ELECTRONIC LETTER

Mutation of COL11A2 causes autosomal recessive nonsyndromic hearing loss at the DFNB53 locus

W Chen, K Kahrizi, N C Meyer, Y Riazalhosseini, G Van Camp, H Najmabadi, R J H Smith

.....

J Med Genet 2005;42:e61 (http://www.jmedgenet.com/cgi/content/full/42/10/e61). doi: 10.1136/jmg.2005.032615

Background: Allele variants of *COL11A2*, encoding collagen type XI $\alpha 2$, cause autosomal dominant non-syndromic hearing loss (ARNSHL) at the DFNA13 locus (MIM 601868) and various syndromes that include a deafness phenotype. **Objective:** To describe a genome-wide scan carried out on a

consanguineous Iranian family segregating ARNSHL.

Results: Genotyping data identified a novel locus for ARNSHL on chromosome 6p21.3, which was designated DFNB53. Homozygosity for the P621T mutation of *COL11A2* was present in all deaf persons in this family; this same variation was absent in 269 Iranian controls. Sequence comparison of collagen type XI α 1 and α 2 peptides across species shows that the replaced proline is an evolutionarily conserved amino acid.

Conclusions: The P621T mutation of *COL11A2* affects the Y position of the canonical -Gly-X-Y- repeat in collagens. It lies near the amino-terminus of the triple helical region and causes ARNSHL. This finding suggests that mutation type and location are critical determinants in defining the phenotype of *COL11A2* associated diseases.

earing loss is the most common sensory impairment. It affects one of every 500 newborn infants,^{1,2} and another one of every 1000 children becomes severely or profoundly hearing impaired before adulthood.³ In most cases, additional phenotypically distinguishing signs and symptoms are absent, consistent with the diagnosis of nonsyndromic hearing loss (NSHL). Over the past decade, researches have mapped 92 loci and cloned 41 genes associated with non-syndromic hearing loss inherited in a Mendelian dominant, recessive, or X linked fashion (hereditary hearing loss homepage, http://www.uia.ac.be/dnalab/hhh/).

As the main components of bone and cartilage, collagens are related intimately to auditory function and, not surprisingly, mutations in collagens are found in many syndromic types of hearing loss. Included in this list are osteogenesis imperfecta (MIM 166200, 166220, 259420, *COL1A1*, and *COL1A2*), Alport syndrome (MIM 301050, 203780, 104200, *COL4A3*, *COL4A4*, and *COL4A5*), otospondylomegaepiphyseal dysplasia (OSMED syndrome)(*COL11A2*), and Stickler syndrome in both its classic (STL1, MIM 108300, *COL2A1*; STL2, MIM 604841, *COL11A1*) and non-ocular forms (STL3, MIM 184840, *COL11A2*), although the latter is more appropriately called heterozygous OSMED syndrome. Mutations in *COL11A2* also cause autosomal dominant non-syndromic hearing loss at the DFNA13 locus.⁴

The collagen family is comprised of 19 collagens encoded by at least 32 unique genes.⁵ The common signature collagen motif is the sequential repetition of the amino acid triplet -Gly-X-Y-, where many of the X- and Y- positions are filled by the ring amino acids proline and hydroxyproline, facilitating the intertwining of three collagen polypeptide chains into a triple helix.⁶ Type XI collagen is a minor collagen, accounting for less than 10% of total cartilage collagen. It functions as a spacer, maintaining the interfibrillar distance and fibril diameter of type II collagen.^{7 s} The three α chain polypeptides of type XI triple helix are α 1(XI), α 2(XI), and α 3(XI) and are encoded by *COL11A1* (1p21), *COL11A2* (6p21.3), and *COL2A1* (12q13.11–q13.2), respectively.⁹

All diseases associated with allele variants of COL11A2 including non-ocular Stickler syndrome, OSMED syndrome and DFNA13, have a hearing impairment phenotype. The mutations of COL11A2 associated with these diseases include missense mutations, nonsense mutations, small deletions, and insertions.^{10–15} Phenotype–genotype comparisons suggest that the different phenotypes are mutation dependent. As collagen folding begins at the carboxy terminus where the nucleation domain is located, mutations close to the carboxy terminus generate a more severe phenotype.¹⁶ This positional effect of missense mutations is common to other collagen associated diseases. For instance, a glycine to asparagine substitution in exon 22 of COL2A1 causes lethal chondrodysplasia,17 while the same amino acid substitution in exon 10 causes only isolated ocular abnormalities.18 A nonsense or frameshift/stop mutation, in comparison to a missense mutation, is frequently silent in the heterozygote state.

Here we describe the identification of a missense mutation in *COL11A2* in a consanguineous Iranian family segregating autosomal dominant non-syndromic hearing loss (ARNSHL). The mutation does not affect a canonical glycine of the -Gly-X-Y- triplet repeat motif and neither is it close to the carboxy terminus. Our finding supports the hypothesis that the clinical phenotypes of *COL11A2* associated diseases are a reflection of mutation type and location.

METHODS Patients and family

L-622 family members were ascertained in a combined otolaryngology/genetics clinic in Iran. A detailed history was taken to exclude conditions such as rubella, prematurity, drug use during pregnancy, perinatal trauma, sudden infant death syndrome, and meningitis. Persons with hearing loss underwent a complete physical examination, with ancillary tests as required. Otoscopy was done to exclude middle ear disease, followed by audiometry to quantitate the degree of hearing loss. On consenting persons, venous blood samples were obtained for DNA extraction. All procedures were approved by the institutional review boards of the University of Social Welfare and Rehabilitation Sciences, Tehran, Iran and the University of Iowa, Iowa City, Iowa USA.

Microsatellite genotyping in the L-622 family

A genome-wide scan was done using 400 fluorescent dye labelled microsatellite markers with an average spacing of 10

Abbreviations: ARNSHL, autosomal recessive non-syndromic hearing loss; OSMED, otospondylomegaepiphyseal dysplasia; PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism

cM across the 22 autosomes and chromosome X (Prism Linkage Mapping Set, version 2.5; Applied Biosystems, Foster City, California, USA). Microsatellite markers were amplified by polymerase chain reaction (PCR) and analysed on an ABI Prism 3100 genetic analyser. Alleles were assigned using GeneMapper 3.0 software (Applied Biosystems). Haplotype reconstruction was determined with custom-made GeneScan software.

Mutation analysis by sequencing genomic DNA

All exons of *COL11A2* and their flanking sequences were amplified by PCR and sequenced using an ABI model 3700 automated sequencer. Sequence data were compared with published sequence of *COL11A2* using the Sequencher 4.1.4 software program package (Gene Codes Inc). Mutation position was assigned according to mRNA sequence from GenBank NM_080680 with nt 1 as first nucleotide of start codon.

PCR-RFLP genotyping of the missense mutation

Primers flanking exon 21 were used to PCR amplify genomic DNA of all participating L-622 family members and 269 Iranian controls. PCR products were digested with BsrI to yield either a 218 base pair (bp) fragment (non-mutant allele) or 116+102 bp fragments (mutant allele), which were resolved by 2% agarose gel electrophoresis.

GenBank accession numbers

Accession numbers included *COL11A2* DNA, U32169; mRNA, NM_080680; collagen α 1(XI), NP_542196 (*Homo sapiens*), NP_031755 (*Mus musculus*); collagen α 2(XI), NP_542411

(Homo sapiens), NP_034056 (Mus musculus), NP_997693 (Rattus norvegicus), and AAH43799 (Xenopus laevis).

RESULTS

Clinical phenotype

Clinical findings in family L622, a consanguineous Iranian family, were consistent with the diagnosis of ARNSHL (fig 1). All affected individuals had a history of prelingual profound hearing loss, with normal vestibular function as evidenced by age appropriate developmental motor milestones and physical tests of balance (Romberg test and heel-toe walking). Pure tone audiometry confirmed the presence of nonprogressive profound sensorineural hearing loss (fig 1). Ophthalmological examination done by an ophthalmologist on all affected family members ruled out evidence of myopia, vitreo-retinal detachment, cataract, glaucoma, or other eye symptoms. An otolaryngological examination carried out by an otolaryngologist excluded midface hypoplasia and obvious palatal clefting, while palpation of the secondary palate excluded the presence of a submucous cleft palate. Stature was normal. In two of the five affected persons (V:2 and V:3) a general bone survey including the thoracolumbar spine, wrists, and knees showed no evidence of joint degeneration, abnormal epiphyseal development, or bone dysplasia. The profile of IV:2 showed mild mandibular retrognathia, consistent with a lateral skull radiograph, which additionally showed normal maxillary development and a class II dentoskeletal relationship. The father of IV:2 also had mild mandibular retrognathia (fig 2). Non-affected individuals had normal hearing as documented by pure-tone audiometry (fig 1).

Figure 2 Lateral skull radiograph on IV:2 shows normal maxillary development, a class II dentoskeletal relationship, and mild mandibular retrognathia. Mandibular retrognathia is seen on a profile view and is present in III:1 but not in III:2 (parents of IV:2), both of whom are carriers of the P621T allele variant of *COL11A2*. (Photographs reproduced with patients' consent.)

Figure 3 Mutation analysis in the DFNB53 family. (A) Sequence data from IV:2 (congenitally deaf), V:1 (carrier of the P621T allele) and a control person. (B) Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) data following Bsrl digestion of amplified DNA. All affected individuals (-/-) have two digestion products of 116 bp and 102 bp; IV:3, not carrying the mutation, has the undigested product of 218bp; five carriers (+/-) have one undigested and two digested products. (C) Alignment of a portion of collagen type XI proteins from various species shows that P621 (arrow) in the collagen triple helical region is conserved across species (conserved amino acids, dark blue background; similar amino acids, light blue background; non-conserved amino acids, white background; boxed sequence, proline-rich region flanking the mutation site).

Localisation of DFNB53 to 6p21.3

We completed a genome-wide linkage analysis using 400 polymorphic microsatellite markers (Applied Biosystems) on 11 members of family L622 (fig 1). Genotyping data from subfamily A identified a novel locus for ARNSHL on chromosome 6p21.3 flanked by D6S422 (telomeric) and D6S257 (centromeric), which was designated DFNB53. Individual V:1 further narrowed the DFNB53 interval to a 9.4 cM region flanked by D6S276 (telomeric) to D6S1610 (centromeric).

Mutation analysis in family L622

The 9.4 cM DFNB53 interval includes 246 known genes, including *COL11A2*. Because mutations in *COL11A2* cause

deafness at the DFNA13 locus, we considered it an excellent functional candidate and completed mutation screening of its 66 exons. We identified a cytosine to adenine transition in exon 21 (nt 1861) in the heterozygous state in individual V:1 and in the homozygous state in individual IV:2 (fig 3A). Further analysis by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) analysis showed all five affected persons were homozygous for this variation, while the four parents and V:1 were mutation carriers (fig 3B). Genotyping data from 269 Iranian controls (538 chromosomes) did not show the same variation, suggesting that it is rare in the general population. The resulting change at the amino acid level—P621T based on UniProt P13942—affects the Y position of the -Gly-X-Y- repeat near

	Mutation	1					
Type of mutation	Homozygous	Heterozygous	Predicted consequence	Phenotype	Inheritance	Proposed mechanism of action	Reference
Nonsense mutation or	732delC		Frameshift/stop in exon 6	OSMED	Recessive	Functionally null allele secondary to	12
frameshift stop	2492C→A		S831X(345)	OSMED	Recessive	protein truncation or non-sense mRNA	12
	2406_2409del,		Frameshitt/stop in exon 32	OSMED	Recessive	decay	12
	2400_241 011157bp 3991C→T		RI 331X (845)	OSMED	Recessive		10
	4821_4843del		Frameshift/stop in exon 64	OSMED	Recessive		12
	1636C→T and IVS22-2		R546X (60) and in-frame deletion of exon	OSMED	Recessive		12
	3032_3033insC and		Frameshift/stop in exon 43 and G1 584X	OSMED	Recessive		12
	3991C→T and NS53+5G→A*		R1331X (845) and frameshift/stop in exon	OSMED	Recessive		12
		529C→T‡	RITTX	Non-syndromic cleft palate	++		19
In-frame deletion		2775_2801del 4135C→T IVS60-1G→A	In-frame deletion of 27 bp in exon 39 In-frame deletion of exon 57 In-frame deletion of exon 60	Non-ocular Stickler Non-ocular Stickler Non-ocular Stickler	Dominant Dominant Dominant	Functional allele with dominant- negative effect on collagen folding	13 11 15
Missense mutation	1861C→A†		P621T	Non-syndromic hearing	Recessive	Functional allele with recessive-	
	1982G→A	2423G→A	G661R (175) G808E (323)	loss OSMED Non-syndromic hearing	Recessive Dominant	negative effect on collagen folding Functional allele with dominant-	15 4
		3100C→T	R1034C (549)	loss Non-syndromic hearing	Dominant	negative effect on collagen folding	4
		4322G→A	G1441E (955)	ioss WZS/non-ocular Stickler	Dominant		14
Mutation positions are as: *Compound heterozygote. †Mutation identified in thi ‡Reported in the heterozyg	signed according to collagen s study. jous state in a person with non t deformity in this family.	a/2(XI) chain precursor (UniProt P -syndromic cleft palate deformity;	13942); numbers in parenthesis are used in F the father of the proband also carries R177X b	orevious studies. Ut has no cleft palate deform	ity, suggesting eith	ier variable penetrance or another aetiology	for the isolated

6 of 7

Figure 4 The location of reported missense mutations in collagen $\alpha 2(XI)$ chain precursor. Graphic view of the domain structure is from the Protein Families Database (UniProt P13942). Note the relation between mutation position/type and phenotype. Carriers of the DFNB53 and OSMED causing mutations have a normal phenotype. Numbers in parentheses indicate amino acid positions in mature collagen $\alpha 2(XI)$ protein and were used in previous publications.

the amino-terminus of triple helical region. Sequence comparison of collagen type XI α 1 and α 2 peptides across species identifies the replaced proline as an evolutionarily conserved amino acid (fig 3C).

Analysis of reported COL11A2 mutations

Several mutations in *COL11A2* have been reported, including 10 nonsense or frameshift/stop mutations in patients with recessive OSMED syndrome,^{10 12} three in-frame deletions in dominant non-ocular Stickler syndrome, and four missense mutations that lead to either dominant or recessive disease^{4 14 15} depending on the type and location of the mutation (fig 4; table 1).

DISCUSSION

Type and location of COL11A2 mutations determine disease phenotype

Mutations of COL11A2 cause syndromic and non-syndromic autosomal dominant and recessive hearing loss.¹⁰ ¹¹ ^{13–15} This phenotypic spectrum is the consequence of both mutation type and location. Syndromic disease is associated with either a dosage or a dominant negative effect. The former is seen with nonsense or frameshift/stop mutations that are associated with nonsense mediated mRNA decay or generate short lived but rapidly degraded truncated proteins.²⁰ In the heterozygous state, these mutations cause haploinsufficiency but no disease phenotype, while in the homozygous state, they result in absence of $\alpha 2(XI)$ and autosomal recessive OSMED syndrome. In-frame deletions in COL11A2, in contrast, are translated into shortened mutant proteins that are incorporated, albeit abnormally, into the collagen triple helix. The phenotypic consequence is dominantly inherited non-ocular Stickler syndrome and reflects a dominant negative mechanism of action.

Missense mutations of *COL11A2* cause both syndromic and non-syndromic hearing loss. Of the five reported missense mutations, three change the core amino acid glycine of the -Gly-X-Y- consensus repeat (fig 4; table 1). Because G1441E is closest to the carboxy terminus, which is also the site of trimerisation initiation of the collagen helix, this glycine mutation has the most severe phenotypic consequence of the three—it causes autosomal dominant Weissenbacher– Zweymuller syndrome (MIM 277610, non-ocular Stickler syndrome). G808E causes only autosomal dominant hearing loss, and G661R causes autosomal recessive OSMED syndrome.

Hypothesised effect of the P621T mutation

The homozygous mutation we identified, P621T, differs from reported *COL11A2* mutations in two respects: it does not involve glycine and it is not close to the carboxy terminus. We hypothesize that this variant is pathological because it either destabilises the triple helix or affects collagen metabolism.

Proline always occupies the X or Y position in collagen and often undergoes post-translational hydroxylation, a modification that stabilises the triple helix. P621T could destabilise the triple helix in two ways. First, isoleucine-620 could repress glycosylation of threonine-621, and when non-glycosylated, threonine cannot stabilise the triple helix.²¹ In addition, because the region is proline-rich and therefore able to form only weak hydrogen bonds, a proline substitution may destabilise adjacent amino acid interactions²² (fig 3C).

The P621T substitution also could affect collagen $\alpha 2(XI)$ metabolism. Enzymatic degradation of type XI collagen may be important in disease states.²³ Matrix metalloproteinase 2 (MMP2) degrades type XI collagen by recognising Gly–Iso or Gly–Leu bonds²⁴; however, Gly–Iso followed by Pro is resistant to collagenase.²⁵ Increased activity of MMP2 destroys collagen architecture.²⁶ Thus it is possible that threonine-621 in mutant collagen type XI $\alpha 2$ permits abnormal degradation of collagen type XI by MMP2 induced cleavage.

Conclusions

We report the first mutation in *COL11A2* associated with ARNSHL (homozygosity for P621T in a consanguineous Iranian family). This missense mutation is close to the amino-terminus. Based on comparative genotype–phenotype studies of all *COL11A2* mutations, which show that mutation type and location are important predictors of phenotype, and we hypothesise that P621T alters collagen folding or degradation.

ACKNOWLEDGEMENTS

This study was supported in part by a grant from the NIDCD (R01-DC02842) to RJHS and a grant from the Iran Deputy of Research and Technology, Ministry of Health and Medical Education (P 6176).

Authors' affiliations

W Chen, N C Meyer, R J H Smith, Department of Otolaryngology and Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA K Kahrizi, Y Riazalhosseini, H Najmabadi, Genetics Research Centre, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran G Van Camp, Department of Medical Genetics, University of Antwerp, Antwerp, Belgium

Competing interests: none declared

Correspondence to: Dr Richard J H Smith, Department of Otolaryngology and Head and Neck Surgery, Interdepartmental Genetics Program, The University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; richard-smith@uiowa.edu

Received 10 March 2005 Revised version received 30 June 2005 Accepted for publication 4 July 2005

REFERENCES

- 1 Mehl AL, Thomson V. Newborn hearing screening: the great omission. Pediatrics 1998;101:E4
- 2 Mehl AL, Thomson V. The Colorado newborn hearing screening project, 1992–1999: on the threshold of effective population-based universal newborn hearing screening. *Pediatrics* 2002;**109**:E7. **Morton NE**, Genetic epidemiology of hearing impairment. *Ann NY Acad Sci*
- 1991:630:16-31.
- A McGuirt WT, Prasad SD, Griffith AJ, Kunst HP, Green GE, Shpargel KB, Runge C, Huybrechts C, Mueller RF, Lynch E, King MC, Brunner HG, Cremers CW, Takanosu M, Li SW, Arita M, Mayne R, Prockop DJ, Van Camp G, Smith RJ. Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nat Genet 1999;**23**:413–19.
- 5 Kuivaniemi H, Tromp G, Prockop DJ. Mutations in fibrillar collagens (types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. *Hum Mutat* 1997;**9**:300–15.
- 6 Prockop DJ. Mutations that alter the primary structure of type I collagen. The perils of a system for generating large structures by the principle of nucleated growth. J Biol Chem 1990;265:15349–52.
- Li Y, Lacerda DA, Warman ML, Beier DR, Yoshioka H, Ninomiya Y, Oxford JT, Morris NP, Andrikopoulos K, Ramirez F, et al. A fibrillar collagen gene, Coll1a1, is essential for skeletal morphogenesis. Cell 1995;80:423-30.
- 8 Mendler M, Eich-Bender SG, Vaughan L, Winterhalter KH, Bruckner P Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol 1989;**108**:191–7
- Prockop DJ, Kivirikko KI. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 1995;64:403–34. Harel T, Rabinowitz R, Hendler N, Galil A, Flusser H, Chemke J, Gradstein L,
- 10 Lifshitz T, Ofir R, Elbedour K, Birk OS. COL11A2 mutation associated with autosomal recessive Weissenbacher-Zweymuller syndrome: molecular and

clinical overlap with otospondylomegaepiphyseal dysplasia (OSMED) Am J Med Genet A 2005;132A:33-5

- 11 Vuoristo MM, Pappas JG, Jansen V, Ala-Kokko L. A stop codon mutation in COL11A2 induces exon skipping and leads to non-ocular Stickler syndrome. Am J Med Genet 2004;**130A**:160–4.
- Melkoniemi M, Brunner HG, Manouvrier S, Hennekam R, Superti-Furga A, Kaariainen H, Pauli RM, van Essen T, Warman ML, Bonaventure J, Miny P, Ala-Kokko L. Autosomal recessive disorder otospondylomegaepiphyseal 12 dysplasia is associated with loss-of-function mutations in the COL11A2 gene. , Am J Hum Genet 2000;**66**:368–77.
- Sirko-Osadsa DA, Murray MA, Scott JA, Lavery MA, Warman AL, Robin NH. 13 Stickler syndrome without eye involvement is caused by mutations in COL11A2, the gene encoding the alpha2(XI) chain of type XI collagen. J Pediatr 1998;**132**:368–71.
- Pihlajamaa T, Prockop DJ, Faber J, Winterpacht A, Zabel B, Giedion A, Wiesbauer P, Spranger J, Ala-Kokko L. Heterozygous glycine substitution in the COL11A2 gene in the original patient with the Weissenbacher-Zweymuller syndrome demonstrates its identity with heterozygous OSMED (nonocular Stickler syndrome). *Am J Med Genet* 1998;**80**:115–20.
- Vikkula M, Mariman EC, Lui VC, Zhidkova NI, Tiller GE, Goldring MB, van Beersum SE, de Waal Malefijt MC, van den Hoogen FH, Ropers HH, Mayne R, Cheah KSE, Olsen BR, Warman ML, Brunner HG. Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. *Cell* 15 1995:80:431-7.
- Spranger J. The type XI collagenopathies. *Pediatr Radiol* 1998;**28**:745–50. Bonaventure J, Cohen-Solal L, Ritvaniemi P, Van Maldergem L, Kadhom N, Delezoide AL, Maroteaux P, Prockop DJ, Ala-Kokko L. Substitution of aspartic acid for glycine at position 310 in type II collagen produces achondrogenesis II, and substitution of serine at position 805 produces hypochondrogenesis: analysis of genotype phenotype relationships. *Biochem J* 1995;**307**:823–30.
- Korkko J, Ritvaniemi P, Haataja L, Kaariainen H, Kivirikko KI, Prockop DJ, 18 Ala-Kokko L. Mutation in type II procollagen (COL2A1) that substitutes aspartate for glycine alpha 1–67 and that causes cataracts and retinal detachment: evidence for molecular heterogeneity in the Wagner syndrome and the Stickler syndrome (arthro-ophthalmopathy). Am J Hum Genet 1993:53:55-61
- Melkoniemi M, Koillinen H, Mannikko M, Warman ML, Pihlajamaa T, Kaariainen H, Rautio J, Hukki J, Stofko JA, Cisneros GJ, Krakow D, Cohn DH, Kere J, Ala-Kokko L. Collagen XI sequence variations in nonsyndromic cleft 19 palate, Robin sequence and micrognathia. Eur J Hum Gener 2003;11:265-70
- 20 Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in health and
- disease. *Hum Mol Genet* 1999;**8**:1893–900. **Mann K**, Mechling DE, Bachinger HP, Eckerskom C, Gaill F, Timpl R. Solution of the sequence of a hydrothermal vent worm cuticle collagen. J Mol Biol 1996;261:255-66.
- Radmer RJ, Klein TE. Severity of osteogenesis imperfecta and structure of a collagen-like peptide modeling a lethal mutation site. Biochemistry 2004;**43**:5314-23
- Yu LP, Smith GN, Brandt KD, Capello W. Type XI collagen-degrading activity in human osteoarthritic cartilage. *Arthritis Rheum* 1990;**33**:1626–33. Seltzer JL, Weingarten H, Akers KT, Eschbach ML, Grant GA, Eisen AZ.
- Cleavage specificity of type IV collagenase (gelatinase) from human skin. Use of synthetic peptides as model substrates. J Biol Chem 1989;**264**:19583-6.
- Wu H, Byrne MH, Stacey A, Goldring MB, Birkhead JR, Jaenisch R, Krane SM. 25 Generation of collagenase-resistant collagen by site-directed mutagenesis of murine pro alpha 1(I) collagen gene. *Proc Natl Acad Sci USA* 1990;**87**:5888–92.
- Wilnoth JG, Schultz GS, Antonelli PJ. Tympanic membrane metalloproteinase inflammatory response. Otolaryngol Head Neck Surg 2003;129:647–54. 26