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Novel mutations of FOXP3 in two Japanese
patients with immune dysregulation,
polyendocrinopathy, enteropathy, X linked
syndrome (IPEX)

Ichiro Kobayashi, Reza Shiari, Masafumi Yamada, Nobuaki Kawamura, Motohiko Okano,
Asao Yara, Akihiro Iguchi, Nobuyoshi Ishikawa, Tadashi Ariga, Yukio Sakiyama,
Hans D Ochs, Kunihiko Kobayashi

EDITOR—Immune dysregulation, polyendocrin-
opathy, enteropathy, X linked syndrome
(IPEX), also known as X linked autoimmunity-
allergic dysregulation syndrome (XLAAD), is
characterised by enteropathy and involvement of
the endocrine system, such as insulin dependent
diabetes mellitus (IDDM) and thyroiditis,
which develop in association with autoantibod-
ies in early infancy (MIM 304930, 304790).1 2

IPEX has been mapped to chromosome
Xp11.23-Xq13.3.3 4 Recent studies have indi-
cated that FOXP3, a member of forkhead/
winged-helix proteins, is a causative gene for
both IPEX and an equivalent mouse, scurfy.5–8

Human FOXP3 consists of 11 exons and
encodes 431 amino acids containing a zinc
finger (Zn) domain, a leucine zipper (Zip) motif,
and a forkhead domain.6 8 We have previously
reported two unrelated Japanese patients with X
linked autoimmune enteropathy associated with
tubulonephropathy and endocrinopathy.2 9 10

We report here novel mutations in the FOXP3
gene of these patients.

Patients and methods
Clinical and laboratory findings of our patients
have been previously reported.2 9 10 Briefly,
patient 1, a boy, now 11 years old, was
diagnosed as having autoimmune thyroiditis,
autoimmune haemolytic anaemia, and auto-
immune enteropathy at the age of 2 weeks, 2
months, and 5 months, respectively. Renal
tubular dysfunction was also noted. His mater-
nal uncle and his older brother had died of a
similar diarrhoeal disease complicated by
IDDM, suggesting X linked inheritance of the
disease.2 He has been treated with a combina-
tion of tacrolimus (0.3 mg/day) and beta-
methasone (0.3-0.5 mg/day).9 Hypocalcaemia
and hypokalaemia often develop in spite of
supplementation with calcium, potassium, and
vitamin D, which suggests renal damage result-
ing from either the underlying disease or a side
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eVect of tacrolimus. In addition, he is suVering
from osteoporosis associated with multiple
compression fractures of the vertebral bodies
and steroid induced cataract. He has failed to
gain weight and height, although his diarrhoea
has been fairly well controlled.

Patient 2, a boy, was diagnosed as having
autoimmune enteropathy, tubulonephropathy,
IDDM, and thyroiditis in his early infancy. He
died of sepsis before using immunosuppressants
at the age of 3 years. His maternal uncle died of
intractable diarrhoea.9 Both of the patients
showed extremely high levels of serum IgE.10 11

Genomic DNA was isolated from Epstein-
Barr virus transformed cell lines in patient 1
and his family and from a necropsy specimen in
patient 2 using a standard method. Each exon
including the exon-intron junction was ampli-
fied by polymerase chain reaction (PCR)
(94°C for five minutes, followed by 35 cycles of
94°C for 30 seconds, 60°C for 30 seconds, and
72°C for one minute) with primers listed in
table 1. Additional primers were also used for
sequence analyses.8 PCR products were sup-
plied for direct sequencing. Both PCR amplifi-
cation and sequencing were performed using
GeneAmp PCR System 2400 (Perkin Elmer).

Sequence analyses were performed by Gene
Analyzer 310 (ABI PRISM).

Results and discussion
Patient 1 showed a deletion of a single
nucleotide T227 in exon 2, which results in a
frameshift and generates a premature stop at
codon 128 (fig 1A). Accordingly, the truncated
protein in patient 1 lacks all of the domains and
is apparently non-functional. This mutation
was not observed in his healthy brother, sister,
or father. His mother was found to be
heterozygous for this mutation. Seven muta-
tions of FOXP3 have been reported in IPEX.
Three cases carry single amino acid substitu-
tions in the forkhead domain, whereas another
has a single amino acid deletion in the Zip
domain.6–8 Deletion of the forkhead domain
was reported in one case, which resulted from
exon 9 skipping and a frameshift accompanied
by premature termination.8 The remaining two
cases involve deletion of a stop codon which
results in the addition of new residues.6 7

Patient 2 showed an A1087G substitution in
exon 10, which results in an Ile363Val
substitution (fig 1B). Wildin et al6 reported that
no sequence variations are found in exons 10

Table 1 Primers used in the analyses of the FOXP3 gene

Forward primer Reverse primer

Exon 1 5'-AGTATCTCATACCGCCCTAGCACACGTGTGA-3' 5'-ACAGTAAAGGTCGGCACCTGTAGGTCCAGGTA-3'
Exons 2–3 5'-AGTGCAGAGTATTTGAATTAGACACAGAACAGTG-3' 5'-AGAATAGCCTACACTGCTCACAGCCAAGGATCTG-3'
Exons 4–5 5'-AGAGGCCTTGTGGGCCAAGCTCCAGAGCCCA-3' 5'-GAGCTGAGATCTGCACCCTAGACCTCTCCCCA-3'
Exon 6 5'-GCATGTGTTAAGGGAACGAGGGGTGT-3' 5'-GGTTTTGCGCACTATCCCTA-3'
Exon 7 5'-GGGATAGTGCGCAAACC-3' 5'-CAGCAGTCTGAGTCTGCCACCA-3'
Exon 8 5'-GGCGACAGAGCAAGACTCAGTA-3' 5'-CACCCAGAGCCTGTCAGGATTAGGA-3'
Exon 9 5'-GACGGTGAGATCTCAGGCCTGTAGACTCACCTTG-3' 5'-AACCCACTCTGAGGGCACTCAGAGGGAGACA-3'
Exons 10–11 5'-AGGTCATAGCCCCTCTAAACCCCAAGTTTG-3' 5'-ACCTCTGCCTCCCACCAGTTTGGCCCCTGTTCG-3'

Figure 1 Sequence analyses of exon 2 of patient 1 (A) and exon 10 of patient 2 (B). Arrowhead indicates a deletion of T
at nt 227 in patient 1. Underline indicates an A to G transition at nt 1087 in patient 2.

Patient 2Patient 1

Control

Exon 10Exon 2 BA

Control
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and 11 in unaVected subjects, indicating that
the Ile363Val substitution is not a polymor-
phism but a missense mutation. Ile363 is
located in the middle of the second á-helix of
the forkhead domain and is highly conserved
among FOX family members,13 14 suggesting
that Ile363 is critical for the function of
FOXP3.

IPEX patients, as well as scurfy mouse, show
autoimmune and allergic features which are
associate with skewed expression of Th2 type
cytokines.1–8 15–17 Our patients showed various
autoantibodies against the intestine, renal
tubules, thyroid, or red blood cells.2 12 In addi-
tion, overexpression of Th2 type cytokines
such as interleukin-4 has also been found in the
peripheral blood mononuclear cells from pa-
tient 1.11 Thus, it is predicted that FOXP3 con-
tributes to maintenance of immune tolerance
and regulates cytokine expression. Clarification
of its precise function in normal immune
systems could provide new insights into the
mechanism of autoimmunity and allergy.

We thank family members for their participation in this study.
This work was supported by Grant in Aid from the Ministry of
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Maternal uniparental isodisomy 11q13→qter in a
dysmorphic and mentally retarded female with
partial trisomy mosaicism 11q13→qter

Dieter Kotzot, Benno Röthlisberger, Mariluce Riegel, Albert Schinzel

EDITOR—Partial trisomy mosaicism describes
the presence of a normal cell line together with
an unbalanced translocation in a second cell
line. Its incidence is not known. Only a few
cases have been published,1 almost all with
developmental delay and a pattern of dysmor-
phism. The presence of a normal cell line
points towards postzygotic formation, but the
origin and mechanism of formation have so far
only been investigated in one case of partial tri-
somy 16p mosaicism and in another case of
partial trisomy 21q mosaicism.2 3 In the

former, a complex formation by trisomy first,
translocation second, and uniparental disomy
and partial trisomy third was inferred. In the
latter, paternal meiotic origin of
der(21;21)(q10;q10) mosaicism (46,XX/
46,XX,der(21;21)(q10;q10),+21) in a girl with
mild Down syndrome was described.

Here, we report on a 25 year old woman with
mental retardation, dysmorphic features, par-
tial trisomy 11q13→qter mosaicism (46,XX,
der(19)t(11;19)(q13;p13.3)/46,XX), maternal
uniparental isodisomy 11q13→qter in the
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