Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Feb;64(2):629–636. doi: 10.1128/iai.64.2.629-636.1996

Legionella pneumophila mutants that are defective for iron acquisition and assimilation and intracellular infection.

C D Pope 1, W O'Connell 1, N P Cianciotto 1
PMCID: PMC173812  PMID: 8550218

Abstract

Legionella pneumophila, a parasite of macrophages and protozoa, requires iron for optimal extracellular and intracellular growth. However, its mechanisms of iron acquisition remain uncharacterized. Using mini-Tn10 mutagenesis, we isolated 17 unique L. pneumophila strains which appeared to be defective for iron acquisition and assimilation. Eleven of these mutants were both sensitive to the iron chelator ethylenediamine di(o-hydroxyphenylacetic acid) and resistant to streptonigrin, an antibiotic whose lethal effect requires high levels of intracellular iron. Six mutants were also defective for the infection of macrophage-like U937 cells. Although none were altered in entry, mutants generally exhibited prolonged lag phases and in some cases replicated at slower rates. Overall, the reduced recoveries of mutants, relative to that of the wild type, ranged from 3- to 1,000-fold. Strain NU216, the mutant displaying the most severe lag phase and the slowest rate of replication, was studied further. Importantly, within U937 cells, NU216 was approximately 100-fold more sensitive than the wild type was to treatment with the Fe3+ chelator deferoxamine, indicating that it is defective for intracellular iron acquisition and assimilation. Furthermore, this strain was unable to mediate any cytopathic effect and was impaired for infectivity of an amoebal host. Taken together, the isolation of these mutants offers genetic proof that iron acquisition and assimilation are critical for intracellular infection by L. pneumophila.

Full Text

The Full Text of this article is available as a PDF (446.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTONI F., KELETI T. Immunobiological studies on crystalline alcohol dehydrogenases from closely related yeast species. Nature. 1957 May 18;179(4568):1020–1020. doi: 10.1038/1791020a0. [DOI] [PubMed] [Google Scholar]
  2. Arroyo J., Hurley M. C., Wolf M., McClain M. S., Eisenstein B. I., Engleberg N. C. Shuttle mutagenesis of Legionella pneumophila: identification of a gene associated with host cell cytopathicity. Infect Immun. 1994 Sep;62(9):4075–4080. doi: 10.1128/iai.62.9.4075-4080.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellinger-Kawahara C., Horwitz M. A. Complement component C3 fixes selectively to the major outer membrane protein (MOMP) of Legionella pneumophila and mediates phagocytosis of liposome-MOMP complexes by human monocytes. J Exp Med. 1990 Oct 1;172(4):1201–1210. doi: 10.1084/jem.172.4.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berger K. H., Merriam J. J., Isberg R. R. Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene. Mol Microbiol. 1994 Nov;14(4):809–822. doi: 10.1111/j.1365-2958.1994.tb01317.x. [DOI] [PubMed] [Google Scholar]
  5. Bortner C. A., Arnold R. R., Miller R. D. Bactericidal effect of lactoferrin on Legionella pneumophila: effect of the physiological state of the organism. Can J Microbiol. 1989 Nov;35(11):1048–1051. doi: 10.1139/m89-174. [DOI] [PubMed] [Google Scholar]
  6. Brand B. C., Sadosky A. B., Shuman H. A. The Legionella pneumophila icm locus: a set of genes required for intracellular multiplication in human macrophages. Mol Microbiol. 1994 Nov;14(4):797–808. doi: 10.1111/j.1365-2958.1994.tb01316.x. [DOI] [PubMed] [Google Scholar]
  7. Byrd T. F., Horwitz M. A. Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J Clin Invest. 1989 May;83(5):1457–1465. doi: 10.1172/JCI114038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Byrd T. F., Horwitz M. A. Lactoferrin inhibits or promotes Legionella pneumophila intracellular multiplication in nonactivated and interferon gamma-activated human monocytes depending upon its degree of iron saturation. Iron-lactoferrin and nonphysiologic iron chelates reverse monocyte activation against Legionella pneumophila. J Clin Invest. 1991 Oct;88(4):1103–1112. doi: 10.1172/JCI115409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen Q., Actis L. A., Tolmasky M. E., Crosa J. H. Chromosome-mediated 2,3-dihydroxybenzoic acid is a precursor in the biosynthesis of the plasmid-mediated siderophore anguibactin in Vibrio anguillarum. J Bacteriol. 1994 Jul;176(14):4226–4234. doi: 10.1128/jb.176.14.4226-4234.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cianciotto N. P., Eisenstein B. I., Mody C. H., Toews G. B., Engleberg N. C. A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection. Infect Immun. 1989 Apr;57(4):1255–1262. doi: 10.1128/iai.57.4.1255-1262.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cianciotto N. P., Fields B. S. Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5188–5191. doi: 10.1073/pnas.89.11.5188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cianciotto N., Eisenstein B. I., Engleberg N. C., Shuman H. Genetics and molecular pathogenesis of Legionella pneumophila, an intracellular parasite of macrophages. Mol Biol Med. 1989 Oct;6(5):409–424. [PubMed] [Google Scholar]
  13. Cohen M. S., Chai Y., Britigan B. E., McKenna W., Adams J., Svendsen T., Bean K., Hassett D. J., Sparling P. F. Role of extracellular iron in the action of the quinone antibiotic streptonigrin: mechanisms of killing and resistance of Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1987 Oct;31(10):1507–1513. doi: 10.1128/aac.31.10.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dowling J. N., Saha A. K., Glew R. H. Virulence factors of the family Legionellaceae. Microbiol Rev. 1992 Mar;56(1):32–60. doi: 10.1128/mr.56.1.32-60.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dyer D. W., McKenna W., Woods J. P., Sparling P. F. Isolation by streptonigrin enrichment and characterization of a transferrin-specific iron uptake mutant of Neisseria meningitidis. Microb Pathog. 1987 Nov;3(5):351–363. doi: 10.1016/0882-4010(87)90005-2. [DOI] [PubMed] [Google Scholar]
  16. Edelstein P. H. Comparative study of selective media for isolation of Legionella pneumophila from potable water. J Clin Microbiol. 1982 Oct;16(4):697–699. doi: 10.1128/jcm.16.4.697-699.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Engleberg N. C., Carter C., Weber D. R., Cianciotto N. P., Eisenstein B. I. DNA sequence of mip, a Legionella pneumophila gene associated with macrophage infectivity. Infect Immun. 1989 Apr;57(4):1263–1270. doi: 10.1128/iai.57.4.1263-1270.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Engleberg N. C., Drutz D. J., Eisenstein B. I. Cloning and expression of Legionella pneumophila antigens in Escherichia coli. Infect Immun. 1984 May;44(2):222–227. doi: 10.1128/iai.44.2.222-227.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Garcia-del Portillo F., Foster J. W., Maguire M. E., Finlay B. B. Characterization of the micro-environment of Salmonella typhimurium-containing vacuoles within MDCK epithelial cells. Mol Microbiol. 1992 Nov;6(22):3289–3297. doi: 10.1111/j.1365-2958.1992.tb02197.x. [DOI] [PubMed] [Google Scholar]
  20. Gebran S. J., Newton C., Yamamoto Y., Widen R., Klein T. W., Friedman H. Macrophage permissiveness for Legionella pneumophila growth modulated by iron. Infect Immun. 1994 Feb;62(2):564–568. doi: 10.1128/iai.62.2.564-568.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Genco C. A., Chen C. Y., Arko R. J., Kapczynski D. R., Morse S. A. Isolation and characterization of a mutant of Neisseria gonorrhoeae that is defective in the uptake of iron from transferrin and haemoglobin and is avirulent in mouse subcutaneous chambers. J Gen Microbiol. 1991 Jun;137(6):1313–1321. doi: 10.1099/00221287-137-6-1313. [DOI] [PubMed] [Google Scholar]
  22. Goldoni P., Visca P., Pastoris M. C., Valenti P., Orsi N. Growth of Legionella spp. under conditions of iron restriction. J Med Microbiol. 1991 Feb;34(2):113–118. doi: 10.1099/00222615-34-2-113. [DOI] [PubMed] [Google Scholar]
  23. Hickey E. K., Cianciotto N. P. Cloning and sequencing of the Legionella pneumophila fur gene. Gene. 1994 May 27;143(1):117–121. doi: 10.1016/0378-1119(94)90615-7. [DOI] [PubMed] [Google Scholar]
  24. Hoffman P. S., Ripley M., Weeratna R. Cloning and nucleotide sequence of a gene (ompS) encoding the major outer membrane protein of Legionella pneumophila. J Bacteriol. 1992 Feb;174(3):914–920. doi: 10.1128/jb.174.3.914-920.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Horwitz M. A. Interactions between macrophages and Legionella pneumophila. Curr Top Microbiol Immunol. 1992;181:265–282. doi: 10.1007/978-3-642-77377-8_10. [DOI] [PubMed] [Google Scholar]
  26. Husmann L. K., Johnson W. Cytotoxicity of extracellular Legionella pneumophila. Infect Immun. 1994 May;62(5):2111–2114. doi: 10.1128/iai.62.5.2111-2114.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Johnson W., Varner L., Poch M. Acquisition of iron by Legionella pneumophila: role of iron reductase. Infect Immun. 1991 Jul;59(7):2376–2381. doi: 10.1128/iai.59.7.2376-2381.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. King C. H., Fields B. S., Shotts E. B., Jr, White E. H. Effects of cytochalasin D and methylamine on intracellular growth of Legionella pneumophila in amoebae and human monocyte-like cells. Infect Immun. 1991 Mar;59(3):758–763. doi: 10.1128/iai.59.3.758-763.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mengaud J. M., Horwitz M. A. The major iron-containing protein of Legionella pneumophila is an aconitase homologous with the human iron-responsive element-binding protein. J Bacteriol. 1993 Sep;175(17):5666–5676. doi: 10.1128/jb.175.17.5666-5676.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Miles A. A., Khimji P. L. Enterobacterial chelators of iron: their occurrence, detection, and relation to pathogenicity. J Med Microbiol. 1975 Nov;8(4):477–490. doi: 10.1099/00222615-8-4-477. [DOI] [PubMed] [Google Scholar]
  31. O'Connell W. A., Bangsborg J. M., Cianciotto N. P. Characterization of a Legionella micdadei mip mutant. Infect Immun. 1995 Aug;63(8):2840–2845. doi: 10.1128/iai.63.8.2840-2845.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ott M. Genetic approaches to study Legionella pneumophila pathogenicity. FEMS Microbiol Rev. 1994 Jun;14(2):161–176. doi: 10.1111/j.1574-6976.1994.tb00085.x. [DOI] [PubMed] [Google Scholar]
  33. Pearlman E., Jiwa A. H., Engleberg N. C., Eisenstein B. I. Growth of Legionella pneumophila in a human macrophage-like (U937) cell line. Microb Pathog. 1988 Aug;5(2):87–95. doi: 10.1016/0882-4010(88)90011-3. [DOI] [PubMed] [Google Scholar]
  34. Pine L., George J. R., Reeves M. W., Harrell W. K. Development of a chemically defined liquid medium for growth of Legionella pneumophila. J Clin Microbiol. 1979 May;9(5):615–626. doi: 10.1128/jcm.9.5.615-626.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Poch M. T., Johnson W. Ferric reductases of Legionella pneumophila. Biometals. 1993 Summer;6(2):107–114. doi: 10.1007/BF00140111. [DOI] [PubMed] [Google Scholar]
  36. Pope C. D., Dhand L., Cianciotto N. P. Random mutagenesis of Legionella pneumophila with mini-Tn10. FEMS Microbiol Lett. 1994 Nov 15;124(1):107–111. doi: 10.1111/j.1574-6968.1994.tb07269.x. [DOI] [PubMed] [Google Scholar]
  37. Reeves M. W., Pine L., Neilands J. B., Balows A. Absence of siderophore activity in Legionella species grown in iron-deficient media. J Bacteriol. 1983 Apr;154(1):324–329. doi: 10.1128/jb.154.1.324-329.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ristroph J. D., Hedlund K. W., Gowda S. Chemically defined medium for Legionella pneumophila growth. J Clin Microbiol. 1981 Jan;13(1):115–119. doi: 10.1128/jcm.13.1.115-119.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rodgers F. G., Gibson F. C., 3rd Opsonin-independent adherence and intracellular development of Legionella pneumophila within U-937 cells. Can J Microbiol. 1993 Jul;39(7):718–722. doi: 10.1139/m93-103. [DOI] [PubMed] [Google Scholar]
  40. Rogers H. J. Iron-Binding Catechols and Virulence in Escherichia coli. Infect Immun. 1973 Mar;7(3):445–456. doi: 10.1128/iai.7.3.445-456.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rowbotham T. J. Current views on the relationships between amoebae, legionellae and man. Isr J Med Sci. 1986 Sep;22(9):678–689. [PubMed] [Google Scholar]
  42. Sadosky A. B., Wiater L. A., Shuman H. A. Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect Immun. 1993 Dec;61(12):5361–5373. doi: 10.1128/iai.61.12.5361-5373.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sigel S. P., Stoebner J. A., Payne S. M. Iron-vibriobactin transport system is not required for virulence of Vibrio cholerae. Infect Immun. 1985 Feb;47(2):360–362. doi: 10.1128/iai.47.2.360-362.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sokol P. A. Tn5 insertion mutants of Pseudomonas aeruginosa deficient in surface expression of ferripyochelin-binding protein. J Bacteriol. 1987 Jul;169(7):3365–3368. doi: 10.1128/jb.169.7.3365-3368.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sugiura Y., Kuwahara J., Suzuki T. DNA interaction and nucleotide sequence cleavage of copper-streptonigrin. Biochim Biophys Acta. 1984 Jul 18;782(3):254–261. doi: 10.1016/0167-4781(84)90060-5. [DOI] [PubMed] [Google Scholar]
  46. Tai S. S., Lee C. J., Winter R. E. Hemin utilization is related to virulence of Streptococcus pneumoniae. Infect Immun. 1993 Dec;61(12):5401–5405. doi: 10.1128/iai.61.12.5401-5405.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weinberg E. D. Cellular regulation of iron assimilation. Q Rev Biol. 1989 Sep;64(3):261–290. doi: 10.1086/416359. [DOI] [PubMed] [Google Scholar]
  48. White J. R., Yeowell H. N. Iron enhances the bactericidal action of streptonigrin. Biochem Biophys Res Commun. 1982 May 31;106(2):407–411. doi: 10.1016/0006-291x(82)91125-1. [DOI] [PubMed] [Google Scholar]
  49. Winn W. C., Jr Legionnaires disease: historical perspective. Clin Microbiol Rev. 1988 Jan;1(1):60–81. doi: 10.1128/cmr.1.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zimmermann L., Hantke K., Braun V. Exogenous induction of the iron dicitrate transport system of Escherichia coli K-12. J Bacteriol. 1984 Jul;159(1):271–277. doi: 10.1128/jb.159.1.271-277.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES