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Investigation of the GRB2, GRB7, and CSH1 genes as
candidates for the Silver-Russell syndrome (SRS) on
chromosome 17q
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Silver-Russell syndrome (SRS) (MIM 180860) is charac-
terised by intrauterine and postnatal growth restriction,
in association with dysmorphic features most frequently

including a small triangular facies, skeletal asymmetry, and
fifth finger clinodactyly.1–3 The genetic aetiology of SRS is
heterogeneous. Maternal uniparental disomy for chromosome
7 (mUPD(7)) occurs in 7-10% of patients,4 5 with strong
evidence that disruption of imprinted gene expression, as
opposed to mutation of a recessive gene, underlies the SRS
phenotype in these cases.6 A SRS-like phenotype has also been
associated with ring chromosome 15 with accompanying
deletion on 15q,7 8 trisomy 18 mosaicism,9 deletion on 18p,10

and deletion of 8q11-q13.11

Three SRS cases have been described with disruptions
involving distal 17q. These include two unrelated patients
with severe SRS bearing reciprocal translocations, with the
breakpoints originally assigned to 17q25. In the first case, the
proband had an apparently balanced translocation
(17;20)(q25;q13), inherited from her clinically normal
father.12 The second patient had a de novo translocation
(1;17)(q31;q25).13 The breakpoint in this latter case has
recently been cloned and more accurately localised to
17q23.3-q24.14 In the third case, a heterozygous deletion of the
chorionic somatomammotrophin hormone 1 (CSH1) gene,
which is located within the growth hormone and CSH gene
cluster on 17q24.1, was identified in a patient with typical
SRS. The deletion was inherited from the father, who
appeared clinically normal, but had short stature.15 CSH1,
otherwise known as placental lactogen, is produced in the
syncytiotrophoblast of the placenta and secreted into the
maternal and fetal circulation. CSH1 is detectable in maternal
serum from 6 weeks post conception, and levels increase
linearly during gestation, peaking at about 30 weeks. CSH1
has been used as a marker for placental integrity during preg-
nancy, and low levels in the maternal serum have been associ-
ated with pathological conditions including intrauterine
growth restriction (IUGR).16 CSH1 may play a role in
regulation of fetal growth and metabolism by stimulating
insulin-like growth factor 1 (IGF-1) production by the
fetus.16 17

Interestingly, the growth factor receptor binding protein
(GRB) 2 and 7 genes map to 17q24-2518 and 17q21-22,19

respectively, near the translocation breakpoints. The GRB pro-
tein family, including GRB2, GRB7, GRB10, and GRB14, func-
tion in mitogenic signalling and are likely to be important in
fetal growth. Each member contains a carboxy-terminal Src
homology 2 (SH2) domain. GRBs 7, 10, and 14 are structurally
very similar, with an additional pleckstrin homology (PH)
domain.20 The GRB proteins are important components of the
insulin and IGF signal transduction pathways, interacting
with various receptor tyrosine kinases and other tyrosine
phosphorylated proteins via the SH2 domain.21 GRB10 has
been implicated in SRS with the reports of two SRS patients
with maternally inherited duplications of 7p11.2-p13 encom-

passing this gene.22 23 GRB10 is imprinted, showing paternal

expression in human fetal brain24 25 and a maternally

transcribed isoform has been identified in skeletal muscle.24

Although no sequence mutations of GRB10 have been identi-

fied in 139 SRS patients, GRB10 remains a candidate for this

disorder through disruption of imprinted expression.24–27

GRB2, in association with the guanine nucleotide exchange

factor, Sos, interacts with the insulin receptor substrate 1, thus

regulating Ras activation. GRB2 therefore plays a significant

role in the regulation of the insulin signal transduction

system.28 GRB7 binds the Ret receptor,29 the epidermal growth

factor receptor,30 and the insulin receptor.31 Upregulation of

both GRB2 and GRB7 has been implicated in cancer

metastasis.32 33

One or more SRS genes must exist on distal chromosome

17q, most likely in the region 17q23-25. We investigated our

cohort of SRS patients for genetic abnormalities involving the

long arm of chromosome 17. Specifically, we focused on the

three functional candidate genes, CSH1, GRB2, and GRB7,

which map within or near the same chromosomal interval as

the previous genetic defects on distal 17q associated with SRS.

PATIENTS AND METHODS
SRS patients
The patients studied were a subset of the 48 previously

described, who have grossly normal karyotypes and in whom

mUPD(7) had been excluded.3 6 The study was approved by

the Joint Research Ethics Committee of the Great Ormond

Street Hospital for Sick Children and the Institute of Child

Health (1278). Peripheral blood samples for DNA analyses and

generation of lymphoblast cell lines were obtained with

informed consent from the patients and their families.

Lymphoblastoid cell lines for 36 patients, including two

affected sibs, were obtained from the European collection of

cell cultures (ECCAC) at Porton Down, Salisbury. The ECCAC

numbers of the patients studied may be obtained from the

authors.

Short tandem repeat (STR) typing of D17S254 near
CSH1
Radioactive PCR of the D17S254 marker using previously

designed primers34 followed by autoradiography was per-

formed in 44 SRS probands and their parents, as described by

Eggermann et al.15

FISH analyses of GRB2 and GRB7
PAC RP1-171G12 containing the GRB2 gene and PAC

RP1-37L10 containing the GRB7 gene were used as FISH
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probes to detect structural rearrangements involving either

gene in SRS. The PAC clones were identified from the gridded

human PAC library (RPCI-1) using IMAGE partial cDNA

clones corresponding to the 3′ untranslated region (UTR) of

each gene as hybridisation probes (GRB2 clone T283F07, Gen-

Bank accession AI631378 and GRB7 clone TP65D02, GenBank

accession AI804599). PCR and sequence analysis of a 3′ UTR

exonic sequence confirmed that both PACs contained the 3′
UTR of the corresponding genes. FISH probes were prepared

by nick translation of standard miniprep DNA from the

genomic clones, with direct incorporation of Spectrum Red

dUTP or Spectrum Green dUTP (Vysis). Slides of metaphase

chromosomes and interphase nuclei from patient lympho-

blastoid cells were prepared after exposure of the cell cultures

to colcemid for three hours before harvesting. Dual coloured

FISH analyses for detection of minor chromosomal anomalies

were performed as previously described.35 Either the GRB2
probe (RP1-171G12) or the GRB7 probe (RP1-37L10) labelled

green was combined with a red labelled control probe (BAC

RP2-601N13) containing the Charcot-Marie-Tooth (CMT)

gene mapping to 17p11.2 on the opposite side of the

centromere, and hybridised to the patient slides to identify

small duplications or deletions. The GRB2 and GRB7 probes

were then labelled red and green, respectively, and simultane-

ously hybridised to metaphase spreads to detect paracentric

inversions of 17q21-25. Slides were counterstained with DAPI

vector shield and examined using a Zeiss fluorescent

Axioscope equipped with triple band pass filter.

Mutation screening of GRB2
The five coding exons of GRB2, including intron-exon

boundaries, were PCR amplified from genomic DNA of SRS

patients using previously designed primers.36 The products

were directly sequenced on an automated 377 DNA Sequencer

(Perkin-Elmer). The sequences were compared to the pub-

lished GRB2 exonic sequences by BLAST analyses and

compared to one another using Sequence Navigator to detect

any sequence variants.

RESULTS
Owing to the previous finding of a case of SRS with a

hemizygous deletion of CSH1, we screened 44 SRS patients for

similar deletions of this gene by STR typing of the

polymorphic tetranucleotide repeat marker D17S254,34 which

lies 1.4 kb upstream of CSH1. This marker was previously used

by Eggermann et al15 in their screen of CSH1 in German SRS

patients. In 41 pedigrees the SRS probands were heterozygous

for D17S254, and the marker was informative for parental ori-

gin of the alleles. The remaining three patients were also

heterozygous for D17S254, but the two bands were unin-

formative regarding origin of inheritance. Thus, no deletions

of CSH1, similar to the one previously reported, were identified

in our 44 patients, indicating that this is a rare event in associ-

ation with SRS.
GRB2 and GRB7 have been more accurately localised to

17q25.1 and 17q21.1, respectively, according to the current
International Human Genome Project working draft (http://
genome.cse.ucsc.edu/). We investigated these two genes for
any minor structural abnormalities including duplications,
deletions, or paracentric inversions in a group of 36 patients
for whom lymphoblastoid cell lines were available, by dual
colour FISH analyses. Normal hybridisation patterns for both
the GRB2 and GRB7 genes were observed both in metaphase
and interphase nuclei in all 36 patients screened. The red CMT
signal was visualised on the short arm of chromosome 17 and
the green GRB2 or GRB7 signal seen on the distal end of the
long arm of chromosome 17, on both homologues, within sin-
gle metaphases for each patient tested. At interphase, two sig-
nals for the CMT and GRB2 or GRB7 probes were identified
within single nuclei, confirming that no duplications or dele-
tions of these genes were present using this more sensitive

technique. In addition, the GRB2 and GRB7 signals, when
combined, were present in the correct order with respect to the
centromere in metaphase chromosomes, indicating that there
were no paracentric inversions in the cases screened either.
These data exclude any small structural rearrangements
involving either GRB2 or GRB7 on distal chromosome 17 in
these 36 SRS patients.

Since GRB2 maps within the SRS candidate region of
17q23-25, as defined by the two translocation
breakpoints,12 13 14 this gene is a more likely positional
candidate for SRS than GRB7, which maps further proximal in
17q21.1. We therefore screened half of the SRS patients who
had been analysed by FISH for sequence mutations of GRB2.
In total, 19 SRS cases, including two affected sibs, were
screened for pathological mutations by sequencing. No patho-
genic mutations of GRB2 were identified, indicating that this
gene is not associated with the disease phenotype in these
patients. No variation from the published exon sequences was
identified in any of the probands tested, showing that this
gene is highly conserved.

DISCUSSION
We have investigated our cohort of SRS patients for defects of

the terminal region of chromosome 17q, which may be

responsible for the clinical phenotype at three candidate loci,

CSH1, GRB2, and GRB7. These genes were not only investigated

as individual SRS candidates in this study, but also served as

markers for disruptions involving the region 17q21.1-25.1. No

pathological changes were identified in any of the SRS

patients screened, suggesting that defects of distal 17q are rare

in association with SRS.
CSH1 at 17q24.1 maps within the 17q23-25 SRS candidate

region and, furthermore, has previously been implicated in
SRS with the finding of a hemizygous deletion of this gene in
one patient.15 Recently, a second SRS case with a hemizygous
deletion of CSH1 was identified (T Eggermann, personal com-
munication). We ruled out hemizygosity of a locus closely
linked to CSH1 in 44 SRS patients. Since the polymorphic
marker used to analyse CSH1 is located 1.4 kb upstream, any
small deletions or mutations within CSH1 would have
remained undetected. Including this study, just two patients
with CSH1 deletions including the D17S254 marker have been
identified in 106 patients analysed15 (T Eggermann, personal
communication). The effect of hemizygosity of CSH1 on the
pathogenesis of SRS is questionable as homozygous or
compound heterozygous deletions of the gene, or deficiency of
CSH1 in maternal serum during pregnancy, have been
reported with no detrimental effect on fetal growth, and
apparently normal phenotypes at birth.37–40 Although low
maternal CSH1 levels in pregnancy have been associated with
diabetes, pre-eclampsia, and IUGR,16 reduced CSH1 is unlikely
to have been the primary defect in these cases. Other factors,
such as infarction of the placenta impairing CSH1 secretion,
may have contributed more to the pathological pregnancy.
CSH1 has also been proposed to play a role in fetal nutrition
during maternal fasting.41 It is possible that hemizygosity of
CSH1, in concert with other genetic or environmental factors
during pregnancy, may be responsible for the SRS phenotype
in the single case described.

GRB2 and GRB7 were analysed in our SRS patient group
because of their functional relationship with GRB10 and their
proximity to the 17q23-25 translocation breakpoints. How-
ever, no structural rearrangements involving either gene was
identified. Neither were any sequence mutations identified in
GRB2, the stronger positional candidate of the two genes, in 19
of our SRS patients. In a similar study, no mutations of GRB2
were identified in 10 German SRS patients.42 The combined
data indicate that GRB2 is unlikely to play a significant aetio-
logical role in SRS. GRB7 was not analysed in further detail as
this member of the gene family maps outside the 17q23-25
SRS region.
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A genomic contig has recently been constructed across

17q23-q24, and the translocation (1;17)(q31;q23.3-q24)

breakpoint cloned.14 Analysis of genes in this region, and the

effect of the translocations on their expression, will greatly aid

in determining which factors in growth regulation are

disrupted in the SRS phenotype seen in these cases. Although

this disorder is genetically heterogeneous, a common growth

pathway may be disturbed in a large proportion of cases.
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