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Mutation analysis in the candidate Möbius syndrome
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Möbius syndrome (MBS, MIM 157900) is a rare
congenital disorder characterised by paralysis of the
facial nerve. This paralysis may be complete or partial

and unilateral or bilateral. Other cranial nerves are often
implicated, most frequently the abducens and hypoglossal
nerve. Limb malformations and facial dysmorphism occur
frequently. Features seen less often in MBS are structural
anomalies of the ear, defective branchial musculature (Poland
syndrome, MIM 173800), and mild mental retardation.1

Although Möbius syndrome usually occurs in isolated cases,
familial recurrence has been reported. Patterns of inheritance
observed in affected families suggest different modes of
inheritance for the syndrome, ranging from autosomal reces-
sive to autosomal dominant and X linked.

To date, four genetic loci for MBS have been described. In
1977, a reciprocal translocation of 13q12.2-13 was identified,
cosegregating with the disease in a three generation MBS
family.2 Slee et al3 reported a MBS patient with a deletion of
chromosome 13q12.2 in 1991. Therefore, chromosome
13q12.2-q13 is thought to harbour a gene for MBS (MBS1).
We identified two additional loci for MBS, MBS2 at 3q21-q224

and MBS3 at 10q21,1 in two large Dutch families with a mild
Möbius phenotype, cosegregating in an autosomal dominant
fashion with reduced penetrance. A fourth locus harbouring a
gene for MBS on chromosome 1p22 was inferred from two
reports. Donahue et al5 identified a t(1;11)(p22;p13) transloca-
tion in a patient with Möbius syndrome. The 1p22 locus was
confirmed by a t(1;2)(p22.3;q21.1) translocation in a patient
with Möbius-like syndrome, reported by Nishikawa et al.6 All
these data combined prove genetic heterogeneity for MBS.

Although no conclusive evidence has been gathered so far,
two modes of action have been postulated to explain the aeti-
ology of MBS. Firstly, a primary metameric defect in the brain-
stem nuclei in the region of the tegmentum could result in
MBS. Secondly, an ischaemic process resulting from an inter-
ruption of the vascular supply of the brainstem and other
structures during early fetal development could be causative.1

In line with these hypotheses, different genetic defects in a
broad range of processes underlying neurogenesis, axonal
outgrowth, or angiogenesis could result in the features
observed in Möbius syndrome.

In order to identify candidate genes for Möbius syndrome,
we directed our efforts at genes included in the MBS2 and
MBS3 loci, which could play a role in the development of the
hindbrain, the guidance of axons, and angiogenesis. Linkage
analysis on additional members of the MBS2 linked family4

enabled us to reduce the MBS2 critical region to a 4.9 cM
region between the markers D3S1589 and ACPP. Our mutation
analysis included the human prostaglandin transporter (PGT)
gene and the gene encoding the GATA binding protein 2
(GATA2) transcription factor at the MBS2 locus, and the early
growth response 2 (EGR2) gene at the MBS3 locus. Mutation
analysis comprised direct sequencing of subjects from the rel-

evant families (either MBS2 or MBS3) on an ABI-PRISM 377

(EGR2) or 3700 DNA analyzer (GATA2, PGT), using BigDye ter-

minator chemistry (Applied Biosystems).

PGT (or SLC21A2) was analysed because a correlation was

suggested between the maternal use of a synthetic prosta-

glandin, Misoprostol, illegally used as an abortificant, and an

increased incidence of Möbius syndrome in newborns follow-

ing failed abortion attempts.7–9 Primers for the amplification

and direct sequencing of PGT are listed in table 1. Mutation

analysis of the PGT gene in patients from the MBS2 linked

family showed only one nucleotide change, in exon 9. This A

to G nucleotide change (base pair 1269) results in the substi-

tution of threonine 396 for alanine (numbering according to

sequence data from Genbank accession number NM_005630).

The nucleotide change did not cosegregate with the disease,

and several subjects related by marriage also carried the A to

G nucleotide change. Therefore, this change in exon 9 can be

classified as a polymorphism. No other changes were encoun-

tered in the coding sequence (CDs) and flanking intronic

sequences of PGT. Therefore it is unlikely that the PGT gene is

involved in MBS2.

The second gene analysed at the MBS2 locus at 3q21-q22

was GATA2, a member of the GATA binding protein family of

transcription factors.10 This gene is an interesting candidate

for two reasons. (1) GATA2 expression in the developing hind-

brain is limited to rhombomere 4, an important structure for

the development of the facial nerve,11 and (2) GATA2
expression is regulated by Hoxb-1, a homeobox domain protein

that functions in patterning of the hindbrain.12 The Hoxb-1
knockout mouse shows a defect in the formation of the motor

nucleus of the facial nerve, and is considered an appropriate

animal model for Bell’s palsy and Möbius syndrome.13 Primers

were designed flanking the seven exons of GATA2 (two

alternatively used exons of the 5′UTR and five coding exons),

shown in table 1. No nucleotide changes were found in the

CDs or splice sites in patients from the MBS2 linked family.

This lack of mutations in the GATA2 gene suggests that this

gene is not the causative gene for MBS2.

The early growth response 2 gene, coding for the EGR2
transcription factor, is located at 10q21.3 near the MBS3 criti-

cal region. The EGR2 gene was included in the mutation

analysis based on the function of the mouse orthologue Krox-
20. Krox-20 is preferentially expressed in rhombomeres 3 and 5

in the developing hindbrain,14 embracing rhombomere 4. Dur-

ing brain development, Krox-20 regulates the expression of

several homeobox proteins in rhombomeres 3 and 5 that are

important for patterning of the hindbrain. Genes regulated by
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Krox-20 include Hoxa-2, Hoxb-2, and Hoxb-3.15–17 As rhom-

bomeres 4 and 5 are the site of origin of the majority of the

cells that eventually make up the facial nerve,11 failure to

express functional EGR2 could give rise to a Möbius

phenotype. Although mutations in the EGR2 gene have been

described in patients with congenital hypomyelinating neu-

ropathy (CHN), and Charcot-Marie-Tooth disease type 1

(CMT1),18 allelism with MBS3 cannot be excluded. Primers

were designed for amplification and direct sequencing of the

EGR2 coding sequence and splice sites (table 1). No mutations

were found in the coding sequence and splice sites of the EGR2
gene in patients from the MBS3 linked family. This suggests

that the EGR2 gene is not involved in MBS3.

In summary, the lack of pathogenic mutations in the coding

sequences and splice sites of the three genes investigated jus-

tifies the exclusion of these genes as candidate genes in MBS2

(PGT and GATA2) or MBS3 (EGR2).

In a future positional candidate gene approach, new candi-

date genes need to be considered for mutation analysis in

MBS2 or MBS3 patients. As Möbius syndrome is a rare disor-

der, familial cases are hard to find. Additional familial Möbius

syndrome patient material would be very useful, as this

increases the chances of identifying causative mutations.
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