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Abstract
Context—PTEN, a tumour suppressor
gene located on chromosome 10q23, devel-
ops somatic mutations in various tumours
and tumour cell lines including brain,
endometrium, prostate, breast, kidney,
thyroid, liver, and melanoma.
Objectives—To investigate the mutational
profile of this gene further, as well as its
role in tumour progression in melanoma.
Design, Settings—We examined 21 meta-
static melanoma samples for 10q23 allelic
losses and PTEN sequence alterations.
Additionally, we screened these samples
for mutations in CDKN2A, a gene in which
alterations are well documented in pri-
mary melanoma as well as in the germline
of familial melanoma.
Results—Loss of heterozygosity (LOH) at
10q23 was observed in 33% (7/21) of the
samples tested. We identified four se-
quence alterations in PTEN (19%) and two
in CDKN2A (9.5%). Of interest, only one
case showed mutations in both genes.
Conclusions—These data support the no-
tion that PTEN alterations occur in some
metastatic melanomas, and that mutation
of this gene plays a role in the progression
of some forms of melanoma.
(J Med Genet 2000;37:653–657)

Keywords: PTEN; CDKN2A; melanoma

A tumour suppressor gene, PTEN (also known
as MMAC1 or TEP1), was isolated by mapping
homozygous deletions on human chromosome
10q23 from glioblastoma, prostate, and breast
cancer cell lines.1–3 Subsequently, a series of
mutations in PTEN were identified in sporadic
tumours and cancer cell lines from various tis-
sues including brain, endometrium, prostate,
breast, kidney, thyroid, liver, and melanoma.4–11

Among all these tumours, PTEN is mutated
with a high frequency in advanced stages of
gliomas and prostate cancers, and in all stages
of endometrial cancers.4 5 12 13 Furthermore,
this tumour suppressor gene has been found to
be the susceptibility gene for an inherited
hamartoma syndrome with an increased risk of
malignancy, Cowden syndrome (CS).14–18 Of
interest, while breast and thyroid cancers are
the most commonly observed tumours in CS,
an increased risk of melanoma has not been
documented in these patients.

PTEN is a phosphatase containing 403
amino acids. It is encoded by nine exons. The
phosphatase catalytic domain is between the
residues 122-132. Additionally, two potential
phosphate acceptor sites are present at residues

233-240 and 308-315.2 The sporadic and
germline mutations in PTEN cluster within the
presumptive catalytic domain, with many
mutations altering residues required for enzy-
matic activity.19 Recent studies show that
PTEN modulates cell cycle progression and
cell survival by regulating phosphoinositide-3-
kinase (PI3K) and the protein-Ser/Thr kinase
(AKT) signalling pathway.20–22

Loss of heterozygosity (LOH) studies in
melanoma have shown a high frequency of loss
of 10q.23–26 Several studies suggested involve-
ment of chromosome 10q22-10qter in
melanoma,27 as well as 10q24-26 in benign
melanocytic proliferations, such as compound
and dysplastic naevi.26 28 After the isolation of
PTEN from cancer cell lines harbouring
homozygous deletions in 10q23, melanoma
cell lines and uncultured primary and meta-
static melanoma samples were examined for
deletions or mutations in PTEN. To date, most
of the data showing sequence alterations of
PTEN are from studies using melanoma cell
lines and not primary tumour samples. The
most common alterations identified are homo-
zygous deletions.8 Of interest, the reported
incidence of point mutations and deletions in
PTEN is significantly low for uncultured
melanomas (approximately 10%) when com-
pared to tumour cell lines (approximately
29-43%).

In addition to 10q, LOH in melanoma has
been observed in a number of diVerent loci
including 1p, 3p, 3q, 6q, 9p, 9q, 11q, 13q, 17p,
17q, and 22q.23 Of these loci, 9p shows high
frequency of allelic loss in melanoma. Altera-
tions in CDKN2A located on 9p21 have been
well documented in melanoma.29 30 Moreover,
germline mutations in CDKN2A have been
identified in 9p21 linked familial melanoma
cases.31 32 CDKN2A regulates cell cycle at the
G1 to S transition by inhibiting CDK4 and
CDK6. Alterations in CDK4 have also been
identified in melanoma, but appear to be
rare.33 34

In an attempt to investigate the role of
somatic mutations of PTEN in metastatic
melanoma and to understand its role in tumour
progression further, we screened 21 sporadic
metastatic melanoma samples for LOH at
10q23 and for mutations in the PTEN gene. All
samples were subjected to direct sequencing
analysis of the PTEN gene regardless of LOH
data. In addition, the samples were also
screened for LOH at 9p21 and for mutations in
the CDKN2A gene to determine whether these
two tumour suppressor genes act independ-
ently or synergistically in the tumour progres-
sion of melanomas.
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Materials and methods
TUMOUR SPECIMENS AND DNA PREPARATION

A total of 21 metastatic melanoma samples in
paraYn embedded blocks were obtained. Each
tumour was examined histopathologically. All
tumour samples contained greater than 70-
80% tumour cells. A 15 µ section was cut for
each sample to be tested. The normal and
tumour tissues were dissected out and placed
separately into 1.5 ml Eppendorf tubes. Total
genomic DNA was purified from the de-
paraYnised section using a QIAamp Tissue
Kit (Qiagen, Stanford, CA).

LOH ANALYSIS

LOH analysis was performed as described
previously.35 The following seven polymorphic
short tandem repeat microsatellite markers
located on 10q, in the interval known to
contain the PTEN gene and its flanking
regions, were used in this study: D10S219,
D10S551, D10S215, D10S1765, D10S541,
D10S1735, D10S17564, and D10S536 (fig
1A). Additionally, to look for LOH on 9p, in
the region containing the CDKN2A gene and
adjacent flanking regions, the following five
microsatellite markers were used: D9S169,
D9S171, D9S52, D9S178, and D9S492. LOH
was assessed by quantitatively comparing poly-
morphic marker amplicons generated from
tumour and normal DNA of each subject
tested.

MUTATION SCREENING FOR PTEN AND CDKN2A

Nested PCR was performed for PTEN as
described.2 For CDKN2A, we used the follow-
ing primers flanking the coding sequence and
the splicing sites. The forward (f) and reverse
(r) primers used for amplification of CDKN2A
were as follows. For exon 1, e1f1: 5'GAA
GAAAGAGGAGGGGCT3', e1r1: 5'GCGC
TACCTGATTCCAATTC3', e1f2: 5'GGC

TGGTCACCAGAGGGTGG3', e1r2: 5' AG
AGTCGCCCGCCATCCCCT 3'. For exon 2,
e2f1: 5'GGAAATTGGAAACTGGAAGC3',
e2r1: 5'TTTGGAAGCTCTCAGGGTAC3',
e2f2: 5'TGGCTCTGACCATTCTGTTC3',
e2r2: 5'TCAGATCATCAGTCCTCACC3'.
For exon 3, e3f1: 5'CCGGTAGGGACG
GCAAGAGA3', e3r1: 5'CTGTAGGACCCT
CGGTGACTGATGA3'.

PCR products were sequenced using an
Applied Biosystem 310 automated sequencing
system. Sequence alterations were verified by
sequencing the reverse strand, as well as by
sequencing of a second DNA sample.

Results
DNA from 21 metastatic melanomas was
screened for LOH using seven microsatellite
markers on chromosome 10 near the PTEN
locus (table 1). Regardless of LOH data, all
tumour samples were then amplified with prim-
ers flanking the nine exons of the PTEN gene
and sequenced to detect coding sequence or
splice site variations. LOH and sequencing data
are summarised in table 2. Using this panel of
markers, we observed LOH in seven cases (7/21,
33%). All tumours, except case 7, were informa-
tive for at least three markers in this region. No
hemizygosity was observed in case 7 with all
seven markers used. Of the seven samples with
LOH, five showed PTEN sequence alterations.
The mutations consisted of a nonsense mutation
in exon 6 (633C>A) and two missense muta-
tions in exons 1 (D19N) and 7 (V217I). Cases 4
and 5 showed LOH with at least two markers,
but mutations by direct sequencing were not
observed. In addition, two putative splice site
changes in IVS1 (79+14 G>A) and IVS2
(165-13 G>A) were observed in cases 6 and 7.
These intronic sequence alterations have not
been identified in 100 control samples. Overall,
six of 21 (28.5%) samples showed sequence

Figure 1 Loss of heterozygosity analyses of metastatic melanomas on chromosome 10q23. (A) Seven short tandem
polymorphic repeat markers around the PTEN locus on 10q23 used in this study. (B) Allele losses of cases 1-6 on 10q23
are shown. N: normal tissue; T: tumour tissue.

N
14456

D10S536

Case 1

Centromere

10q23
A B

Telomere

D10S219

D10S551

D10S215

D10S1765

D10S541
D10S1735

D10S536

T

N
15047

D10S1765

Case 4

T N
14161

D10S541

Case 5

T N
5914

D10S536

Case 6

T

N
14126

D10S541

Case 2

T N
20855

D10S541

Case 3

T

654 Çelebi, Shendrik, Silvers, et al

www.jmedgenet.com

http://jmg.bmj.com


alterations when analysed by direct sequencing.
Of interest, one tumour sample, case 8, in which
a missense mutation in exon 2 (154 G>A) was
identified, did not show LOH with the panel of
markers used.

Additionally, all samples were also tested for
mutations in CDKN2A by direct sequencing.
We identified two missense mutations in cases
2 and 5 (2/21, 9.5%), both in exon 2 of
CDKN2A. These two cases also show LOH at
9p21. Of these, case 2 showed sequencing vari-
ations both in PTEN and CDKN2A, whereas
case 9 showed a nucleotide change in
CDKN2A only (table 2).

Discussion
To date, the information on mutational profile
of PTEN in melanoma has been gathered
primarily from studies using tumour cell lines
and not primary tumour samples. These data
show somatic mutations and deletions in
29-43% of the samples.8–10 Teng et al8 showed
48% LOH at 10q23 in primary melanomas, in
which only one missense mutation in PTEN
(10%) was identified. In the same study, they
showed 50% LOH in melanoma cell lines, and
found four homozygous deletions (28%).Guld-
berg et al9 studied melanoma cell lines and
reported similar incidence of alterations (43%)
in PTEN. Of interest, in this study they showed
that for three specimens identical alterations
found in the cultured cell lines also existed in
the uncultured tumour specimens. Finally,

Tsao et al10 described a mutation rate of 29% in
melanoma cell lines, and 6% in uncultured
metastatic melanomas. Of the uncultured
metastatic melanomas they examined, only one
showed a 7 bp duplication in exon 7 leading to
a premature stop codon. We have investigated
uncultured metastatic melanomas for LOH at
10q23, and for alterations in PTEN and
CDKN2A. In this set of 21 metastatic tumour
samples, we detected 33% (7/21) LOH at
10q23 and 28.5% (6/21) sequence alterations
in PTEN by direct sequencing. CDKN2A
mutations were encountered in 9.5% (2/21) of
the samples tested. Only one case showed
sequencing variations, both in PTEN and
CDKN2A. These data support the notion that
chromosomal alteration involving 10q23 and
PTEN occur in metastatic melanoma.

The mutations of PTEN, both germline and
somatic, have been reported in all nine exons of
the gene. However, mutations in PTEN tend to
cluster in exon 5, which contains the phos-
phatase catalytic domain. Aside from exon 5, a
significant number of mutations have been
observed in exons 6, 7, and 8. Of the 21
samples analysed, we found one nonsense
mutation in exon 6 and three missense
mutations in exons 1, 2, and 7 in PTEN. All of
the mutations identified in this study are novel
somatic mutations in PTEN. Of interest, we
observed the exon 6 mutation, C211X, in the
germline of a family with Cowden syndrome
(unpublished data). Additionally, we noted

Table 1 LOH analyses on chromosome 10q23 in metastatic melanoma

Case No
Sample
No

Microsatellite markers (centromere→telomere)

D10S219 D10S551 D10S215 D10S1765 D10S541 D10S1735 D10S536

1 14 456 o o o − + − +
2 14 126 − + o + + − o
3 20 855 o + o − + + −
4 15 047 o − − + o − −
5 14 161 + − o − + − o
6 5914 o + o − + o +
7 4890 o o o o o o o
8 23 807 − − o − o − −
9 359 − − o o − − o
10 17 974 o − − o − − −
11 3260 o − o o − − −
12 19 529 o − o − − − o
13 12 917 o − o − − − −
14 4789 ND o − − − o −
15 8523 ND o − − o − −
16 15 374 ND o − NA o o −
17 17 146 ND − − − o − o
18 5469 ND − − − o o −
19 12 714 ND NA − − o − −
20 23 151 ND o − − o − −
21 24 148 ND o o − o − −

ND, not done; NA, no amplification; o, uninformative.

Table 2 Summary of LOH on 10q23 and mutations in PTEN compared to CDKN2A in metastatic melanoma

Case
No

Sample
No

PTEN CDKN2A

LOH
Mutation/sequence
alteration Predicted eVect

Exon or
IVS LOH

Mutation/sequence
alteration

Predicted
eVect

Exon or
IVS

1 14 456 + 633 C>A C211X 6 − −
2 14 126 + 55 G>A D19N 1 + 193 C>T L65F 2
3 20 855 + 649 G>A V217I 7 ND −
4 15 047 + − ND −
5 14 161 + − + 220 G>A D74N 2
6 5914 + IVS1+14 G>A Putative splice site or polymorphism IVS1 ND −
7 4890 + IVS2−13 G>A Putative splice site or polymorphism IVS1 ND −
8 23 807 − 154 G>A D52N 2 ND −

ND, not done.

PTEN mutations in metastatic melanoma 655

www.jmedgenet.com

http://jmg.bmj.com


sequence alterations in PTEN in IVS1 (+14
G>A) and IVS2 (-13 G>A) in samples 6 and 7,
which both also showed allelic loss of PTEN.
These variations were not observed in 100
control sequences, thus suggesting that these
intronic alterations may be either splice site
changes resulting in exon skipping and thus a
non-functional protein or rare polymorphisms
in PTEN. To date, all of our studies of germline
splice site alterations in CS have resulted in
exon skipping, which suggests that this is likely
to be the case here as well.18

It has been noted that mutations, both intra-
genic and homozygous deletions, in uncultured
tumour tissue are detected with less sensitivity
than in cell lines, because of heterogeneity
within the sample, as well as normal stromal
contamination.8 9 Most tumours are predicted
to contain 10-40% normal cell contamination.
Even 5% normal DNA within a tumour can
prevent identification of homozygous deletions
using gel visualisation after PCR8 and thus
homozygous deletions of uncultured speci-
mens in PTEN have not been documented to
date. Tumour tissue is also heterogeneous, so it
is possible that only the most malignant cancer
cells within a tumour may have detectable
mutations. Similarly, mutations in tumour cell
lines may be detected more easily because of
the selection bias conferred in cells grown in
cultures through multiple passages. For the
reasons listed above, our results may be an
under-representation of PTEN and CDKN2A
mutations in metastatic melanoma. Despite the
possibility of underestimation of mutations,
our results and those reported previously
suggest that PTEN and CDKN2A play a role in
tumour progression in some, but not all, meta-
static melanomas.
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