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Abstract
DNA methylation is not just for basic sci-
entists any more. There is a growing
awareness in the medical field that having
the correct pattern of genomic methyla-
tion is essential for healthy cells and
organs. If methylation patterns are not
properly established or maintained, disor-
ders as diverse as mental retardation,
immune deficiency, and sporadic or in-
herited cancers may follow. Through in-
appropriate silencing of growth regulating
genes and simultaneous destabilisation of
whole chromosomes, methylation defects
help create a chaotic state from which
cancer cells evolve. Methylation defects
are present in cells before the onset of
obvious malignancy and therefore cannot
be explained simply as a consequence of a
deregulated cancer cell. Researchers are
now able to detect with exquisite sensitiv-
ity the cells harbouring methylation de-
fects, sometimes months or years before
the time when cancer is clinically detect-
able. Furthermore, aberrant methylation
of specific genes has been directly linked
with the tumour response to chemo-
therapy and patient survival. Advances in
our ability to observe the methylation sta-
tus of the entire cancer cell genome have
led us to the unmistakable conclusion that
methylation abnormalities are far more
prevalent than expected. This methyl-
omics approach permits the integration of
an ever growing repertoire of methylation
defects with the genetic alterations cata-
logued from tumours over the past two
decades. Here we discuss the current
knowledge of DNA methylation in normal
cells and disease states, and how this
relates directly to our current under-
standing of the mechanisms by which
tumours arise.
(J Med Genet 2001;38:285–303)
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5'-methylcytosine, the fifth base
Methylation of cytosine is the only known
endogenous modification of DNA in mammals
and occurs by the enzymatic addition of a
methyl group to the carbon-5 position of cyto-
sine.1 The majority of 5'-methylcytosine in
mammalian DNA is present in 5'-CpG-3'
dinucleotides.2 Non-CpG sequences such as
5'-CpNpG-3'3 or non-symmetrical 5'-CpA-3'

and 5'-CpT-3'4 may also exhibit methylation,
but generally at a much lower frequency. In
mouse embryonic stem cells, however, non-
CpG methylation comprises 15-20% of total
5'-methylcytosine.5

CpGs are not uniformly distributed in the
human genome. In 98% of the genome, CpGs
are present approximately once per 80 dinucle-
otides. In contrast, CpG islands, which com-
prise 1-2% of the genome, are approximately
200 base pairs (bp) to several kb in length and
have a frequency of CpGs approximately five
times greater than the genome as a whole.6 7

Based on the draft version of the human
genome there are an estimated 29 000 CpG
islands in the genome, roughly consistent with
previous estimates, and CpG islands nearly
always encompass gene promoters and/or
exons.8–10 Approximately 50-60% of all genes
contain a CpG island.10 11 With the noted
exceptions of imprinted genes and several
genes on the inactive X chromosome in
females, CpGs within CpG islands are nor-
mally unmethylated while most CpGs outside
CpG islands are methylated.12 13 It has been
suggested that these patterns of methylation
may serve to compartmentalise the genome
into transcriptionally active and inactive zones.

DNA methylation is present in organisms
from bacteria to humans. In bacteria, methyla-
tion is part of a defence mechanism to reduce
the amount of gene transfer between species.
Particular mutant strains of bacteria that lack
detectable methylation nevertheless survive
and proliferate. Early studies were unable to
detect cytosine methylation in the fruit fly Dro-
sophila melanogaster. Recent reports, however,
show low level methylation of cytosine resi-
dues, particularly in early developmental
stages.14 15 In contrast to bacteria, deletion of
any one of three DNA methyltransferase genes
from mice is lethal, suggesting that methylation
has additional and indispensable functions in
mammals.16 17

Establishing DNA methylation patterns pro-
ceeds through defined phases during develop-
ment of an organism. In general, germ cells of
females are less methylated than those of
males, and gamete methylation patterns are
erased by a genome wide demethylation near
the eight cell stage of blastocyst formation.18 19

During the implantation stage, methylation
patterns are established following a wave of de
novo methylation.18 19 In the adult, the amount
and pattern of methylation are tissue and cell
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type specific and there is evidence for aging
related methylation changes of CpG islands in
the promoter of genes, including the oestrogen
receptor gene and MYOD1.20 Methylation pat-
terns of certain genomic regions appear
polymorphic between people and can be inher-
ited, suggesting either the persistence of certain
methylation at all stages of development, or the
encryption of methylation pattern infor-
mation.21

Methylation machinery
Three DNA methyltransferases, DNMT1,
DNMT3A, and DNMT3B, have been identi-
fied in mammalian cells.16 17 Elimination of any
one of these genes from the germline of mice is
lethal.17 22 Mouse embryos having homozygous
deletion of Dnmt1 or Dnmt3B die before birth,
while Dnmt3A deletion leads to death approxi-
mately four weeks after birth.17 22 Mice that are
heterozygous mutant for any one of the DNA
methyltransferases appear normal and are
fertile.17 22 Conditional deletion of Dnmt1 from
mouse fibroblasts results in p53 dependent
apoptosis and massive dysregulation of gene
expression.23

Initial methylation of DNA requires de novo
methylase activity that is mostly present during
early embryonic development.24 All three
methyltransferases possess de novo activity,17 25

but appear to have certain distinct sequences
targeted for methylation.5 17 25 The activity of
Dnmt1 is far greater on hemimethylated DNA,
and thus DNMT1 is termed a maintenance
methylase. DNMT1 is ubiquitously expressed
in somatic tissue16 and interacts with PCNA at
the replication fork,26 27 consistent with a func-
tion in maintaining methylation patterns.28

DNMT1 also interacts in a protein complex
with HDAC2 and DMAP1 (DNMT1 associ-
ated protein) to mediate transcriptional repres-
sion.29

Since certain developmental processes also
involve erasure of the methylation pattern, an
enzyme with demethylating activity has been
proposed30–32 and debated.33 34 An alternative
explanation could include DNA replication in
the absence of maintenance methylation,
resulting in passive demethylation.35 36

Functions of methylation
Cytosine methylation has a number of func-
tions, a few that are proven and others that are
actively debated. Methylation within gene
regulatory elements such as promoters, en-
hancers, insulators, and repressors generally
suppresses their function. In normal cells,
imprinted genes and genes on the inactive X
chromosome are the most prominent examples
of transcriptional repression by methylation.
Methylation within gene deficient regions, such
as in pericentromeric heterochromatin, ap-
pears crucial for maintaining the conformation
and integrity of the chromosome.37 Methyla-
tion has also been proposed as a genome
defence against surreptitious mobile genetic
elements.38 39

Two mechanisms by which methylation
blocks transcription have been proposed.40–44

First, methylation inhibits binding of certain

transcription factors to their CpG containing
recognition sites.45 46 A second mechanism
involves proteins or protein complexes,
MeCP2 or MeCP1 respectively, that bind spe-
cifically to methylated CpGs and can indirectly
inhibit the binding of transcription factors by
limiting access to a regulatory element.40 43 The
inhibitory eVect is mediated by the ability of
the methylated CpG binding proteins to recruit
histone deacetylases (HDACs). For example,
MeCP1 recruits HDAC1, HDAC2, and Rb
related proteins 46 and 48,33 while MeCP2
binds to the Sin3-HDAC corepressor com-
plex.47 HDACs deacetylate lysine residues in
the N-terminal tails of the histones to facilitate
interactions between adjacent histones that in
turn help form transcriptionally repressive
chromatin structures. Other proteins with
methyl binding domains (MBD) have been
identified but their role in mediating the eVects
of DNA methylation remains to be deter-
mined.41

During development, inactivation of one of
the two X chromosomes in female cells occurs
by a process dependent on methylation.48 CpG
island containing promoters of the majority of
genes on the inactive X chromosome, including
housekeeping genes like HPRT, G6PD, and
PGK1, are methylated and transcriptionally
silent, presumably to ensure equivalent expres-
sion levels in male and female cells.49 For many
of these genes, silencing precedes methylation50

and may therefore serve to maintain silencing,
rather than initiating the event. Expression of
the XIST (X inactive specific transcript) gene is
also correlated with methylation status of its
promoter, but XIST is unmethylated and
expressed from the inactive X and methylated
and silent on the active X.48 Dnmt1 deleted
embryonic stem cells express the normally
silenced XIST gene on the active X chromo-
some in males.51

Methylation is also critical for the expression
of imprinted genes. While the majority of genes
are expressed from the maternal and the pater-
nal alleles, a small number of “imprinted”
genes are expressed in a parent of origin
specific manner.52 Imprinting involves allele
specific methylation in CpG islands associated
with these genes, through mechanisms that are
not fully understood.53 54 However, recent
studies suggest the involvement of a protein
with chromatin boundary function, CTCF,
that binds to the unmethylated allele at the
imprinting control region upstream of H19, but
not to the methylated allele.55–58 Since methyla-
tion patterns are reproducibly established in
imprinted genes and other genomic regions,
sequence specificity for methyltransferases has
been postulated. A first indication of how this
might occur was described in a recent report of
a protein complex consisting of DNMT1
together with RB, E2F1, and HDAC1. Theo-
retically, such a complex could specifically tar-
get genes that contain E2F1 binding sites.59

Abnormal methylation in disease
The importance of DNA methylation patterns
to human health is underlined by the recent
identification of mutations in methylation

286 Costello, Plass

www.jmedgenet.com

http://jmg.bmj.com


related genes that are linked to human disease.
Mutations in the methyltransferase gene
DNMT3B are found in patients with ICF syn-
drome and mutations in the methylated CpG
binding protein MeCP2 have been observed in
patients with Rett syndrome.

ICF syndrome is a rare autosomal recessive
disorder, characterised by the presence of vari-
able immunodeficiency, instability of the peri-
centromeric heterochromatin in chromosomes
1, 9, and 16, and mild facial anomalies. The
first observations indicating defects in the
methylation machinery showed hypomethyla-
tion of satellite DNA in ICF patients.60–62 Addi-
tionally, chromosomal abnormalities such as
those observed in ICF patients can also be
induced in normal lymphocytes following
treatment with the demethylating agents,
5-azacytidine and 5-azadeoxycytidine.63 Ho-
mozygosity mapping allowed localisation of the
ICF syndrome candidate gene to chromosome
20q11-q13,64 the chromosomal location of
DNMT3B.65 Recently, several groups reported
mutations in DNMT3B in ICF patients
consistent with the idea of a methylation
defect.17 66 67

Rett syndrome is an X linked, neurodevelop-
mental disorder characterised by mental retar-
dation and autistic behaviour and occurs
exclusively in females.68 Mutations in an X
chromosome gene, MeCP2, which encodes a
methylated DNA binding protein, occur in at
least two thirds of sporadic Rett syndrome
cases and 45% of familial cases.69–72 The major-
ity of mutations occur either in the methylated
CpG binding domain or in the transcriptional
repression domain that recruits the Sin3-
HDAC corepressor complex.73

Other human diseases have been shown to
be associated with imprinted regions and
defects in imprinted genes or their epigenetic
regulation. Examples include Beckwith-
Wiedemann syndrome (BWS) on human
chromosome 11p15 and the Prader-Willi
syndrome (PWS) and Angelman syndrome
(AS) both on chromosome 15q11-q13. PWS is
characterised by mild to moderate mental
retardation and patients are slow moving and
overweight because of severe hyperphagia.
Patients with AS show severe mental retarda-
tion and are thin, hyperactive, and show disor-
ders of movement and uncontrolled laughter.
The first hint of a possible imprinting eVect in
these syndromes came from the finding that the
deleted fragments in both syndromes are from
opposite parental origins. In PWS the deletion
occurs in the paternal copy and in cases of AS
the maternal copy is deleted. Additional
evidence came from the finding of maternal
disomy of chromosome 15 in PWS patients
and paternal disomy of chromosome 15 in AS.
These data suggest that the PWS gene(s) are
transcribed from the paternal allele only and
the AS gene(s) are expressed from the maternal
allele. Several imprinted genes were identified
in the critical region for PWS/AS, including
paternally expressed SNRPN and maternally
expressed UBE3A.74 Microdeletions in the
SNRPN gene have been identified that alter

DNA methylation patterns and lead to dys-
regulation of SNRPN and other genes in the
imprinted gene cluster.75–78

BWS is characterised by a number of growth
abnormalities, including hemihypertrophy,
macroglossia, visceromegaly, and gigantism;
however, the phenotypic expression is variable.
Between 5 and 10% of BWS patients are prone
to Wilms tumour, adrenocortical carcinoma,
hepatoblastoma, or embryonal rhabdomyosar-
coma. Wilms tumours have been shown to
exhibit preferential loss of maternal alleles at
chromosome 11p. A cluster of at least 10
imprinted genes was identified in 11p15.5,
including the paternally expressed IGF2 and
the maternally expressed H19, and there is evi-
dence for two independent imprinting control
centres.79 The most common abnormality in
BWS patients was LOI of IGF2 without any
detectable chromosomal abnormalities.79

There is now overwhelming evidence implicat-
ing DNA methylation changes in BWS. Epige-
netic changes include loss of imprinting in
IGF2,80 81 and silencing of H19 by promoter
methylation.80 82

Defects in methylation may underlie or con-
tribute to other disorders. Because of the herit-
able and reversible nature of methylation,
intriguing theories have been proposed regard-
ing the role that epigenetics (possibly aberrant
methylation) might play in complex, non-
Mendelian disorders such as schizophrenia and
aVective disorders.83 84

The genomics of methylation imbalance
in cancer
The underlying basis of cancer is a cumulative
series of genetic and epigenetic alterations
leading to deregulated cell growth. Particular
alterations may provide a selective growth
advantage to the tumour cell, whether by con-
ferring resistance to therapies, increasing posi-
tive growth signals through the activation of
oncogenes, or eliminating growth limiting
signals through the inactivation of tumour sup-
pressor genes. “Mutations” outside the nucle-
otide sequence occur frequently in human can-
cer and may contribute to the initiation and
malignant progression of tumours. Although
epigenetic mutations involving cytosine meth-
ylation were first observed in primary cancers
nearly two decades ago,37 85 86 like most contro-
versial ideas in science, it has taken a while to
catch on.

An imbalance in cytosine methylation is
prevalent in human sporadic cancers.37 85–87

Methylation pattern defects include genome
wide hypomethylation and localised aberrant
hypermethylation of CpG islands. These im-
balances can be present together in a single
tumour, though the net eVect is usually a
decrease in total methylation levels. Whether
genome hypomethylation and CpG island
hypermethylation are linked by a common
underlying mechanism or result from distinct
abnormalities in the cancer cell is currently
unknown. However, we do know that hy-
pomethylation and hypermethylation occur at
specific but distinct sites within the cancer cell
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genome, suggesting diVerent aetiologies. Both
defects can precede malignancy, indicating that
they are not simply a consequence of the
malignant state.

In discovering and interpreting methylation
defects, researchers have adapted the principles
of cancer genomics, including theories of the
clonal evolution of tumour cell populations88

and the two hit model of tumour suppressor
gene inactivation.89 Methylation may inactivate
one or both alleles of the proven tumour
suppressor genes in sporadic cancers and can
potentially act as a second hit during the devel-
opment of hereditary cancer.90 91 If methylation
imbalances contribute directly to tumour
initiation, the alterations should occur in early
stages of cancer or in premalignant cells. If the
imbalance contributes directly to tumour
progression, methylation defects should in-
crease in frequency and/or severity coordi-
nately with increasing malignancy grades. One
might also expect that cells harbouring func-
tionally important methylation abnormalities
could be selected in a manner consistent with
the clonal evolution of cancer cells.88 Finally,
there should be a mechanistic explanation
linking the methylation change to malignant
behaviour. Available evidence from premalig-
nant tissues, primary human tumours, and in
vitro and in vivo models of cancer support
these suppositions.85 86

Hypomethylation
The amount of 5'-methylcytosine in genomic
DNA is measured directly by HPLC92 or indi-
rectly as an inverse value of the capacity of a
DNA sample to accept tritiated methyl groups
from a universal methyl donor
s-adenosylmethionine.93 These distinct meth-
ods have shown similar general trends of
hypomethylation in tumours.37

The extent of genome wide hypomethylation
in tumours parallels closely the degree of
malignancy, though this is tumour type de-
pendent. In breast, ovarian, cervical, and brain
tumours, for example, hypomethylation in-
creases progressively with increasing malig-
nancy grade.93–96 Additionally, a study of 136
breast lesions has shown a significant correla-
tion between the extent of hypomethylation
and disease stage, tumour size, and degree of
malignancy.97 Thus, hypomethylation may
serve as a biological marker with prognostic
value. Cells from non-malignant medical con-
ditions such as gastritis and colitis also display
a progressive hypomethylation, though lesser in
degree relative to that in malignant cells.98 99 In
contrast to escalating hypomethylation during
tumour progression, the levels of hypomethyla-
tion in benign colon polyps and malignant
colon adenocarcinoma are quantitatively simi-
lar.100 It is unlikely that hypomethylation
reflects the dividing state of the premalignant
or cancer cells, because normal tissues and
cultured cells show no correlation between cell
turnover or self renewal rates and overall levels
of 5'-methylcytosine.95 These correlative data
alone are consistent with either a contributory
or reflective role of hypomethylation in tumour
initiation and malignant progression.

What is the evidence that hypomethylation
might contribute directly to malignancy, and
what are the mechanisms by which this might
occur? Several hypotheses have been proposed
including hypomethylation mediated transcrip-
tional activation of oncogenes,101 102 activation
of latent retrotransposons,103–107 and chromo-
somal instability.37 Each of these hypotheses
has received some support from the identifica-
tion of genome sites subject to hypomethyla-
tion in cancer. Pioneering studies suggested
that loss of methylation in tumours may involve
all segments of the genome, including se-
quences of high, medium, and low copy
number.95 Subsequent reports confirmed these
findings in a more detailed fashion, providing
additional rationale for an in depth investiga-
tion of each of the hypotheses. We now
consider the data pertinent to each hypothesis.

ONCOGENE ACTIVATION

Holliday and Pugh102 proposed that if hy-
pomethylation leads to inappropriate activation
of genes important in neoplastic growth, then
hypomethylation could provide a selective
advantage for the tumour cell.102 Such cells
could then clonally evolve and would appear as
a prominent population in the tumour. Hy-
pomethylation within the body of a number of
genes has been found in primary cancers,101

including known oncogenes such as CMYC108

and HRAS.108 109 While oncogene overexpres-
sion in the absence of gene amplification is
fairly common, to date there is no compelling
mechanistic or correlative evidence that local
hypomethylation causes overexpression.

Hypomethylation in human cancers is caus-
ally related to transcriptional activation of a
large group of genes of the MAGE, GAGE,
CTAG/LAGE, and SAGE families.110–112 These
unrelated gene families are located on the X
chromosome and their cellular function is
unknown. MAGE genes, which are a prototype
of this group, were first discovered as coding for
tumour specific antigens recognised by cyto-
lytic T lymphocytes113 and are currently being
studied as potential anticancer vaccines.114 115

MAGE type genes are germline specific genes
that are aberrantly activated in melanomas and
many other tumour types. They are unmethyl-
ated in spermatogenic cells, but are methylated
in all adult somatic tissues, including alleles on
both the active and inactive X chromosomes.116

Studies of MAGE promoters suggest that
these genes use methylation as a primary
mechanism for silencing in adult somatic
tissues.116 117 The promoters of MAGE type
genes have an intermediate density of CpGs
and may constitute a unique class of promoters
that fall somewhere between the constitutively
unmethylated CpG island promoter and the
conditionally methylated CpG poor pro-
moter.116 MAGE promoter demethylation, pos-
sibly as a consequence of genome wide
hypomethylation, leads to transcriptional acti-
vation of MAGE genes in cancer cells.118

MAGE gene expression in tumour cells may
stimulate the production of anti-MAGE T
lymphocytes. Therefore, instead of providing a
selective growth advantage, hypomethylation

288 Costello, Plass

www.jmedgenet.com

http://jmg.bmj.com


may in some instances increase the immuno-
genicity of cancer cells, facilitating their elimi-
nation.

MOBILE DNA

Hypomethylation in cancer cells may lead to
the transcriptional activation of mobile genetic
elements called retrotransposons.103–106 This
suggestion relates directly to a theory that a
primary function of methylation is to defend
the genome from the deleterious eVects of
these resident and invading parasites.38 The
most abundant retrotransposons in the human
genome are known as long interspersed nuclear
elements (LINEs or L1s).119 Full length L1s
have two open reading frames, one which
encodes a nucleic acid binding protein and a
second which encodes a protein with endonu-
clease and reverse transcriptase activities,
allowing their mobilisation in genomes through
an RNA intermediate.119 One hundred thou-
sand L1s exist in the human genome, but most
are inactive owing to truncations, rearrange-
ments, and mutations. Only 30-60 may be
competent for transposition.120 Additionally,
many L1s are methylated and transcriptionally
silent, though it is unknown if the non-mutated
L1s and the intact L1s are both silenced in this
manner. Loss of promoter methylation and
transcriptional activation of L1 elements have
been reported in a variety of sporadic cancer
types.103–106

If the full length, non-mutated transposable
elements are transcribed (and then reverse
transcribed), they might integrate in and
disrupt important growth regulating genes. L1
mutational insertions in sporadic cancers have
been found that disrupt the APC gene and
CMYC gene in a sporadic tumour of the colon
and breast, respectively, suggesting that certain
L1s are active in human cells.121 122 In the
disrupted APC gene, the nucleotide sequences
in and around the insertion site exhibited the
signature of retrotransposon integration.121

Mutational insertion of non-autonomous ret-
rotransposons such as Alu elements may also
occur in the germline.119 Such Alu mediated
“mutations” have been observed in BRCA1
and BRCA2 in families with hereditary predis-
position to breast and ovarian cancer123 124 and
in the MLH1 gene in families predisposed to
colon cancer.125 Relative to other mutational
mechanisms, transposon mediated mutational
insertions are rare in well studied human can-
cer genes. A role of genome hypomethylation in
permitting transposition in cancer cells is not
resolved, but there is substantial evidence for
the unleashing of transcription of large num-
bers of retrotransposon sequences in a meth-
ylation dependent manner.23 39 126 127

The deleterious eVect of retrotransposons in
cancer may not require transposition. It has
been suggested that because of the typically
strong activity of the 5' LTRs or promoters of
L1s, hypomethylation mediated transcriptional
activation of L1s could also disrupt expression
of nearby genes. While the promoters of most
L1s have been deleted, other abundant retro-
transposons such as human endogenous retro-
viruses (HERVs) retain the 5' LTR.119 HERVs

are also demethylated and expressed in some
cancers,106 but direct evidence for disrupted
expression of genes near transcriptionally acti-
vated HERVs or L1s has not yet been reported
in primary human cancers.

CHROMOSOME INSTABILITY

Hypomethylation of specific chromosomal
domains has also been linked to chromosome
instability.37 It has been proposed that the
hypomethylation contributes to malignancy
through disturbance of chromosomal domains
and/or abnormal gene dosage eVects from lost
or gained chromosome fragments. In normal
somatic cells, pericentromeric heterochroma-
tin regions on chromosomes 1 and 16 are
heavily methylated. In breast adenocarcino-
mas, ovarian epithelial tumours, and sporadic
Wilms tumours, these regions are significantly
hypomethylated and frequently unstable.94 96 128

Chromosome abnormalities associated with
the hypomethylation of these regions include
isochromosomes, unbalanced juxtacentro-
meric translocations, and whole arm deletions.
Similar rearrangements involving chromo-
somes 1 and 16 are also induced in mitogen
stimulated normal cells treated with either
5-azacytidine or 5-aza-2-deoxycytidine, but
not with genotoxins which do not cause DNA
hypomethylation.129 130 Hypomethylation may
be causally related to chromosome instability,
though the apparent need for mitogen stimula-
tion and cell division in this process suggests
that the relationship is multifactorial.

An additional link between hypomethylation
and chromosome instability has come from
studies of ICF syndrome,131 a rare genetic dis-
order in humans that is caused by inherited
mutations in the DNA methyltransferase
DNMT3B.17 66 67 In all somatic cells of ICF
patients, the pericentromeric heterochromatin
of chromosomes 1 and 16 is abnormally
hypomethylated. Mitogen stimulation of lym-
phocytes from ICF patients results in a high
frequency of abnormalities involving chromo-
somes 1 and 16, and to a lesser degree
chromosome 9, which are similar in nature to
the chromosomal abnormalities seen in spo-
radic cancers or in normal cells treated with
demethylating agents.60 130 It should be noted
that ICF patients do not have an increased
incidence of cancer.17 66 67

A causal relationship between hypomethyla-
tion and chromosome instability is also sup-
ported directly by studies of mouse ES cells
having homozygous deletion of the methyl-
transferase Dnmt1.132 The mutant ES cells are
mostly euploid, but have a significantly in-
creased mutation rate, primarily involving
genomic deletion. Thus, data from sporadic
human cancers, ICF patients, and mouse ES
cells lacking Dnmt1 suggest that hypomethyla-
tion may predispose to chromosome abnor-
malities, possibly facilitated by additional
growth stimulating factors or inappropriate cell
division.

GOT FOLATE?
Several lines of evidence suggest that DNA
hypomethylation and chromosome instability
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may result from insuYcient dietary folate.
Folate provides carbon units for a number of
biochemical processes, including production of
S-adenosylmethionine (SAM), a universal me-
thyl donor that also supplies the methyl group
on cytosines in DNA. First, livers of rats fed
folate/methyl deficient diets exhibit genome
hypomethylation and increased DNA strand
breaks occasionally involving the p53 gene, and
the rats typically develop liver cancer.133–135 The
eVect of reduced dietary folate on hypometh-
ylation has also been observed in diet studies in
humans, and the hypomethylation is reversible
by controlled folate repletion.136 Second, cor-
relative studies in humans show a significant
relationship between reduced tissue folate lev-
els and tumour hypomethylation. For patients
with various grades of cervical intraepithelial
neoplasia, the reduced folate level has been
observed in both the neoplastic tissue and
serum.137 A relationship between reduced folate
and cancer is evident, but because of the ubiq-
uitous requirement of folate in cellular bio-
chemistry, it is not yet possible to make a causal
link between the folate deficiency induced
DNA hypomethylation and cancer.

Genome methylation levels also may be
determined by genetic factors related to folate
metabolism. The methylenetetrahydrofolate
reductase (MTHFR) gene encodes an enzyme
involved in synthesis of the methyl donor SAM,
and specific MTHFR gene polymorphisms
reduce the enzyme activity. A study of 10 peo-
ple homozygous for the reduced MTHFR
activity genotype showed significantly reduced
levels of genome hypomethylation in their
peripheral leucocytes, relative to that of nine
subjects homozygous for wild type MTHFR.138

DNA methylation correlated directly with
RBC folate levels in the subjects with the
reduced activity MTHFR. Since reduced folate
and DNA hypomethylation have been associ-
ated with abnormal chromosomal segregation,

it was hypothesised that this particular
MTHFR polymorphism may be a risk factor for
maternal meiotic non-disjunction and Down
syndrome in the children of young mothers.139

Specific MTHFR polymorphisms are also
associated with an increased risk of neural tube
defects and vascular disease and may modify
cancer risk.140–142

There is strong epidemiological evidence
that suYcient dietary folate is important to
reduce the risk of certain cancers.143 Thus, a
role of downstream genome hypomethylation
on this cancer risk seems to be an important
area for future studies. At present, reduced
methyl donor via insuYcient folate is the only
known cellular mechanism leading to genome
hypomethylation in cancer. A role for putative
demethylating enzymes or dysfunction of
methyltransferases in creating the hypomethyl-
ated state has been suggested but remains
unproven.

CpG island hypermethylation
THE CANDIDATE GENE APPROACH

Beginning with its inception in the 1980s, the
investigation of abnormal CpG island methyla-
tion has toppled the notion that the molecular
underpinnings of sporadic cancers are purely
genetic.85–87 Methylation of CpG island pro-
moters may inactivate both alleles of a proven
cancer gene, or may act in concert with genetic
mechanisms including point mutation or dele-
tion (fig 1). Methylation of cancer suppressor
genes is typically restricted to non-mutated
alleles, and demethylating agents are capable of
restoring gene activity and tumour suppressor
function in cultured tumour cells. A great deal
of excitement has come from the possibility
that the dormant, but non-mutated genes
could be chemically reactivated to restore
functional tumour suppressor activity in cancer
patients as an alternative to gene replacement
therapy. Clinical trials to test this in haemato-
poietic and solid tumours will soon be under
way.144

The candidate gene approach tests for aber-
rant methylation in established cancer genes,
particularly in tumour samples and on specific
alleles that do not harbour genetic alterations
of the gene. This lucrative approach has
uncovered methylation related gene silencing
that can account for most types of malignant
behaviour exhibited by human cancer cells
(table 1). Genes involved in cell cycle regula-
tion, DNA repair, drug resistance and detoxifi-
cation, diVerentiation, apoptosis, angiogenesis,
metastasis, and invasion are inappropriately
silenced by methylation. Similar gene silencing
events are recapitulated in chemically and
genetically induced mouse models of human
cancer.145 146 In combination with functional
studies of these cancer genes and mechanistic
studies linking methylation with gene silencing,
there is considerable evidence that CpG island
methylation contributes directly to malig-
nancy.85 86 147

Aberrant methylation may also influence the
expression of imprinted genes in cancer cells.
Methylation regulated expression of a number
of imprinted genes is critical for embryonic

Figure 1 Genetic and epigenetic mechanisms that inactivate cancer genes. The mechanisms
can act alone or in various combinations to cause biallelic inactivation of a cancer gene.
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development, but in the environment of a
tumour cell, dysregulation of some imprinted
genes may have oncogenic consequences.148

Complete loss of function of an imprinted gene
could occur by deletion of the single transcrip-
tionally active allele, as shown for the cyclin
dependent kinase inhibitor p57KIP2 in lung can-
cers,149 H19 in Wilms tumours,150 and NOEY2,
a member of the RAS superfamily, in breast
and ovarian cancers.151 Uniparental disomy of
the silent allele could also lead to complete
inactivation of an imprinted gene that normally
inhibits cell growth.148 152 Conversely, activation
of a growth supporting gene such as IGF2
could occur by uniparental disomy of the active
allele. In addition, loss of the imprinting signal
and subsequent loss of imprinted gene expres-
sion (LOI) could result in biallelic expression
of a growth promoting gene, as shown for IGF2
in Wilms tumours.150 153–155 In colorectal cancer,
biallelic methylation of the CTCF binding site
resulted in biallelic IGF2 expression, primarily
in tumours that also showed methylation and
silencing of MLH1 and p16.156

Aberrant methylation of CpG islands has
been observed in cells that are not overtly
malignant. For example, cultured mammary
epithelial cells having an extended life span are
widely considered to be normal, yet they
contain a densely methylated p16 promoter
and lack p16 expression.157 158 The loss of p16
expression appears to be gradual, and proceeds
coordinately with increasing promoter meth-
ylation. Aberrant CpG island methylation pre-
ceding malignancy is also observed in vivo. For

example, frequent and widespread CpG island
methylation is present in non-dysplastic tissue
from patients with Barrett’s oesophagus and
associated adenocarcinoma.159 In gastric cancer
patients, the p16 and E-cadherin promoters are
methylated in tumours and in normal gastric
mucosa.159 Similarly, the promoter of the
oestrogen receptor gene is aberrantly methyl-
ated in patients with inflammatory reflux
oesophagitis. Thus, CpG island methylation is
not simply a consequence of the malignant
state. If it can be detected in normal appearing
tissue before the onset of cancer, aberrant
methylation may be a useful marker for early or
precancer detection.

CANCER METHYLOMICS

Cancer genes may be inactivated by a variety of
mechanisms, including point mutation, dele-
tion, and methylation (fig 1). For particular
genes, it is often one of the mechanisms that
predominates in the inactivation. For example,
the p16 tumour suppressor gene in brain and
breast tumours is inactivated primarily by
homozygous deletion. The p53 gene is most
frequently aVected by deletion of one allele and
point mutation of the other allele in nearly all
tumour types in which it is involved. These
observations suggest that there may exist an
entirely diVerent set of important cancer genes
that are inactivated primarily by aberrant
methylation on one or both alleles. In theory,
such genes would have remained undiscovered
over the past two decades because of the exclu-
sively genetic screening methods used.

Table 1 Aberrantly methylated genes in cancer

Function Genes References (examples)

Apoptosis Death associated protein kinase (DAP kinase, 9q34), 254–257
Caspase 8 (CASP8, 2q33-34), 258
Target of methylation induced silencing (TMS1, 16p11.2-12.1) 183, 259

Angiogenesis Thrombospondin-1 (THBS1, 15q15) 260
Cell cycle Retinoblastoma (RB, 13q14) 261–264

p14ARF (9p21) 265–267
Cyclin dependent kinase 2A (CDKN2A, 9p21) 268–272
Cyclin dependent kinase 2B (CDKN2B, 9p21), 243, 273–275
p27/KIP1 (12p13), 276
p73 (TP73, 1p36) 277
14-3-3ó (stratifin, SFN, 1p) 185, 187, 188

DiVerentiation Myogenic diVerentiation antigen-1 (MYOD, 11p15.4) 278
Paired box gene 6 (PAX6, 11p13) 279
Retinoic acid receptor (RARâ2, 3p24) 280–284
Wilms tumour 1 (WT1, 11p13) 285

DNA repair hMLH1(3p23-p21.3) 91, 186,189–191, 194, 195
O-6-methylguanine-DNA methyltransferase (MGMT, 10q26) 286–292

Metastasis/invasion E-cadherin (CDH1, 16q22.1) 219, 293–298
Tissue inhibitor of metalloproteinase 3 (TIMP-3) 299
Maspin (protease inhibitor 5, PI5, 18q21.3) 300

Drug resistance/ detoxification Glutathione S-transferase ð (GSTP1,11q13) 301, 302
Multi-drug resistance 1 (MDR1, 7q21.1) 303

Signal transduction Adenomatous polyposis of the colon (APC, 5q21-22) 304
PTEN (10q23.3) 305, 306
Androgen receptor (AR, Xq11-12) 307
Oestrogen receptor 1 (ESR1, 6q25.1) 308–310
Ras association domain family member 1 (RASSF1A, 3p21.3) 204
Serine/threonine protein kinase 11 (STK11 or LKB1,19p13.3) 311

Transcription/ transcription factors Von Hippel-Lindau syndrome (VHL, 3p26-p25) 176, 312
Hypermethylated in cancer (HIC-1, 17p13.3) 313, 314
Breast cancer, type 1 (BRCA1, 17q21) 177, 315–317

Other CD44 antigen (CD44, 11pter-p13) 318
Cyclo-oxygenase 2 (COX2, 1q25.2-25.3) 319
Calcium channel, voltage dependent, T type, alpha-1G subunit

(CACNA1G, 17q22) 320
Calcitonin (CALCA, 11p15.2-15.1) 321–325
Fragile histidine triad gene (FHIT, 3p14.2) 326
Telomerase reverse transcriptase (TERT, 5p15.33) 327, 328
Transmembrane protein containing epidermal growth factor and

follistatin domains (TPEF, 2q33) 329
Chondroitin sulphate proteoglycan 2 (CSPG2, 5q12-14) 330
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On the foundation set by discovery of
aberrantly methylated genes, a number of
methods to screen the genome for aberrantly
methylated genes have been developed. These
include PCR based methods, array hybridisa-
tion, and restriction landmark genome scan-
ning (RLGS).160–164 Additional genome scan-
ning methods involving mass spectrometry and
non-radioactive oligo and CpG island array
methods are also emerging. Suitable methods
for addressing the hypotheses stated above
should have a strong bias for 5' CpG islands
and cover large numbers of genes. It should be
noted that the current focus on CpG island
promoters overlooks other less CpG rich
promoters that also might be subjected to
aberrant methylation and silencing.

Restriction landmark genome scanning
(RLGS) is an approach that is uniquely suited
for simultaneously assessing the methylation
status of thousands of CpG islands (fig 2).162

RLGS separates radiolabelled NotI fragments
in two dimensions and allows distinction of
single copy CpG islands from multicopy CpG
rich sequences. The methylation sensitivity of
the endonuclease activity of NotI provides the
basis for diVerential methylation analysis and
NotI sites occur primarily in CpG islands and
genes. RLGS has been used to identify novel
imprinted genes,165 166 novel targets of DNA
amplification,167 168 and methylation169–173 in
human cancer and to identify deletion, meth-
ylation, and gene amplification in a mouse
model of tumorigenesis.146 174 Additionally, the
chromosome of origin of CpG islands dis-
played on the profiles has been determined.175

Such massively parallel analyses are critical for
pattern recognition within and between
tumour types and for estimating the overall

influence of CpG island methylation on the
cancer cell genome.

The total number of aberrantly methylated
CpG islands in sporadic human tumours was
estimated from RLGS profiles.172 The analysis
covered 1184 CpG islands in each of 98
primary human tumours, for a total of 116 032
potential methylation events. An average of 600
methylated CpG islands per tumour was
estimated, with a range of 0 to 4400. The total
number of methylated sites is variable between
and in some cases within diVerent tumour
types, suggesting there may be methylation
subtypes within tumours having similar histol-
ogy. Aberrant methylation of a proportion of
these genes correlates with loss of gene expres-
sion.

The methylomics approach illuminates pat-
terns of methylation that might yield clues to
the underlying mechanism of aberrant meth-
ylation. For example, the observation that some
CpG islands are preferentially methylated
suggests that clonal selection and/or diVerent
susceptibilities of CpG islands may shape the
patterns in tumours.172 The process may be
stochastic, but the non-random outcome in the
tumour suggests one or both of these mecha-
nisms may be active. For methylation of proven
cancer genes, an argument in support of clonal
selection is straightforward since their tumour
suppressing ability has been shown. An ana-
tomical application of methylation data showed
that aberrant methylation is usually found in a
contiguous field in tissue from cancer patients,
suggesting either a concerted methylation
change or a clonal expansion of cells with aber-
rant hypermethylation.159

Some genes are aberrantly methylated in a
tumour type specific manner.172 176 Tumour

Figure 2 Methylation detection using RLGS. RLGS procedure (left panel). While methylation and/or deletion may lead
to fragment loss on RLGS profiles, methylation appears to be far more common. A portion of an RLGS profile of a low
grade glioma (right panel).
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type and even histological subtype specificity is
also observed in studies of the BRCA1 and
other important cancer genes.177 178 These
patterns, and resulting loss of gene activity in
many cases, suggest that methylation of specific
subsets of genes may contribute to the
development of specific tumour types.

Homozygous methylation of specific genes is
quite frequent, even in low malignancy grade
tumours.87 172 176 179 180 On statistical grounds
the data suggest that methylation of one allele
may predispose to methylation of the second
allele of the same gene. Allelic transfer of
methylation involving homologous gene pair-
ing has been observed in plants and can result
in suppressed expression of endogenous genes
and transgenes.181 Pairing of one methylated
and one unmethylated homologous chromo-
some segment during mitosis could lead to a
transient hemimethylated state.87 If the mainte-
nance methyltransferase DNMT1, which has a
predilection for hemimethylated substrates and
certain unusual DNA structures,182 is present
at the precise time and location of homologous
pairing, it may lead to homozygous methyla-
tion of a particular gene. Depending on the rate
of tumour cell specific and locus specific aber-
rant methylation, the exceptionally high fre-
quency of homozygous methylation may be
considered circumstantial support for an allelic
transfer of methylation. The persistence of
monoallelic methylation in many cases indi-
cates that transallelic spreading of methylation
is not an obligate event.

Central to understanding the impact and
importance of CpG island methylation is the
extent to which the methylation is capable of
silencing the gene and the type of genes that are
methylated. If methylation of a gene contrib-
utes to tumorigenesis, one would expect that:
(1) the gene is expressed in the normal cells
that give rise to the tumour, (2) the level or
extent of methylation in the cancer cells is suf-
ficient to silence or decrease expression of the
gene in primary tumours, (3) and re-expression
of the gene should have a measurable eVect on
the phenotype of the tumour cell. If methyla-
tion is the primary and sole mechanism of
inactivation, it is expected that: (1) an unmeth-
ylated copy of the promoter would support
transcription when transfected in cells having
their endogenous promoter methylated, and
(2) experimental demethylation by 5-aza-2-
deoxycytidine should reactivate expression of
the methylated gene. At the foundation of these
expectations is the assumption that inappropri-
ate gene silencing is the primary consequence
of CpG island methylation. While this function
is proven for many genes, it seems premature to
suggest that all CpG island methylation events
in cancer cells have a similar consequence or
even arise through the same mechanism.

LOCATION, LOCATION, LOCATION

Aberrant CpG island methylation alone does
not uniformly connote inappropriate gene
silencing. Aberrant methylation that is not
within the promoter may have no eVect on gene
expression or in some cases may promote
expression.86 Alternatively, a lack of correlation

could indicate that the single or few CpGs
tested per island are not representative of the
remainder of the island or that sparse methyla-
tion may be insuYcient to silence the associ-
ated gene, particularly if the promoter activity
is strong. Occasionally, aberrant methylation
has been observed in genes that are transcrip-
tionally inactive in the normal cell type from
which the tumour originates, or which have
been inactivated first by epigenetic mecha-
nisms that do not involve methylation. Other
explanations for non-random methylation,
such as transcriptional eVects on distant genes,
or in dictating alternate promoter usage could
also be involved. Alternatively, diVering sus-
ceptibilities to aberrant methylation may con-
tribute to the formation of these non-random
patterns. These questions may be addressed in
part by assessing the specificity of the DNA
methyltransferases in cancer cells.183 184 How-
ever, to account for the tumour type specificity
of the methylation events, factors in addition to
nucleotide sequence must be invoked. Poten-
tial factors that can influence methylation
status and may diVer between tissues include
local chromatin conformation, gene activity,
and exposure to exogenous agents. Clearly, the
location and extent of the individual methyla-
tion events are important determinants of the
eVect of aberrant CpG island methylation in
cancer.

METHYLOMICS AND GENOMICS

The prevalence and specificity of aberrant
methylation raises important questions regard-
ing the relative contribution of genetic and epi-
genetic mechanisms in the genesis of human
tumours. For a comprehensive view of the
underlying mechanisms of tumorigenesis,
methylation patterns can be compared to genes
and chromosome regions identified by tra-
ditional genomic analysis of tumours.

CpG island methylation may precede genetic
instability in cancer cells. The MLH1 and
14-3-3ó genes, both important for genome
integrity, are frequently silenced by aberrant
methylation in cancer.91 185–191 MLH1 encodes a
DNA mismatch repair protein. Loss of MLH1
function in colon cancer is associated with a
100-fold greater mutation rate throughout the
genome, which is particularly apparent at short
repeated sequences, termed microsatel-
lites.192 193 MLH1 promoter methylation and
gene silencing are significantly correlated with
the microsatellite instability and experimental
demethylation in tumour cell lines leads to
re-expression of MLH1 and restoration of a
DNA mismatch repair proficient phenotype.189

Additionally, in vitro studies of the MLH1 pro-
moter indicate that methylation of a minimal
region in the promoter, which is also methyl-
ated in the primary tumours, is suYcient to
inhibit MLH1 transcription.194 MLH1 pro-
moter methylation accounts for the majority of
sporadic colon tumours exhibiting microsatel-
lite instability,189 and has also been observed in
sporadic endometrial cancer195 and in some
hereditary colon and gastric tumours.91 190

Methylation of a second gene indirectly
involved in maintaining DNA integrity, the
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14-3-3ó gene, is found in 91% of breast
tumours and in other tumour types.185 187 188

The 14-3-3ó protein induces G2 arrest follow-
ing DNA damage.196 Breast cancer cell lines
that do not express 14-3-3ó accumulate a
greater number of chromosomal breaks when
exposed to ã irradiation.185 Thus, aberrant
methylation and gene silencing may predispose
to genetic instability, rather than being a reflec-
tion of it.

There are both random and recurrent
components to genetic and methylation abnor-
malities. Nearly all chromosomal bands have
been implicated in genetic loss within indi-
vidual tumour types,197 while in an initial study
considering 98 tumours from seven tumour
types one or more aberrant methylation events
were detected in 36% of the CpG islands
tested.172 The “background” alterations may
reflect an unstable genetic and/or methylation
state of the tumour cell. The terms mutator
phenotype192 and methylator phenotype198–200

are roughly equated with the former and latter
states, respectively. Studies from colon tu-
mours and cell lines have suggested an
undefined linkage between the two pheno-
types.199 201 202 In contrast, a direct test of meth-
ylation capacity and extent of existing methyla-
tion did not distinguish mutator from non-
mutator colon cancer cell lines.203

A proportion of the frequently methylated
CpG islands are not located near regions of
recurrent genetic loss in the same tumour type,
suggesting that these targets are independent of
recurrent genetic alterations. This is under-
lined by the fact that a significant proportion of
low grade astrocytomas have relatively normal
appearing genomes, while a methylomic ap-
proach indicates that CpG island methylation
is frequent and widespread.172 It will be of sig-
nificant interest to determine the proportion of
these silencing events that have a measurable
role in tumorigenesis.

A number of aberrant methylation sites
coincide with recurrent sites of deletion. The
“two hit” mechanism combining deletion and
methylation has not yet been addressed
globally, but evidence suggests that it may be
important. In support of this, Dammann et
al204 have discovered a RAS eVector homo-
logue (RASSF1A) that is located within a pre-
cise region of chromosome 3p21, which is
subject to allelic loss in 90% of small cell lung
cancers and 50-80% of non-small cell lung
cancers. The remaining allele is frequently and
heavily methylated in the promoter. At a much
lower frequency, the gene is also subjected to
point mutations. Furthermore, RASSF1A
functions as a tumour suppressor gene when
re-expressed in lung cancer cell lines. In the
case of coinciding point mutations, the meth-
ylation events are restricted to the wild type
allele.205

Several studies have shown a correlation
between aberrant CpG island methylation and
sites of chromosomal breakage. Here, the coin-
cident sites of alteration are thought to occur
on the same allele, but obviously at diVerent
times during tumorigenesis, rather than on dif-
ferent alleles as described above for deletion

and methylation events. Perhaps aberrant
methylation might mark a region for deletion
through unknown mechanisms. Alternatively,
the coinciding sites of alteration could reflect
unstable chromatin that is susceptible to meth-
ylation or deletion. For example, dense hyper-
methylation has been observed in the break-
point cluster region on chromosome 22 in
CML patients with a Philadelphia chromo-
some but not in normal myeloid precur-
sors.206 207 Jacobsen syndrome is defined by
deletions of the long arm of chromosome 11
with breakpoints in the interval 11q23.3-
q24.2.208 This deletion syndrome is caused by
expansion of a CCG repeat within the fragile
site FRA11B that contains the CpG island of
the proto-oncogene CBL2.209 In addition, a
recent study described hypermethylation in the
major breakpoint cluster region for medullo-
blastomas on chromosome 17p11.2.169 Loss of
the short arm of chromosome 17 with a break
occurring in 17p11.2 is a genetic event that is
specific to medulloblastomas. An aberrantly
hypermethylated CpG island in 17p11.2 is
methylated in medulloblastomas, but not in
supratentorial PNETs, a tumour type that does
not exhibit loss of 17p.169

Genetic and methylation alterations are
more prevalent in cultured tumour cells than in
primary tumours. This may reflect culture
conditions that favour growth of cells with a
particular spectrum of mutations (here, meth-
ylation and nucleotide alterations) and a
dilution of the admixed normal cell population
as a primary tumour is grown in culture. Alter-
natively, selection against many mutations may
be reduced or relaxed in cultured cells. Finally,
the rate of mutation may be increased in the
cultured cells relative to that in primary
cancers.

THE CHICKEN OR THE EGG

Is aberrant methylation of CpG islands in can-
cer cells a cause or consequence of gene
inactivity? Possibly the most frequently posed
question in the field, it may have arisen from
studies of methylation associated X chromo-
some inactivation. Many genes on the inactive
X chromosome are transcriptionally silenced
before methylation, leading to the prevailing
notion that methylation was not causal in the
gene silencing, but perhaps required for main-
tenance of the inactive state.210 Recent studies
of cells from the Dnmt1 deleted mice suggest
that methylation is necessary for proper X
inactivation, potentially mediated through
methylation of the XIST gene promoter.211

Nevertheless, comparisons between X chromo-
some inactivation and aberrant CpG island
methylation in cancer are problematic since
the features of each are fundamentally diVer-
ent. X inactivation occurs during development
of the organism, while aberrant CpG island
methylation occurs in adult and paediatric
tumour cells. X inactivation is a programmed
cellular process and involves an entire chromo-
some, whereas aberrant CpG island occurs in
deregulated cancer cells and can be localised to
a CpG island without involvement of nearby
CpG islands or genes. In this respect, aberrant
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CpG island methylation is more similar to a
local mutation than to more general defects
involving deletion and chromosome copy
number changes.

MECHANISMS OF ABERRANT CpG ISLAND

METHYLATION

Two models by which CpG islands become
methylated in cancer have been outlined.85–87

One proposed mechanism involves the loss of
factors that normally protect the CpG island
from methylation. Depending on the nature of
the factor, aberrant methylation could be a
cause or consequence of transcription inhibi-
tion. The protective factors would successfully
compete with the methyltransferase for sites
within the CpG island to prevent methylation.
Protective factors might be structural pro-
teins212 or transcription factors.213 For example,
the recognition sites for SP1 transcription fac-
tor binding are found within most CpG islands
and mutation of an SP1 site in a transgenic
mouse leads to methylation of the transgene
CpG island.213 214 However, in mice with
homozygous deletion of the SP1 gene, CpG
islands remain unmethylated.215 Certainly
other transcription factors might serve a similar
role, but the fact that even CpG islands from
non-expressed genes remain unmethylated in
normal cells implies that factors other than
those associated with active transcription must
be involved in protecting some CpG islands. In
mouse fibroblasts, inhibition of poly ADP
ribosylation leads to a decrease in the number
of normally unmethylated CCGG sequences in
the genome, suggestive of a pervasive loss of
CpG island protection.212 216–218 This system
may be a useful model for identification of the
molecular mechanism(s) leading to aberrant
CpG island methylation. Loss of protective
factors in human tumour cells may allow
spreading of methylation into the CpG island
from flanking heavily methylated sequences
that often contain Alu elements.219–221 In normal
adult tissues, a well defined boundary exists
between the methylated and unmethylated
domains of the 5' end of the GSTð gene CpG
island.222 The sharp demarcation and GSTð
expression are often lost in primary tumours.
The nucleotide sequence at the boundary
appears unique to the GSTð gene.

A second model suggests that aberrant CpG
island methylation is an active process and
causes inappropriate gene silencing. In support
of this model, experimental overexpression of
murine Dnmt1 leads to transformation of
NIH3T3 cells223 and in immortalised human
fibroblasts, human DNMT1 expression can
result in massive methylation of CpG island
associated promoters and gene silencing.184

Furthermore, inhibition of the methyltrans-
ferase using antisense to Dnmt1 reduces the
tumorigenicity of murine adrenocortical
tumour cells.224 Also in support of a causal role,
inactivated tumour suppressor genes can be
reactivated by demethylation and methylation
appears to be dominant over chromatin
mechanisms in the gene silencing.225 Early

studies suggested that tumours have an in-
creased activity and expression of the mainte-
nance methyltransferase DNMT1, but the level
of this up regulation remains a contentious
issue. Considering these and other data, it was
quite surprising that aberrantly methylated
CpG islands in a human colon cancer cell line
remained methylated following homozygous
deletion of the DNMT1 gene.226 So although
DNMT1 overexpression can initiate aberrant
CpG island methylation and facilitate transfor-
mation, it is not absolutely required for
maintaining the aberrantly methylated state in
these cells. Thus, debates of the exact initiating
event for aberrant CpG island methylation are
unsettled.

DNA METHYLATION AND MUTATIONAL HOTSPOTS

Spontaneous deamination of methylated cy-
tosines can lead to C to T point mutations.
Because a disproportionate number of point
mutations in the p53 tumour suppressor gene
(and other genes) are C to T mutations at
CpGs, it has been speculated that deamination
of the normally methylated CpGs in exons of
the p53 gene is involved. An estimated 50% of
all human tumours show a defect in p53, a
situation that oVers a unique opportunity to
study mutation spectra in diVerent neoplasias
and to investigate the eVects of endogenous
and exogenous factors.227 228 Furthermore,
mutation data for p53 are collected in a large
database with currently over 10 000 entries.229

The body of the p53 gene contains 23
normally methylated CpG dinucleotides
within the region encoding the DNA binding
domain (codons 120 to 290). These CpGs
represent only 8% of the total p53 gene
sequence but 33% of the mutations in this
region are found in the CpGs, suggesting a
link between methylated sequences and muta-
tional hot spots.230

In addition to endogenous deamination,231–233

diVering eYciencies of mismatch repair
mechanisms of T/G versus U/G mis-
matches234 235 might contribute to the increased
mutation rate of methylated CpGs relative to
unmethylated CpG sites. Alternatively, involve-
ment of exogenous factors was suggested by
the identification of tumour type specific
mutational hotspots.227 236 For example, muta-
tion hotspots in codons 175, 248, and 273 are
commonly found in breast, ovarian, and stom-
ach cancers as well as in leukaemias and
lymphomas.227 236 p53 codon 157 is a muta-
tional hotspot in lung cancer patients with
smoking history but not in other tumour
types.237–239 It was shown that BPDE, the
activated metabolite of benzo[a]pyrene,
present at 20 ng to 40 ng per cigarette, forms
adducts with DNA at the N2 position of
guanine. Mapping the BPDE adducts in the
p53 gene of BPDE treated HeLa cells and
bronchial epithelial cells showed strong selec-
tive adduct formation in codons 157, 248, and
273, the mutational hotspots in smokers with
lung cancer.237 Similar results were obtained for
other polycyclic aromatic hydrocarbons
present in combustion products of organic
matter including cigarette smoke.240 Guanines
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flanked by 5'-methylcytosines were the prefer-
ential targets for adduct formation.241 Consid-
ering a genome wide increase of methylation in
CpG islands, it has been speculated that simi-
lar mechanisms result in increased mutation
rates not only within coding regions of genes
but also in promoter regions, leading to
changes in gene regulation.

EARLY DETECTION, PREDICTION, AND

CLASSIFICATION OF CANCER

One of the goals in cancer management is to
identify the most eVective therapy with the
least toxicity for the patient. Successful treat-
ment depends on an accurate, reliable, and
reproducible classification of a tumour, using
all available criteria including histopathology,
cytogenetics, and histochemical assays. Mo-
lecular marker studies attempt to distinguish
tumours that are similar in histology, but may
have a widely variant clinical course. These
studies are based on the assumption that the
pattern of activation and inactivation of sets of
genes will determine, or at least coincide with
the biological and clinical behaviour of a
tumour. Molecular biomarkers may be of use if
they allow improved classification of tumour
types and subtypes, can be used to predict
future behaviour (for example, drug resistance
or metastasis) of the tumour, or allow the early
detection of tumour development or relapse.

There is now growing evidence that sites and
patterns of aberrant DNA methylation may be
useful molecular markers. Methylation can
distinguish tumour types and subtypes. Hyper-
methylation of the major BRCA1 promoter was
found exclusively in breast and ovarian cancer
but not in colon cancer or leukaemias.242 Simi-
larly, hypermethylation of the VHL promoter
was found only in clear cell renal carcinomas
but not in a variety of other cancers.176 In AML
and ALL, promoter methylation is a frequent
mechanism for the inactivation of p15 while
p16 remains active.243 In CML, inactivation was
not found in either gene. However, in Hodg-
kin’s lymphomas, p16 is selectively inactivated
by DNA methylation, while p15 remains
unmethylated.243

Methylation changes appear to precede
apparent malignancy in many cases, and thus
should be useful in improving early detection
of potentially cancerous cells. For example, p16
promoter methylation is proposed as a biomar-
ker for early detection of lung cancer and
monitoring of prevention trials.244 245 Using
sensitive PCR based methylation analysis,
methylation in p16 and/or MGMT promoters
were found in sputum of smokers up to three
years before clinical diagnosis of squamous cell
lung carcinoma.246 Other reports found early
onset promoter methylation of MLH1 in
endometrial cancers,247 p16 in prostate can-
cer,248 and hypermethylation on chromosome
16 in hepatocellular carcinomas.249 Whether
methylation is causally related to the prognosis,
or is a surrogate marker of the causative factor
is unknown.

Yet other studies suggest that methylation
markers may be used to predict response to
chemotherapy or duration of patient survival.

Methylation of the CpG island within the
WIT1 gene correlates with a chemoresistant
phenotype in AML.170 Methylation of the pro-
apoptotic gene Death Associated Protein
(DAP) Kinase is an independent predictor of
disease specific survival in non-small cell lung
cancer patients.250 Similarly, promoter methyla-
tion in the DNA repair gene, MGMT, was a
useful predictor of responsiveness of brain
tumours to alkylating agents.251 The presence
of a methylated APC promoter DNA in the
plasma of adenocarcinoma patients was associ-
ated with reduced survival.252 The total number
of methylation events, as detected by RLGS,
retained an independent prognostic value for
disease free survival in patients having hepato-
cellular carcinoma.253

Proper DNA methylation is an integral com-
ponent of healthy and vibrant cells. We are just
beginning to understand the complexity and
regulatory determinants of methylation pat-
terns seen in development, aging, and cancer.
It is clear that a fine tuned and complex regu-
lation establishes and maintains these patterns.
Disturbance of this balanced process has dras-
tic consequences for human health. Future
research both in clinical and basic science set-
tings will help us to unravel some of the impor-
tant questions in this field.
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