GABRR1 and GABRR2 genes in RP25.
However, the exclusion of both genes does not rule out
other genes involved in neurotransmission within the criti-
cal region. In order to address the search for additional
candidate genes for RP25, our current eVorts include

Table 3 PCR amplification of individual exons of the GABRR2 gene

Exon Forward primer (5'→3') Reverse primer (5'→3') bp Temp (°C)

1 cagccttagccctaacagc gtggcacagtgggatggc 318 48
2 ctcactcaatgcattgaag cttcctcatgcatggtgc 268 52
3 gatggaaggtgccttaac gtgtagtgggcctggtggtgc 172 52
4 aaaccacttaatgcca ctttctggtatgtgtggtc 337 48
5 ccaataattcaccgcacaag catgagactgagcactgcc 219 56
6 gttacttcaccctgcatc cagccttaaccccaagg 279 52
7 gtttgctttcacctctc gagttcttaactgatgag 267 48
8 agggcagttctagaccgc catgctgctgggtgaaaaa 299 52
9 cttaatgatgttctttgtgc cggacttgttgaccac 426 48

Table 4 Sequence polymorphisms identified in the GABRR1 gene

Exon Nucleotide change
Amino acid
substitution

Restriction site
changed

Size of alleles (bp)

No Allele 1 frequency PIC†(1*) (2*)

1 5'UTR-RsaI‡ None RsaI** 243 213, 30 56 0.03 0.056
1 (nt) c104A→G§ M20V ApaLI 188, 103 291 NA NA NA
1 (nt) c108A→G‡ H21R HhaI 191, 100 291 55 0.16 0.253
2a IVS1-14T→A§ None MseI 198, 74 272 NA NA NA
2a IVS1-5A→G§ None NlaIII 156, 83, 33 156, 116 NA NA NA
2a IVS2+42T→C‡ None MboII 144, 128 128, 102, 42 57 0.45 0.372
2a IVS2+45C→G‡ None MaeIII†† 159, 33 192 43 0.38 0.360
4 (nt) c466T→C§ D140D EagI 210, 164 374 NA NA NA
6 IVS6-33C→T§ None DraIII 323 274, 49 NA NA NA
9 (nt) c1213A→G¶ A389A BsrDI 487 397, 90 83 0.69 0.336

*Allele 1 is always defined as the polymorphic allele, allele 2 as the wild type allele.
†PIC: polymorphism information content.
‡Polymorphisms described in this work.
§Polymorphisms previously described by Hackam et al.22

¶Polymorphism previously described by Marcos et al.23

**The primers used to genotype the 5'UTR-RsaI polymorphism were CT1F (gaccaataatgtcttaagagagaaaaagta) and CT1R (cttttcctaaatccttctatccctaaatgt).
††The primers used to genotype the IVS2+45C→G polymorphism were CGF(cttggtttgatctgagtacctagactttct) and CGR (gccctgctgaaaatcactacagttgagggt).
No: controls tested.
NA: not available.

Table 5 Sequence polymorphisms identified in the GABRR2 gene

Exon Nucleotide change
Amino acid
substitution

Restriction site
changed

Size of alleles (bp)

No Allele 1 frequency PIC†(1*) (2*)

3 (nt) c250A→G‡ V84V RsaI 172 101, 71 NA NA NA
9 (nt) c1289C→T‡ T430M None NA NA NA NA NA

*Allele 1 is always defined as the polymorphic allele, allele 2 as the wild type allele.
†PIC: polymorphism information content.
‡Polymorphisms previously described by Hackam et al.22

No: controls tested.
NA: not available.
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building a physical map across the current critical region to
localise the STSs, ESTs, and polymorphic markers to the
critical region.

Data access: RET-GEN-NET, htp://www.sph.uth.tm.edu/Retnet/home.htm.
Online Mendelian Inheritance in Man (OMIN), http://www.ncbi.nlm.nih/htbin-
post/OMIN Généthon, http://www.genethon.fr. GeneMap ’99, http://
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Investigaciones Sanitarias (grant 99/0010-02), the Fundación ONCE, Conse-
jería de Salud/Comunidad Autónoma de Andalucía (grant 98/144), and the
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