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Persistent abnormality detected in the non-ictal
electroencephalogram in primary generalised epilepsy
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Objectives: Gamma oscillations (30–100 Hz gamma electroencephalographic (EEG) activity) corre-
late with high frequency synchronous rhythmic bursting in assemblies of cerebral neurons participating
in aspects of consciousness. Previous studies in a kainic acid animal model of epilepsy revealed
increased intensity of gamma rhythms in background EEG preceding epileptiform discharges, leading
the authors to test for intensified gamma EEG in humans with epilepsy.
Methods: 64 channel cortical EEG were recorded from 10 people with primary generalised epilepsy,
11 with partial epilepsy, and 20 controls during a quiescent mental state. Using standard methods of
EEG analysis the strength of EEG rhythms (fast Fourier transformation) was quantified and the strengths
of rhythms in the patient groups compared with with controls by unpaired t test at 1 Hz intervals from
1 Hz to 100 Hz.
Results: In patients with generalised epilepsy, there was a threefold to sevenfold increase in power of
gamma EEG between 30 Hz and 100 Hz (p<0.01). Analysis of three unmedicated patients with pri-
mary generalised epilepsies revealed an additional 10-fold narrow band increase of power around 35
Hz–40 Hz (p<0.0001). There were no corresponding changes in patients with partial epilepsy.
Conclusions: Increased gamma EEG is probably a marker of the underlying ion channel or
neurotransmitter receptor dysfunction in primary generalised epilepsies and may also be a pathophysi-
ological prerequisite for the development of seizures. The finding provides a new diagnostic approach
and also links the pathophysiology of generalised epilepsies to emerging concepts of neuronal corre-
lates of consciousness.

Epilepsies collectively constitute common disorders of

humans (0.4% lifetime prevalence1) and are characterised

by unpredictable brief seizure episodes of electroencepha-

lographic (EEG) discharges often accompanied by distur-

bances in behaviour or cognitive impairment. One important

class of human epilepsies, the primary generalised epilepsies

(PGE), are characterised by large convulsive seizures some-

times associated with myoclonic jerks and absences, but lack a

defined pathophysiology despite the recent identification of

some of the causative ion channel or neurotransmitter recep-

tor channel mutations.2 3 Oocyte expression of these mutated

channels shows alterations in function,2 but the links between

changes in channel function and seizure occurrence remain

unknown. We have previously modelled in rats epilepsies

induced by excessive excitability and diminished inhibitory

activity using intravenous infusions of the glutamate-kainate/

AMPA receptor agonist kainic acid4 and the GABA
A

receptor-

chloride channel blocking agent picrotoxin,5 respectively. In

the kainic acid treated rat we found that EEG rhythms in the

gamma frequency range (30 Hz–100 Hz, especially 30 Hz–50

Hz), exhibited increased power preceding epileptiform

discharges.6 7

Gamma oscillations are 30 Hz–100 Hz rhythms in the EEG

and they are of low voltage compared with slower rhythms.

Gamma EEG correlates with high frequency synchronous

rhythmic bursting in assemblies of neurons participating in

the formation of percepts,8 working memory,9 selecting objects

for attention,10 and in sensory motor processing,11 all

components of cerebral activity underlying consciousness.

Because they are difficult to quantify in paper recordings

gamma frequencies have rarely been studied in clinical EEG

settings and their role in central nervous system disorders is

unknown.

Our findings with kainic acid treated rats were consistent

with gamma oscillations having a pathophysiological role in

epileptogenesis.6 7 We therefore recorded EEG in groups of

patients and controls and used standard methods of EEG

analysis, specifically measuring the power of EEG frequencies.

Here we show that in the inter-ictal EEG of a group of patients

with PGE, there is a persistent increase in gamma EEG in the

absence of active epileptiform discharges.

METHODS
Subjects
With approval of the Flinders Clinical Research Ethics

Committee, adults with a persistent seizure tendency (seizure

within three months of study with no change in medication)

were identified from patients of the Flinders Medical Centre.

Persistence of seizures was related either to the patient’s

choice to remain unmedicated or to refractoriness to

treatment. Patients were then studied who had specific

epilepsy diagnoses based on the International League Against

Epilepsy Classification (1989)12 using available clinical, EEG,

and magnetic resonance imaging (MRI) information. There

were 11 patients with partial epilepsy (presumptively attribut-

able to a focal brain lesion, categories 1.2 and 1.3), described in

tables 1 and 2. Ten patients had primary generalised epilepsy

(category 2.1) (tables 1 and 3). All patients with partial

epilepsy had simple or complex partial seizures, while six also

had secondary generalised seizures. Six patients with partial

epilepsy had structural lesions on brain MRI and two had
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other disorders on the basis of a known aetiology (table 2).

Diagnoses in the groups with PGE were: juvenile myoclonic

epilepsy (4), idiopathic generalised epilepsy (2), childhood

absence epilepsy (2), juvenile absence epilepsy (1), and

photosensitive epilepsy (1). Age, sex, and education matched

controls were recruited from the friends of patients or from

Flinders Medical Centre staff.

EEG
EEG was recorded digitally (bilateral ear reference electrodes,

512 sample per second digitisation rate, 107 Hz low pass filter,

16 bit precision) using a 64 channel EEG system (Compumed-

ics, Victoria, Australia) and the data were processed offline

using programs written within Matlab (The Mathworks, MA,

USA). Recordings were made with the eyes open while

subjects performed a control task (looking at a blank compu-

ter screen) and eight other active tasks (to be reported

elsewhere).

EEG analysis
The strength of EEG rhythms of different frequencies was

determined by standard methods of power spectral analysis of

EEG signals using fast Fourier transformation with a Hanning

window. Power was determined at 1 Hz intervals from 1 Hz to

100 Hz, averaging estimates from one second lengths of EEG

calculated from the maximum amount of good quality EEG

available from each subject, usually around 20 seconds per

subject. Kolmogorov-Smirnov testing indicated that the

distribution of power estimates was not always normally dis-

tributed, but that the log transformed power estimates were

normally distributed. We therefore tested the significance of

differences in power in different groups by using unpaired t
tests of log transformed data at every 1 Hz interval from 1 Hz

to 100 Hz. Contamination of recordings by 50 Hz power supply

frequency and 60 Hz computer monitor refresh rate prevented

analysis of power at 50±1, 60±1, 99, and 100 Hz and values for

these frequencies were removed from the spectra.
To facilitate presentation, the mean EEG power in the each

group is displayed relative to the mean power of all controls
(n=20), there being no significant difference between the two
groups of controls. The relative power increase is displayed
from 1 Hz to 100 Hz in spectra for each electrode in the mon-
tage. Similarly, the statistical evaluation of each frequency
from 1 Hz to 100 Hz is presented in spectra corresponding to
each electrode in the montage.

RESULTS
No epileptiform activity was recorded during the studies.

Artefact free and EMG free EEG was recorded from most of

the scalp. EMG potentials were sometimes present in several

anterior and lateral leads, resulting in high variances of mean

EEG power from those sites.

Table 1 Summary of patient characteristics

M:F
Age (y) mean
(SD)

Duration of
condition (y)
mean (SD) Medicated (n)

Primary generalised epilepsy (10) 2:8 41 (4) 18 (4) 7
Focal (partial) epilepsy (11) 6:5 38 (5) 15 (3) 8

Table 2 Clinical features of 11 patients with partial epilepsy

Sex, age
(duration (y)) EEG Seizures* Pathology Localisation

F 45 (26) Bilateral temporal sharp waves CPS Hippocampal cysts Temporal
F 26 (6) R frontotemporal theta CPS, SGS R frontal porencephalic cyst Frontal
M 47 (13) R frontal spikes SPS, CPS, SGS Post-encephalitis Frontal
M 28 (18) Bilateral 3 Hz sharp-wave slow-wave with R frontal spikes SPS, CPS R frontal tumour (benign) Frontal
F 29 (1) Normal SPS, SGS Unknown Unknown
M 52 (34) L and R spikes, sensory cortex (corticography) CPS Unknown Parietal
M 68 (9) Not diagnostic CPS L temporal tumour Temporal
F 30 (20) Not diagnostic SPS, CPS, SGS L mesial temporal sclerosis Temporal
M 54 (20) L temporal and bilateral sharp waves SPS Post-cardiac bypass Temporal
M 29 (5) L frontotemporal theta and sharp waves CPS, SGS Left temporal lobectomy (oligo) Temporal
F 26 (13) L and R temporal sharp waves SPS, SGS Unknown Temporal

*SPS = simple partial seizures; CPS = complex partial seizures; SGS = secondary generalised seizures.

Table 3 Clinical features of 10 patients with generalised epilepsy

Sex, age
(duration (y)) EEG Convulsive seizures Absences Myoclonic jerks Classification*

F 46 (32) Not diagnostic + + JME
F 23 (13) 4 Hz spike and wave + +++ CAE
F 27 (0.7) 3 Hz spike and wave, poorly formed + IGE
F 37 (27) 3 Hz spike and wave + + +++ JME
F 72 (40) Not diagnostic (photic not tested) + photosensitive +++ photosensitive Photosensitive epilepsy
M 62 (36) Normal ++ + JME
M 24 (8) 3 Hz spike and wave, poorly formed + IGE
F 19 (5) Not diagnostic + + JME
F 30 (15) Spike and wave, with myoclonus + +++ ++ JAE
F 21 (17) Bilateral polyspike and 3 Hz spike and wave + +++ with blinking CAE

*JME = juvenile myoclonic epilepsy; CAE = childhood absence epilepsy; JAE = juvenile absence epilepsy; IGE = idiopathic generalised epilepsy.
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A medication effect was tested for by comparing all treated

(n=15) with all untreated patients (n=6). There were small

increases in power at 2 Hz–4 Hz, albeit barely significant, and

at 7 Hz–8 Hz because of a slowed dominant alpha frequency

from 12 Hz to 8 Hz, data not shown. These effects of

medication are known.13 14 There were no effects of medication

on EEG in the gamma frequency range.

In patients with partial epilepsy, there were significant

changes in the power spectrum at 3 Hz–7 Hz centrally, and at

15 Hz–17 Hz anteriorly, both more to the right (fig 1). There

were no significant changes at gamma frequencies. By

contrast, in patients with PGE, there were significant increases

in power above 25 Hz in all leads (fig 2). In addition there were

the same changes in the power spectrum at 3 Hz–7 Hz and 15

Hz–17 Hz as seen in patients with partial epilepsy. Above 30

Hz, spectra exhibited considerable variation, but average

increases were around threefold, with some peaks of power

reaching sevenfold or more and with p values across the

gamma range often less than 0.01. Because the power spectra

between 1 Hz to 30 Hz in partial and generalised epilepsies

were not different from each other (unpaired t tests), the

spectra were combined and the topographical distributions of

significant increases in power at 3 Hz–7 Hz and 15 Hz–17 Hz

are shown in fig 3(A) and 3(B). The topographical distribution

of the significant increase in gamma frequencies in patients

with generalised epilepsies is shown in fig 4.

Separate analysis of unmedicated patients revealed a

borderline increase in gamma EEG frontally in patients with

partial epilepsy (n=3), not shown. In contrast, a remarkable

increase in gamma EEG was seen in the three unmedicated

patients with PGE who had a 10-fold increase in mean power

Figure 1 (Top) Montage display of mean EEG power increases in
11 patients with partial epilepsy compared with 20 normal subjects
(ordinate scale from onefold to fivefold) between 0 Hz and 100 Hz
(abscissa) recorded over the scalp; (below) probability map (scale
p=0 to 0.5) for power increases, unpaired t test (horizontal dotted
line, p=0.05). Increases above controls were not significant except
at low frequencies. Muscle artefact increased the variance in some
anterior and lateral leads. (L) = left, (R) = right.

Figure 2 (Top) Montage display of mean EEG power increases in
10 patients with generalised epilepsy compared with 20 normal
subjects (ordinate scale: from onefold to fivefold) between 0 Hz and
100 Hz (abscissa) recorded over the scalp; (below): probability map
(scale p=0 to 0.5) for power increases, unpaired t test (horizontal
dotted line, p=0.05). Increases above controls were significant,
especially for frequencies above 25 Hz. Muscle artefact increased
the variance in some anterior and lateral leads. (L) = left, (R) = right.
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at 34 Hz–38 Hz (fig 5). These patients had peak power

increases of threefold, sixfold, and 25-fold.

DISCUSSION
The key new finding of this study is that there is a persistent

abnormality in the resting, non-ictal EEG of people with PGE.

The abnormality is an enhancement in power of high

frequency rhythms in the gamma EEG range (30 Hz–100 Hz).

Additionally, in a non-medicated subgroup, larger increases

were seen in narrow band EEG between 34 Hz and 38 Hz.

These findings closely reflect EEG changes seen in an animal

model of acute epileptogenesis, the kainic acid treated rat. In

this model, gamma EEG of hippocampal and neo-cortical ori-

gin precedes epileptiform discharges.6 7 Kainic acid is neuroex-

citatory by opening a mixed cation (sodium and calcium)

channel.15 A mutation in a sodium channel underlies

epileptogenesis in one human primary generalised epilepsy

GEFS+.2 In our mixed PGE group, although there were no

examples of GEFS+, it is probable that ion channel or neuro-

transmitter receptor pathophysiology is causative in PGE.3 16

Our evidence indicates there are similar actions on resting

EEG of the pharmacological agent kainic acid and genetic

mutations leading to PGE. This study, therefore provides a

possible link between the basic pathophysiology of generalised

epilepsy and seizure tendency.

Gamma EEG activity correlates with high frequency

synchronous rhythmic bursting in assemblies of neurons par-

ticipating in many cerebrocortical processes underlying

consciousness.8–11 Our evidence is that broad band background

gamma as well as possibly synchronous narrow band “binding

gamma” is markedly increased in people with PGE. The pres-

ence of intensified gamma EEG in patients with epilepsy pro-

vides a new and natural model for examining behavioural

correlates of gamma oscillations. It is yet to be determined if

increased strength of gamma oscillations correlates with any

change in intellectual processing. We hypothesise that people

with epilepsy, by having increased gamma EEG at rest, either

have a lower signal to noise ratio in neuronal rhythms, related

to increased broad band gamma activity, or have over-

processing of some aspects of information related to increased

broad band or narrow band gamma activity, or both. The pres-

ence of narrow band gamma in unmedicated patients is con-

sistent with suppression of this form of gamma by antiepilep-

tic drugs in medicated patients, while its distribution is

consistent with the evidence pointing to frontal mechanisms

in epilepsy pathophysiology.6 17 18 Cognitive processes are

known to induce epileptiform activity in some patients with

PGE,19 so that augmented resting gamma activity in patients

with PGE in combination with a cognitive load, further

augmenting gamma activity, may play a part in seizures

induced by intellectual activity.

The EEG provides a measure of summed electrical fields

produced by post-synaptic potentials in populations of

neurons and so is an indirect measure of the activity of input

neurons. Increased gamma rhythms therefore reflect in-

creased post-synaptic activity of local neurons. In terms of its

relevance to epileptogenesis, increased neuronal activity

changes the ionic environment of neurons20 that can lead to

increased burst firing of neurons21 as well as intensified slow

rhythms,22 both of which contribute to the genesis of seizures

in different circumstances.23 24 Intensified gamma rhythms

involving widespread assemblies of cortical neurons may also

contribute to the widely distributed nature of the generalised

epileptic disturbance characteristic of PGE; it is also consistent

with an increased level of excitation between cortical neurons,

an underlying assumption in the thalamocortical hypothesis

of absence epilepsy.25 26 Evidence of an increased excitability of

Figure 3 Statistical topographical maps showing increases in
power for 3 Hz–7 Hz and 15 Hz–17 Hz in combined partial and
generalised epilepsies (n=21) compared with controls (n=20). There
is a widespread increase in 3 Hz–7 Hz activity (A), and a frontal
and right sided increase in 15 Hz–17 Hz EEG activity (B) in patients
with epilepsy. Shaded: p=0.05; black: p=0.01.

Figure 4 Statistical topographical map of increases in power for
30 Hz–98 Hz in generalised epilepsies (n=10) compared with
controls (n=20). There is a wide distribution of increased gamma
EEG in generalised epilepsy. Shaded: p=0.05; black: p=0.01.

Figure 5 Montage map of mean EEG power increases in
individual electrodes in three unmedicated patients with PGE
compared with 20 normal subjects showing striking increase in
mean power from 34 Hz to 38 Hz in frontocentral leads
(p<0.0001). Increases are significant (p<0.05) for many frequencies
above 30 Hz in these and other leads (probability map not shown). L
= left; R = right.
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cortex in PGE has also been obtained from transcranial mag-

netic stimulation studies.27

Several differences in approach account for the major

differences in findings between this study and earlier studies

of generalised epilepsies. Firstly, we recorded EEG activity to

100 Hz in contrast with only examining frequencies below 30

Hz.13 Secondly, we used an “eyes open” mind wandering con-

dition while subjects looked at a blank computer screen, in

contrast with an “eyes closed” condition typically used in

clinical studies. Eye opening has been avoided in clinical stud-

ies because it produces an alerting appearance of the EEG and

eye movements contaminate low frequencies in the EEG

signal.

Although not the primary intent of our study, by averaging

over frequency ranges similar to Miyauchi et al13 who studied

128 subjects, we found support for some of their findings in

the frequency range 2 Hz –30 Hz in our 20 subjects. For exam-

ple, in patients with partial and generalised epilepsies we

found significant increases in delta-theta (3 Hz–7 Hz) with a

widespread distribution (fig 3(A)), similar to changes revealed

by Miyauchi and colleagues for 2 Hz–4 Hz and 4 Hz–8 Hz. We

also found significant increases at 15 Hz–17 Hz in generalised

and partial epilepsies although the distribution was more

symmetrical (fig 3(B)) than was shown by Miyauchi and col-

leagues for 13 Hz–20 Hz. Like Miyauchi and colleagues, we

found no significant differences between the generalised and

partial epilepsies in frequencies below 30 Hz. In our own

groups, significant and consistent differences between these

groups were only present above 25 Hz–30 Hz, just at and above

the limit of the frequency range examined by Miyauchi et al.13

Thus there are changes in the background EEG power range

especially in the delta-theta and low beta ranges in patients

with epilepsy that are common to both partial and generalised

subtypes. The mechanism of these changes remains unknown.

However, we have now demonstrated unique changes in the

high frequency EEG in patients with generalised epilepsies.

Not only does this study extrapolate findings in an animal

model to the clinical setting but it also presents the first

evidence of pathophysiological significance linking gamma

oscillations to a disease process. Specifically, intensified

gamma EEG links seizure tendency with its basic genetic

cause. These findings have important clinical potential.

Substantiation of a high sensitivity and specificity of our find-

ing will open up new diagnostic approaches for epilepsy. If

increases in gamma EEG are confirmed as inversely related to

seizure control, our finding may also result in a useful measure

of the therapeutic efficacy of antiepileptic drugs.
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