Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2001 Jul;71(1):88–92. doi: 10.1136/jnnp.71.1.88

Polyamine metabolism in brain tumours: diagnostic relevance of quantitative biochemistry

R Ernestus 1, G Rohn 1, R Schroder 1, T Els 1, A Klekner 1, W Paschen 1, N Klug 1
PMCID: PMC1737459  PMID: 11413269

Abstract

OBJECTIVE—Activation of polyamine metabolism is closely associated with cellular proliferation. The purpose was to investigate whether the content of the polyamines putrescine, spermidine, and spermine, and the activity of the first metabolic key enzyme of polyamine metabolism, ornithine decarboxylase (ODC), represent biochemical markers of malignancy in brain tumours.
METHODS—The concentration of putrescine, spermidine, and spermine, and the activity of ODC were biochemically quantified in tissue samples obtained during open microsurgery of 670 patients with brain tumours. Biochemical analysis and histopathological classification were carried out in serial tumour samples.
RESULTS—The activity of ODC was very low in peritumorous non-neoplastic brain tissue (0.9 (SD 0.6) nmol/g/h). It was significantly higher in gliomas and it significantly increased with a higher grade of malignancy (grade I 2.7 (2.8) nmol/g/h, grade II 3.1(4.0) nmol/g/h, grade III 5.7 (5.6) nmol/g/h, grade IV 10.6 (11.7) nmol/g/h). High enzyme activity was also found in medulloblastomas (25.5 (15.1) nmol/g/h), malignant lymphomas (52.1 (42.1) nmol/g/h), and metastases from carcinoma (14.9 (22.1) nmol/g/h). Lowest values were measured in epidermoid cysts (0.5 (0.2) nmol/g/h), craniopharyngiomas (1.2 (0.9) nmol/g/h), angioblastomas (1.6 (1.7) nmol/g/h), and neurinomas (2.0 (1.8) nmol/g/h). By contrast with ODC activity, polyamine concentrations did not correlate with the grade of malignancy. Correlation of regional biochemical and histomorphological data in rapidly growing neoplasms showed high enzyme activity in solid tumour parts and low activity in necrotic areas.
CONCLUSIONS—Novel data relating ODC activation and polyamine concentrations to neuropathology is presented indicating that high ODC activity represents a biochemical marker of malignancy in brain tumours. This information is important for clinical and therapeutic investigations.



Full Text

The Full Text of this article is available as a PDF (154.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auvinen M. Cell transformation, invasion, and angiogenesis: a regulatory role for ornithine decarboxylase and polyamines? J Natl Cancer Inst. 1997 Apr 16;89(8):533–537. doi: 10.1093/jnci/89.8.533. [DOI] [PubMed] [Google Scholar]
  2. Auvinen M., Paasinen A., Andersson L. C., Hölttä E. Ornithine decarboxylase activity is critical for cell transformation. Nature. 1992 Nov 26;360(6402):355–358. doi: 10.1038/360355a0. [DOI] [PubMed] [Google Scholar]
  3. Bachrach U. Polyamines as chemical markers of malignancy. Ital J Biochem. 1976 Jan-Feb;25(1):77–93. [PubMed] [Google Scholar]
  4. Brooks W. H. Polyamine involvement in the cell cycle, apoptosis, and autoimmunity. Med Hypotheses. 1995 May;44(5):331–338. doi: 10.1016/0306-9877(95)90259-7. [DOI] [PubMed] [Google Scholar]
  5. Canellakis E. S., Viceps-Madore D., Kyriakidis D. A., Heller J. S. The regulation and function of ornithine decarboxylase and of the polyamines. Curr Top Cell Regul. 1979;15:155–202. [PubMed] [Google Scholar]
  6. Dorn A., Müller M., Bernstein H. G., Pajunen A., Järvinen M. Immunohistochemical localization of L-ornithine decarboxylase in developing rat brain. Int J Dev Neurosci. 1987;5(2):145–150. doi: 10.1016/0736-5748(87)90060-8. [DOI] [PubMed] [Google Scholar]
  7. Ernestus R. I., Röhn G., Hossmann K. A., Paschen W. Polyamine metabolism in experimental brain tumors of rat. J Neurochem. 1993 Feb;60(2):417–422. doi: 10.1111/j.1471-4159.1993.tb03167.x. [DOI] [PubMed] [Google Scholar]
  8. Ernestus R. I., Röhn G., Schröder R., Els T., Lee J. Y., Klug N., Paschen W. Polyamine metabolism in gliomas. J Neurooncol. 1996 Aug;29(2):167–174. doi: 10.1007/BF00182140. [DOI] [PubMed] [Google Scholar]
  9. Ernestus R. I., Röhn G., Schröder R., Klug N., Hossmann K. A., Paschen W. Activity of ornithine decarboxylase (ODC) and polyamine levels as biochemical markers of malignancy in human brain tumors. Acta Histochem Suppl. 1992;42:159–164. [PubMed] [Google Scholar]
  10. Goldman S. S., Volkow N. D., Brodie J., Flamm E. S. Putrescine metabolism in human brain tumors. J Neurooncol. 1986;4(1):23–29. doi: 10.1007/BF02157998. [DOI] [PubMed] [Google Scholar]
  11. Harik S. I., Sutton C. H. Putrescine as a biochemical marker of malignant brain tumors. Cancer Res. 1979 Dec;39(12):5010–5015. [PubMed] [Google Scholar]
  12. Heby O., Gray J. W., Lindl P. A., Marton L. J., Wilson C. B. Changes in L-ornithine decarboxylase activity during the cell cycle. Biochem Biophys Res Commun. 1976 Jul 12;71(1):99–105. doi: 10.1016/0006-291x(76)90254-0. [DOI] [PubMed] [Google Scholar]
  13. Heby O., Persson L. Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci. 1990 Apr;15(4):153–158. doi: 10.1016/0968-0004(90)90216-x. [DOI] [PubMed] [Google Scholar]
  14. Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981;19(1):1–20. doi: 10.1111/j.1432-0436.1981.tb01123.x. [DOI] [PubMed] [Google Scholar]
  15. Hibshoosh H., Johnson M., Weinstein I. B. Effects of overexpression of ornithine decarboxylase (ODC) on growth control and oncogene-induced cell transformation. Oncogene. 1991 May;6(5):739–743. [PubMed] [Google Scholar]
  16. Hiesiger E. M., Fowler J. S., Logan J., Brodie J. D., MacGregor R. R., Christman D. R., Wolf A. P. Is [1-11C]putrescine useful as a brain tumor marker? J Nucl Med. 1992 Feb;33(2):192–200. [PubMed] [Google Scholar]
  17. Horn Y., Beal S. L., Walach N., Lubich W. P., Spigel L., Marton L. J. Further evidence for the use of polyamines as biochemical markers for malignant tumors. Cancer Res. 1982 Aug;42(8):3248–3251. [PubMed] [Google Scholar]
  18. Jaros E., Perry R. H., Adam L., Kelly P. J., Crawford P. J., Kalbag R. M., Mendelow A. D., Sengupta R. P., Pearson A. D. Prognostic implications of p53 protein, epidermal growth factor receptor, and Ki-67 labelling in brain tumours. Br J Cancer. 1992 Aug;66(2):373–385. doi: 10.1038/bjc.1992.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jänne J., Alhonen L., Leinonen P. Polyamines: from molecular biology to clinical applications. Ann Med. 1991 Aug;23(3):241–259. doi: 10.3109/07853899109148056. [DOI] [PubMed] [Google Scholar]
  20. Jänne J., Pösö H., Raina A. Polyamines in rapid growth and cancer. Biochim Biophys Acta. 1978 Apr 6;473(3-4):241–293. doi: 10.1016/0304-419x(78)90015-x. [DOI] [PubMed] [Google Scholar]
  21. Kurihara H., Matsuzaki S., Yamazaki H., Tsukahara T., Tamura M. Relationship between tissue polyamine levels and malignancy in primary brain tumors. Neurosurgery. 1993 Mar;32(3):372–375. doi: 10.1227/00006123-199303000-00006. [DOI] [PubMed] [Google Scholar]
  22. Morgan D. M. Polyamines. Essays Biochem. 1987;23:82–115. [PubMed] [Google Scholar]
  23. Moulinoux J. P., Quemener V., Le Calve M., Chatel M., Darcel F. Polyamines in human brain tumors. A correlative study between tumor, cerebrospinal fluid and red blood cell free polyamine levels. J Neurooncol. 1984;2(2):153–158. doi: 10.1007/BF00177902. [DOI] [PubMed] [Google Scholar]
  24. Paschen W., Röhn G., Meese C. O., Djuricic B., Schmidt-Kastner R. Polyamine metabolism in reversible cerebral ischemia: effect of alpha-difluoromethylornithine. Brain Res. 1988 Jun 21;453(1-2):9–16. doi: 10.1016/0006-8993(88)90138-2. [DOI] [PubMed] [Google Scholar]
  25. Pegg A. E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 1986 Mar 1;234(2):249–262. doi: 10.1042/bj2340249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Russell D. H. Clinical relevance of polyamines. Crit Rev Clin Lab Sci. 1983;18(3):261–311. doi: 10.3109/10408368209085073. [DOI] [PubMed] [Google Scholar]
  27. Russell D. H., Haddox M. K. Cyclic AMP-mediated induction of ornithine decarboxylase in normal and neoplastic growth. Adv Enzyme Regul. 1978;17:61–79. doi: 10.1016/0065-2571(79)90008-6. [DOI] [PubMed] [Google Scholar]
  28. Scalabrino G., Ferioli M. E. Degree of enhancement of polyamine biosynthetic decarboxylase activities in human tumors: a useful new index of degree of malignancy. Cancer Detect Prev. 1985;8(1-2):11–16. [PubMed] [Google Scholar]
  29. Shantz L. M., Pegg A. E. Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neoplastic transformation. Cancer Res. 1994 May 1;54(9):2313–2316. [PubMed] [Google Scholar]
  30. Slotkin T. A., Bartolome J. Role of ornithine decarboxylase and the polyamines in nervous system development: a review. Brain Res Bull. 1986 Sep;17(3):307–320. doi: 10.1016/0361-9230(86)90236-4. [DOI] [PubMed] [Google Scholar]
  31. Tabor C. W., Tabor H. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem. 1976;45:285–306. doi: 10.1146/annurev.bi.45.070176.001441. [DOI] [PubMed] [Google Scholar]
  32. Vendrell M., Zawia N. H., Serratosa J., Bondy S. C. c-fos and ornithine decarboxylase gene expression in brain as early markers of neurotoxicity. Brain Res. 1991 Mar 29;544(2):291–296. doi: 10.1016/0006-8993(91)90067-6. [DOI] [PubMed] [Google Scholar]
  33. Warnick R. E., Pietronigro D. D., McBride D. Q., Flamm E. S. In vivo metabolism of radiolabeled putrescine in gliomas: implications for positron emission tomography of brain tumors. Neurosurgery. 1988 Oct;23(4):464–469. doi: 10.1227/00006123-198810000-00010. [DOI] [PubMed] [Google Scholar]
  34. Williams-Ashman H. G., Canellakis Z. N. Transglutaminase-mediated covalent attachment of polyamines to proteins: mechanisms and potential physiological significance. Physiol Chem Phys. 1980;12(5):457–472. [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES