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Different responses of Ross River virus to climate
variability between coastline and inland cities in
Queensland, Australia
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Aims: To examine the potential impact of climate variability on the transmission of Ross River virus (RRv)
infection, and to assess the difference in the potential predictors of RRv incidence in coastline and
inland regions, Queensland, Australia.
Methods: Information on the RRv cases notified between 1985 to 1996 was obtained from the
Queensland Department of Health. Climate and population data were supplied by the Australian
Bureau of Meteorology and the Australia Bureau of Statistics, respectively. The function of cross corre-
lations was used to compute a series of correlations between climate variables (rainfall, maximum tem-
perature, minimum temperature, relative humidity, and high tide) and the monthly incidence of RRv
disease over a range of time lags. Time series Poisson regression models were performed to adjust for
the autocorrelations of the monthly incidences of RRv disease and the confounding effects of seasonal-
ity, the case notification time, and population sizes.
Results: The cross correlation function shows rainfall, maximum temperature, minimum temperature,
and relative humidity at a lag of 1–2 months and high tide in the current month were significantly asso-
ciated with the monthly incidence of RRv in the coastline region. Relative humidity and rainfall at a lag
of two months was also significantly associated with the monthly incidence of RRv in the inland region.
The results of Poisson regressive models show that the incidence of RRv disease was significantly asso-
ciated with rainfall, maximum temperature, minimum temperature, relative humidity, and high tide in
the coastline region, and with rainfall and relative humidity in the inland region. There was a signifi-
cant interaction between climate variables and locality in RRv transmission.
Conclusions: Climate variability may have played a significant role in the transmission of RRv. There
appeared to be different responses of RRv to climate variability between coastline and inland cities in
Queensland, Australia. Maximum temperature appeared to exhibit a greater impact on the RRv trans-
mission in coastline than in inland cities. Minimum temperature and relative humidity at 3 pm inland
seemed to affect the RRv transmission more than at the coastline. However, the relation between climate
variables and RRv needs to be viewed within a wider context of other social and environmental factors,
and further research is needed.

Ross River virus (RRv) is the commonest and most

widespread arbovirus infection in Australia.1 2 It was first

identified as epidemic ployarthritis in the Murru-

mibidgee River area of New South Wales in 1928.3 The causa-

tive agent was recognised as a mosquito borne alphavirus in

1960.4 A virus was isolated from Aedes vigilax mosquitoes

collected around Ross River near Townsville in 1963 and given

the name Ross River virus.5

RRv is characterised by arthritis, rash, and constitutional

symptoms such as fever, fatigue, and myalgia.6 RRv is recorded

as geographically scattered cases throughout the year, but

with the preponderance of cases in the period of January to

May, particularly in the tropics.7 It is a debilitating disease.

Symptoms in some cases can last months or years.

Over the past 10 years (1991–2000), a total of more than

53 347 laboratory confirmed cases of RRv infection were

reported in Australia; the majority of cases were notified in

Queensland.8 A number of studies have examined the relation

between climate variation and arboviral disease.9–12 Several

models have been developed to assess the potential impact of

such future climatic changes on health.11 The incidence of RRv

has been linked to climatic factors, particularly rainfall, high

tide, and temperature.10 12 However, the quantitative relation

between climate variation and the transmission of arboviruses

remains to be determined.

Time series methodology has a long history of application in

econometrics, particularly in the domain of forecasting.

Recently, it has been used extensively to study the effects of

environmental exposures (for example, air pollution on mor-

tality and morbidity).13–16 The Poisson regression model is

commonly used for analysing discrete data. The underlying

assumption is that the number of events follows a Poisson

distribution.17–20

This paper aims to examine the potential impact of climate

variability on the transmission of RRv infection using the time

series Poisson regression models, and to assess the difference

in the potential predictors of the RRv incidence between

coastline and inland regions, Queensland, Australia.

METHODS
Queensland is the second largest state (behind Western

Australia) and it has the largest habitable area in Australia. It

covers approximately 1 727 000 square km, with 7400 km of

mainland coasting (9800 km including islands). Lying gener-

ally between 10° and 29° south of the equator, it ranges from
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the temperate and densely populated south east to the tropi-

cal, sparsely populated Cape York Peninsula in the north. Its

population was 3 401 232 on 30 June 1997 (fig 1).21

The computerised data set on the notified RRv cases in
Queensland for the period 1985–96 were obtained from the
Queensland Department of Health. Data provided for each
notification case include a unique record reference number,
state or territory code, disease code, date of onset, sex, age,
aboriginality, post code of residence, and the confirmation
status of the report. Climate and population data were
obtained form the Australian Bureau of Meteorology and the
Australian Bureau of Statistics (ABS), respectively. There are
one or more meteorological stations in each study town in
Queensland. For each town, the one with the longest history of
meteorological recordings was chosen. The staff in these
meteorological stations observed and recorded the different
climatic variables every day according to the standardisation
of the World Meteorological Organisation. The information is
reported to the Australian Bureau of Meteorology regularly.
Relevant population data were from the population census
and the prediction on the basis of census by the ABS. The
quality of the ABS data is highly regarded. Data on the sea
tides along the coastal regions were obtained from the

Queensland Department of Transport. Climate data comprised

monthly maximum and minimum temperature (°C), monthly

rainfall (mm), relative humidity at 9 am/3 pm (%), and high

tidal levels (cm). Sea level was regarded as a “climate” variable

in this study because of its relevance to climate change. The

frequencies of missing data were low (less than 1%), and

therefore their effect on the study findings is likely to be rela-

tively small.

To determine whether climate variation was associated with

RRv transmission, the function of cross correlations was used

to compute a series of correlations between climate variables

and the incidence of RRv disease over a range of time lags.22 23

As there were correlations between the incidence of the

disease and the localities of notification of the disease, the

localities where the cases were notified were treated as an

independent dummy variable. Because the pattern of RRv

transmission appeared to differ in coastline and inland cities,

the relation between climate variability and the incidence of

RRv was analysed separately for these two areas. Additionally,

interaction between localities and climate variables was tested

after the data for coastline and inland cities were combined.

Time series Poisson regression models were performed to

adjust for the autocorrelations of monthly incidence rates of

RRv and the effects of confounding factors. Interactions

between location and climate variability in the transmission of

RRv disease were also tested in the models.24 To consider the

impacts of seasonality and secular change on the RRv

transmission, “seasonality” was coded as a category variable

and “year” when case was notified was treated as an

independent dummy variable. These newly created variables

were taken into account in the regression analyses as putative

confounding factors, together with other independent vari-

ables, as indicated in conventional estimation methods. The

population size was adjusted for by including an offset term in

the Poisson model. All analyses were performed using the

Statistical Analysis System software.25

RESULTS
Figures 2 and 3 show the monthly incidence rates of the RRv

infection in eight cities in Queensland between 1985 and

1996. The pattern of the RRv infection appeared to differ in the

coastline and inland region. Among eight cities studied, the

ratios of male to female cases varied between 1.00 and 1.28.

Sixty two per cent of cases were found in the age range 20–49

years.

Table 1 provides descriptive information about monthly

incidence of RRv infection and climatic variables. Compared

with the monthly mean incidence of RRv in the coastal

districts, incidence of the disease in the inland districts was

lower over the same period. The monthly mean minimum

temperatures and monthly total amount of precipitation were

significantly higher in the coastal districts than that in the

inland districts over the study period.

The results of the cross correlations show that most climate

variables were significantly associated with the incidence of

RRv, particularly for the cities along the coastline. The

monthly incidence of RRv was significantly associated with

rainfall, minimum temperature, and relative humidity at

9 am/3 pm at a lag of two months, maximum temperature at a

lag of one month, and high tide in the current month at the

coastline (table 2); and with relative humidity at 9 am and

rainfall at a lag of two months in inland cities (table 3).

The time series Poisson regressive models show that, after

adjustment for seasonality, the time when the case was noti-

fied and population sizes, rainfall (β = 0.001, 95% confidence

interval (95% CI) 0.0008 to 0.0012, p < 0.0001), maximum

temperature (β = 0.1471, 95% CI 0.1279 to 0.1664,

p < 0.0001), minimum temperature (β = 0.0436, 95% CI

0.0267 to 0.0606, p < 0.0001), relative humidity (β = 0.0252,

95% CI 0.0186 to 0.0317, p < 0.0001), and high tide

(β = 0.0004, 95% CI 0.0008 to 0.00001, p < 0.0001) appeared

to have played positive significant roles in transmission of RRv

disease in the coastline region, while rainfall (β = 0.0015, 95%

CI 0.0002 to 0.0028, p < 0.0001) and relative humidity

(β = 0.0048, 95% CI 0.0425 to 0.0612, p < 0.0001) seemed to

have exhibited some impact in the inland region (table 4).

Poisson regression models were further performed to

examine the interactions between locality and climate

variability in the RRv transmission after the data from coast-

line and inland region were combined. The results of analyses

indicate that maximum temperature seemed to exhibit greater

effects on RRv in coastline than inland areas (βcoastline = 0.1470,

95% CI 0.1275 to 0.1666; βinland = −0.0062, 95% CI −0.0597

to 0.0472; p = 0.0078). Minimum temperature seemed to

affect the RRv transmission inland more than at the coastline

(βcoastline = 0.0438, 95% CI 0.0263 to 0.0612; βinland = −0.0720,

95% CI −0.1302 to 0.0137; p = 0.0001). Relate humidity at 3

pm seemed to exhibit greater effects on RRv inland than at the

coastline (βcoastline = −0.0002, 95% CI 0.0082 to 0.0077; βinland =

0.0528, 95% CI 0.0373 to 0.0686; p = 0.0274).

DISCUSSION
The results of this study indicate that climate variability has

played a significant role in the transmission of RRv in

Queensland, Australia. However, the relative importance of

Figure 1 Location of eight cities, Queensland, Australia.
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these climatic factors (for example, temperature, rainfall, rela-

tive humidity, and sea level) in the transmission of RRv varied

with geographic area. There appeared to be different responses

of RRv to climate variability between coastline and inland cit-

ies. It may be that discrete transmission cycles of RRv occur in

different mosquito vector species in distinct geographical

regions, and may be further complicated by the involvement of

different strains of virus. Moreover, cycle may also be related to

the numbers of susceptible people, such as migration to

endemic areas, spreading of development into mosquito

breading habitats, and/or increasing susceptibility as the level

of immunity declines.
The strengths of this study are: (1) to our knowledge, it is

the first study to look at the response of disease to climate
variability between coastline and inland cities; (2) a large scale
data linkage analysis of the relation between climate variable
and RRv was conducted, and various sources of data were

used; and (3) the sophisticated statistical process demanded

for time series data (for example, cross correlations and time

series Poisson regression) was used.

The limitations of this study should also be acknowledged.

Firstly, the quality of surveillance data is not as good as that

collected for specific studies. Secondly, the ecology of RRv is

complex.11 There are many factors, including virus, vector,

host, or environmental variations, that are involved in the

Figure 2 Monthly incidence rates of Ross River virus in coastline cities between 1985 and 1996.

Figure 3 Monthly incidence rates of Ross River virus in inland cities
between 1985 and 1996.
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transmission cycles of RRv. Climate variation, virus strain,

mosquito population densities and survival, human behav-

iour, population immunity, and housing characteristics, all

contribute to and interact in determining the transmission

cycles of RRv. However, data were unavailable on virus strain,

mosquito population densities and survival, human behav-

iour, population immunity, and housing characteristics. The

lack of data may be one of the major limitations in this large

Table 1 Summarised statistics for monthly incidence of RRv infection and meteorological variables in Queensland,
1985–96

Coastline Inland

Mean SD Minimum Maximum Mean SD Minimum Maximum

Incidence (1/100000)* 6.62† 3.80‡ 0 149.71 3.72† 2.14‡ 0 104.38
MaxT (°C)* 27.45 3.13 19 34.30 26.82 5.66 14.50 39.90
MinT (°C)** 18.20 3.46 8.90 25.40 14.14 5.36 4.70 24.90
Rainfall (mm)** 40.74† 4.90‡ 0 1310.60 37.15† 4.79‡ 0 519.60
Rh9am (%)** 68.93 7.61 45.00 89.00 52.11 12.73 23.00 89.00
Rh3pm (%)** 58.33 8.82 18.00 80.00 41.15 13.92 12.00 76.00
HT (cm) 302.35 93.58 180.81 512.33 § §

MaxT, maximum temperature; MinT, minimum temperature; RH9am, relative humidity at 9 am; Rh3pm, relative humidity at 3 pm; HT, high tide.
*Significant at p<0.05 (2 tailed); **significant at p<0.01 (2 tailed).
†Geometric means of incidence of disease and rainfall; ‡geometric standard deviation; §data unavailable.

Table 2 Cross correlation coefficients between climate variables and incidence of
Ross River virus in Coastline region, Queensland

Coastline city MaxT MinT Rainfall RH9am RH3pm HT

Cairns
Lag 0 0.115 0.014 0.163* 0.070 0.031 0.218*
Lag 1 0.206* 0.035 −0.028 0.015 0.030 0.030
Lag 2 0.017 0.029 0.177* 0.123 0.155* 0.227*
Lag 3 0.116 0.025 0.232* 0.128 0.136 −0.164*
Lag 4 0.176* 0.062 −0.150 −0.185* −0.098 −0.153*
Lag 5 −0.080 0.087 0.175 −0.241* −0.229* 0.035
Townsville
Lag 0 0.070 0.050 −0.174* −0.219* −0.124 0.306*
Lag 1 −0.023 0.106 0.076 0.129 0.147 0.224*
Lag 2 0.161* 0.227* 0.427* 0.244* 0.293* 0.134
Lag 3 0.071 −0.093 0.033 0.088 0.034 −0.015
Lag 4 0.126 0.035 −0.033 −0.016 −0.041 −0.159*
Lag 5 0.178* 0.149 −0.157* −0.092 −0.079 −0.079
Mackay
Lag 0 0.096 0.085 −0.148 −0.099 0.054 0.040
Lag 1 0.254* 0.114 0.000 −0.031 0.065 0.166*
Lag 2 −0.001 0.178* 0.128 0.095 0.076 −0.070
Lag 3 0.102 0.105 0.195* 0.029 0.055 −0.074
Lag 4 0.134 0.127 −0.114 −0.122 −0.116 −0.001
Lag 5 0.103 −0.019 −0.081 0.185* −0.151 −0.012
Gladstone
Lag 0 0.050 0.084 −0.063 0.116 0.095 0.110
Lag 1 0.157* 0.137 −0.124 −0.046 −0.111 0.091
Lag 2 0.151 0.118 −0.076 −0.002 0.003 −0.213*
Lag 3 0.032 0.022 0.119 0.008 −0.020 −0.108
Lag 4 0.022 0.048 −0.015 0.076 0.090 0.106
Lag 5 −0.086 −0.062 −0.057 −0.096 −0.022 −0.003
Bundaberg
Lag 0 0.046 0.061 −0.147 0.016 0.073 0.111
Lag 1 0.129 0.083 0.148 −0.047 −0.026 0.047
Lag 2 0.160* 0.143 0.120 0.149 0.083 0.036
Lag 3 0.173* 0.196* −0.129 −0.014 0.005 0.112
Lag 4 0.071 0.113 0.217* 0.035 0.085 −0.078
Lag 5 0.043 0.146 −0.038 0.075 0.117 −0.036
Brisbane
Lag 0 −0.054 −0.186 0.081 0.087 0.065 0.188*
Lag 1 0.140 0.060 0.047 0.058 0.068 −0.137
Lag 2 0.064 0.156* 0.173* 0.060 0.075 0.111
Lag 3 0.193* 0.136 0.012 0.019 0.077 0.001
Lag 4 0.159* 0.098 0.101 0.106 0.055 0.043
Lag 5 0.113 −0.022 −0.154* −0.160* −0.090 −0.105
Total
Lag 0 0.055 0.048 −0.038 −0.004 0.017 0.110*
Lag 1 0.117* 0.085* 0.006 0.005 −0.017 0.073
Lag 2 0.099* 0.111* 0.119* 0.075* 0.079* −0.054
Lag 3 0.058 0.027 0.072 0.037 0.023 −0.040
Lag 4 0.069 0.050 −0.033 −0.009 0.010 −0.004
Lag 5 0.020 0.023 −0.073 −0.069* −0.050 −0.012

MaxT, maximum temperature; MinT, minimum temperature; RH9am, relative humidity at 9 am; Rh3pm, relative
humidity at 3 pm; HT, high tide.
Lagx = the lagged months. *Significant at the 0.05 level (2 tailed).
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scale assessment of the relation between climate variability

and RRv transmission. Further research on the ecology of RRv

transmission and interaction between biological and environ-

mental factors is clearly warranted.

Despite these limitations, our data support the hypotheses

that climate variation plays an important role in the transmis-

sion of RRv. Considerable evidence has accrued to show that

precipitation is an important factor in the transmission of RRv

in many parts of Australia. All mosquitoes have aquatic larval

and pupal stages and therefore require water for breeding.11 12

It is precipitation that determines the presence or absence of

breeding sites.10 Rainfall events and subsequent floods can

lead to outbreaks of arboviral disease, largely by enabling

breeding of vector mosquitoes.12 In general, epidemic activity

of arbovirus is more often observed in temperate areas with

heavy rainfall, flooding, or high tides, whereas in tropical

Australia transmission occurs throughout the year.26

Nevertheless, distinct epidemics do occur in northern

Australia, especially associated with heavy monsoonal rain-

falls. More frequent, lighter rains may replenish exiting

breeding sites and maintain higher levels of humidity, which

assists in dispersal and survival of adult mosquitoes.

Changes in climate and the environment may influence the

abundance and distribution of vectors and intermediate

hosts.10 11 Warmer temperatures may allow vectors to survive
winters that normally would have limited their populations
and to reach maturity much faster than lower temperatures.11

For example, within the temperature range that a mosquito
species can breed, rearing of larvae at high temperature has a
dramatic effect on length and efficiency of the extrinsic incu-
bation periods (EIPs) of arboviruses in their vectors. The EIPs
are inversely related to the temperature of incubation, within
the temperature ranges that allow virus replication to occur. In
other words, mosquitos exposed to higher temperatures after
ingestion of virus become “infectious” more rapidly than
mosquitos of the same species exposed to lower
temperatures.10 Transmission of an arbovirus may therefore be
enhanced under warmer conditions because more vector
mosquitoes become infectious within their life span.

High tides and rise in sea level have been implicated as
important precursors of outbreaks of Rrv.27 28 Tidal inundation
of saltmarshes is a major source of water for breeding of the
important arbovirus vectors Aedes vigilas and A amptorhynchus.
Adult females of both species lay their eggs on soil, mud sub-
strate, and the plants around the margins of their breeding
sites. The eggs hatch when high tides subsequently inundate
sites. Large populations of adult mosquitoes can emerge as
little as eight days after a series of spring tides.11 There is good
evidence that a rise in sea level may contribute to a major out-
break of RRv. For example, in an outbreak of RRv in
southwestern Australia during the summer of 1988–89, a rise
in sea level of 5.5 cm (above the long term mean), exacerbated
by a pattern of strong north and southwesterly winds, led to
more frequent and widespread inundation of coastal salt-
marshes in the region than is normally recorded. This subse-
quently increased the populations of A camptorhynchus
mosquitoes and as a result, an outbreak of RRv infection
occurred.26 The results of this study corroborate the previous
findings, indicating that sea level is an important factor in the
transmission of RRv in the coastal region.

Relative humidity influences longevity, mating, dispersal,
feeding behaviour, and oviposition of mosquitoes.11 At high
humidity, mosquitoes generally survive for longer and
disperse further; they have a greater chance of feeding on an
infecting animal and surviving to transmit a virus to humans

or other animals. Relative humidity also directly affects

evaporation rates from vector breeding sites. Clearly, humidity

is another factor contributing to outbreaks of RRv disease,

particularly in normally arid regions.26

Disease and vector surveillance systems have played a

significant role in the control of infectious disease in the past.

As socioenvironmental conditions are changing, these sys-

tems need to be strengthened so that they can play active roles

in the prevention of epidemic outbreaks in the future. The

surveillance data should be integrated with social, biological,

and environmental databases. These data can provide an

important input to the development of epidemic predictive

models, and these models could give forewarning and help

decision makers use resources more effectively and efficiently.

Table 3 Cross correlation coefficients between
climate variables and incidence of Ross River virus in
inland region, Queensland

Inland city MaxT MinT Rainfall RH9am RH3pm

Toowoomba
Lag 0 0.078 0.044 −0.197* −0.061 −0.119
Lag 1 0.110 0.193* 0.000 −0.102 0.156*
Lag 2 0.084 0.146 −0.031 0.083 0.113
Lag 3 0.166* 0.187* 0.262* 0.045 0.031
Lag 4 0.159* 0.152* −0.003 0.052 −0.013
Lag 5 0.160 0.078 0.029 −0.068 −0.162*

Longreach
Lag 0 0.096 0.078 −0.226* −0.144 −0.089
Lag 1 0.074 0.024 0.185* 0.185* 0.067
Lag 2 0.021 0.017 0.221* 0.182* 0.107
Lag 3 0.090 0.082 −0.245* −0.139 −0.055
Lag 4 −0.039 0.033 0.096 −0.034 −0.071
Lag 5 0.132 0.039 0.029 −0.025 0.039

Total
Lag 0 0.083 0.067 −0.121* −0.113* −0.073
Lag 1 −0.051 0.033 0.096 0.130* 0.061
Lag 2 0.023 0.025 0.139* 0.143* 0.085
Lag 3 0.085 0.080 −0.099 −0.101 0.036
Lag 4 −0.020 0.038 0.049 −0.021 −0.051
Lag 5 0.118 0.038 0.018 −0.024 0.014

MaxT, maximum temperature; MinT, minimum temperature; RH9am,
relative humidity at 9 am; Rh3pm, relative humidity at 3 pm.
Lagx = the lagged months.
*Significant at the 0.05 level (2 tailed).

Table 4 Estimated Poisson regression coefficients of climate variables on the notified cases of Ross River virus in
Queensland

Coastline Inland

β 95% CI p value β 95% CI p value

Intercept −5.985 −6.6727 to −5.2969 0.0001 −3.8135 −4.4163 to −3.2108 0.0001
Rainfall (mm) (Lag2) 0.0010 0.0008 to 0.0012 0.0001 0.0015 0.0002 to 0.0028 0.0201
RH9am (%) (Lag2) 0.0252 0.0186 to 0.0317 0.0001 0.0519 0.0425 to 0.0612 0.0001
MaxT (°C) (Lag1) 0.1471 0.1279 to 0.1664 0.0001
MinT (°C) (Lag2) 0.0436 0.0267 to 0.0606 0.0001
HT (cm) (Lag0) 0.0004 0.0001 to 0.0008 0.0423

MaxT, maximum temperature; MinT, minimum temperature; RH9am, relative humidity at 9am; HT, high tide.
Lagx = the lagged months.
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As global warming continues, it is important to assess the

potential public health consequences of such change, includ-

ing its impact on the transmission of infectious diseases. The

results of this study indicate that climate variability/change

may influence the transmission cycles of RRv, and its impact

appears to differ between coastline and inland regions. These

findings may have implications in the development of public

policy for mitigation and adoption of climate change.
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Main messages

• The time series data over a decade in Queensland,
Australia, provide an opportunity to examine the impact of
climate variability on the transmission of Ross River virus.

• There was an apparent difference in the disease response
to climate variability between coastline and inland regions.

• The relation between climate variability and the incidence
of Ross River virus disease needs to be viewed cautiously,
given the inherent limitations of ecological analysis.

Policy implications

• Our findings reveal different responses of Ross River virus
disease to climate variability between coastline and inland
cities.

• There was a significant interaction between locality and cli-
mate variability in the transmission of Ross River virus
disease.
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