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C
onfounding is a major concern in causal studies because it results in biased estimation of

exposure effects. In the extreme, this can mean that a causal effect is suggested where none

exists, or that a true effect is hidden. Typically, confounding occurs when there are

differences between the exposed and unexposed groups in respect of independent risk factors for

the disease of interest, for example, age or smoking habit; these independent factors are called

confounders. Confounding can be reduced by matching in the study design but this can be

difficult and/or wasteful of resources. Another possible approach—assuming data on the

confounder(s) have been gathered—is to apply a statistical ‘‘correction’’ method during analysis.

Such methods produce ‘‘adjusted’’ or ‘‘corrected’’ estimates of the effect of exposure; in theory,

these estimates are no longer biased by the erstwhile confounders.

Given the importance of confounding in epidemiology, statistical methods said to remove it

deserve scrutiny. Many such methods involve strong assumptions about data relationships and

their validity may depend on whether these assumptions are justified. Historically, the most

common statistical approach for dealing with confounding in epidemiology was based on

stratification; the standardised mortality ratio is a well known statistic using this method to remove

confounding by age. Increasingly, this approach is being replaced by methods based on regression

models. This article is a simple introduction to the latter methods with the emphasis on showing

how they work, their assumptions, and how they compare with other methods.

Before applying a statistical correction method, one has to decide which factors are con-

founders. This sometimes1–4 complex issue is not discussed in detail and for the most part the

examples will assume that age is a confounder. However, the use of automated statistical

procedures for choosing variables to include in a regression model is discussed in the context of

confounding.

REGRESSION MODELSc
As a means of studying influences on a outcome
Most introductions to regression discuss the simple case of two variables measured on continuous

scales, where the aim is to investigate the influence of one variable on another. It is useful to

begin with this familiar application before discussing confounder control.

Suppose we are interested in describing the decline with age of forced expiratory volume in one

second (FEV1) in non-smokers and that data on both variables has been gathered from a cross-

sectional sample of a population. A statistical analysis might begin with a scatter plot of the data

(see fig 1); then amodel of the relationship in the population would be proposed, where the model

is specified by a model form or model equation. The choice of model form should ideally be dictated

by subject matter knowledge, biological plausibility, and the data. Suppose a linear relationship is

proposed; then the model would have the general form:

The three unknown quantities in this model—a, b, r—would then be estimated or quantified in

the analysis. The model ignoring r (by setting it equal to zero) is a description of the relationship

between age and the mean FEV1 among people of a given age. The term r is a random component

assumed to vary from person to person. Inclusion of this term in the model allows for the fact that

people of the same age are not all the same: their individual FEV1 values will vary about the mean

for that age. Random variation is unpredictable but, overall, it can be described by a statistical

distribution. With continuous variables such as FEV1, the random component is often assumed to

have a Normal distribution with a mean of zero.

Statistical formulae or software can be used to estimate the regression coefficients, a and b, and

SD(r), the standard deviation of r, from a data sample. In the ‘‘least squares’’ estimation method,

the rationale is to choose values for a and b which minimise SD(r) in the data set. Application to
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the data in fig 1 gives estimates of 5.58 litres for a,

20.03 litres/y for b, and 0.46 litres for SD(r). Therefore the

‘‘fitted’’ model is: FEV1 = 5.58 2 0.03.age + r.

Table 1 shows typical software output from fitting model 1

to the data. It includes 95% confidence intervals (CI) for a

and b, and p values from significance tests. In each test, the

null hypothesis is that the true value of the coefficient is zero.

If b were zero, then age would have no effect on FEV1. Here,

the test and the 95% CI strongly suggest that b is negative.

Model 1 is an example of a linear model: it assumes that

mean FEV1 declines by a fixed amount (estimated as 30 ml)

for every year of age. It is important to realise that linearity

was assumed, not proven: the statistical analysis merely estimates

the coefficients of an assumed model. We could have proposed a

more complicated model equation, for example, quadratic or

exponential, and then estimated its coefficients. The pro-

cess of estimation does not tell us which model form, if

any, is right. However there are a range of post-estimation,

regression ‘‘diagnostic methods’’ to help with this task, for

example, ‘‘analysis of residuals’’ and ‘‘leverage’’ statistics,

which highlight discrepancies between the data and the

assumed model form. A relatively non-technical account of

regression diagnostics can be found in Armitage and

colleagues.5

Extending the basic model
Other factors besides age are known to affect FEV1, for

example, height and number of cigarettes smoked per day.

Regression models can be easily extended to include these

and any other determinants of lung function. Model 2

includes height and cigarettes. It assumes that each has a

linear relationship with FEV1 and assumes that the joint effect

of the three factors together is the sum of their separate

effects:

A standard statistical analysis based on this model and

data would produce estimates of a, b, c, d, and SD(r), as well

as 95% CIs and ‘‘null hypothesis’’ tests for each coefficient.

It might be argued that, since FEV1 measures volume, one

would expect it to increase proportional to the cube of height.

To reflect this, we could postulate an alternative equation

which includes height3 among the variables on the right

hand side. Regression diagnostic methods can help decide

which model form—linear or cubic—is the better fit. Another

development would be to consider whether the magnitude of

the effect of smoking varies with age. (The phenomenon

whereby the effect of one factor is modified or changed

by another is known as ‘‘effect modification’’6). Again, one

proceeds by proposing a model equation with additional

variables and coefficients on the right hand side, followed by

an analysis to estimate the coefficients.

How far we go in building up the complexity of the model

depends very much on the purpose of the study, for example,

prediction, causal analysis, or description. For the present

purposes, the important things to note so far are: (1) that

regression modelling offers a way of investigating the joint

effects of several risk factors on health; and (2) that a

regression model equation makes strong assumptions about

the form of these effects.

Models for disease outcomes
In models 1 and 2 the ‘‘dependent’’ variable, FEV1, is measured

on a continuous scale. A model of this type is not suitable for

investigations of disease incidence or prevalence. In the latter

case, the dependent variable would have a dichotomous scale—

disease present or absent. Two models often used for disease

data—the logistic regression model and the Poisson regression

model—are discussed briefly later. These models have a

different form for the left hand side of the model equation.

The right hand side of the equation—which specifies the factors

we think affect disease risk—remains as flexible as before, both

in terms of number of factors and form.

Regression as a means of confounder control
An occupational or environmental epidemiologist recognises

that there are multiple risk factors for the disease of interest

but typically wants to focus on the casual effect of only one

factor, for example, an occupational exposure; hereafter this

factor is called ‘‘the exposure’’. In this setting, other risk factors

for the disease are considered only because they might be

confounders, rather than being of direct interest. The goal is

then to study the effect of the exposure on disease,

‘‘controlling’’ or ‘‘adjusting’’ for the others. No new regression

methodology is needed to do this. As before, we begin with a

model equation of which the right hand side includes terms

representing the exposure and the potential confounders. The
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Figure 1 Relationship between FEV1 and age in 160 male non-
smokers.

Table 1 Estimation of model 1 coefficients from data in fig 1: typical software output

FEV1 Coefficient Std error t statistic Probability 95% CI

Age 20.0301 0.0032 29.52 ,0.001 20.0363 to 20.0238
Constant 5.5803 0.1440 38.75 ,0.001 5.2960 to 5.8647

Mean Square Error, that is, SD(r) = 0.464 litres.
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formulae or software used to fit the model are exactly the same

as before. In other words, the fact that the epidemiologist

labels several of the factors as ‘‘confounders’’ and one as ‘‘the

exposure’’, is of no consequence to the fitting process.

Although the technical process is identical, the practice of

regression modelling can—and should5 7—vary with the pur-

pose of the research. Consider the development of a regres-

sion model in a different situation, for example, where the

purpose is to find a simple method of predicting disease status

on the basis of symptoms, tests, and personal characteristics

of patients. There will be a preference for a simple model that

will be easy to translate into simple rules for clinic use. Apart

from their ability to predict, the only preference for having a

particular factor in the model will be on the ground that it is

cheap or easily measured. The issue of the casual relationship

between the factors and disease is not central—if the model

predicts well, it has done its job. In contrast, the present

problem—to address the causal effect of an exposure by

control of confounding—means that the exposure variable

and sufficient measured confounders must be included in the

model. A simple model is not required: the final choice of

model form should be dictated by the need to eliminate

confounding,7–9 not parsimony.

Automated selection methods in regression
When there are a lot of potential confounders, the time taken

to consider if, and how they should be included in models

may be substantial. Given that we are not really interested in

these relationships per se, it may be tempting to use a

statistical algorithm to make the decisions. A number of

automated procedures for selecting variables for regression

models are included in most regression software. These

include forward entry (or step-up), backward elimination (or step-

down), and best subset method. In all cases the guiding

principle is statistical significance and linear relationships are

automatically assumed. For example, the forward entry,

sequential method starts with an ‘‘empty’’ model—that is, no

variables. At step 1, the variable with the most ‘‘statistically

significant’’ relationship with the health outcome is entered

into the model. At step 2, a second variable is selected from

the remainder on the basis that it adds most, in terms of

‘‘significance’’, to the model of step 1. The procedure con-

tinues in this way, stopping when no variables outside the

model add ‘‘significantly’’ to it.

Automated selection procedures should not8 9 be relied on

to make decisions about confounders as they may result in

inappropriate exclusions or inclusions in a model. If a

variable is a confounder, it ought to be controlled—regardless

of statistical significance. Also, certain variables may not be

confounders, and therefore should not be controlled,2 even

though they have a statistically significant relationship with

disease, for example, factors on the causal pathway between

exposure and disease. The fact that different types of

automated procedure can give rise to different selections in

the same data should also serve as a warning. There is no

statistical algorithm that can succeed in identifying all

confounders in a study—the decision process will always

require subject matter knowledge and judgement,1 3 8 9 as

well as statistical information.

Interpretation of model coefficients
In general, a regression coefficient for a factor in a model

estimates the effect of an increase of one unit in that factor, if

all other factors in the model stay unchanged and assuming the

model assumptions are correct. Consider a study of the acute

effect on FEV1 of occupational exposure to flour as measured

in mg/m3 for each individual. To study this relationship,

while allowing for the effects of age, height, and smoking

habit, the following model with the usual assumptions about

r is proposed:

Suppose an analysis estimates e as 20.15 litres/mg/m3.

Then, if the model assumptions are correct, this measures the

effect, on FEV1, of an increase in exposure of 1 mg/m3, but no

change in age, height, or smoking. In other words, it is a

measure of the effect of exposure unconfounded by age, height,

or smoking. In reality, this claim depends on the appropri-

ateness of the model, the quality of the measurements, and of

course there being no omitted confounders.

In practice one can never be sure that all the assumptions

of a model are correct. Statisticians refer to methods which

tend to give ‘‘the right answer’’, even if assumptions on

which they are built turn out to be wrong, as being robust, in

contrast to methods which are sensitive to mis-specification.

In the context of confounder control, one should therefore

consider the sensitivity of regression analysis to any inbuilt

assumptions about the effects of confounders. For example,

would it make much difference to our conclusion about

exposure if we assumed a linear relationship between disease

risk and the confounder age, when really it is exponential? If

in doubt, a ‘‘sensitivity analysis’’—which compares results

from different sets of assumptions—is recommended.8 An

example where assumptions do make a difference is given

below.

The problem of measurement error afflicts all types of

analysis, including regression methods. The impact of error in

confounder measurement is perhaps not as widely appre-

ciated as it should be. Poor measurement of confounders

reduces the ability to control for their effects by statistical

methods: there will be residual confounding,10 despite the claim

to have ‘‘adjusted’’ for the confounder(s). Consider a study of

exposure and respiratory disease where pack-years of

cigarettes is an important risk factor and confounder. If the

regression analysis relies on current smoking—yes/no—to

‘‘adjust for smoking’’, then it may not fully reflect the impact

of tobacco or its confounding impact; the result may be

residual confounding.

REGRESSION VERSUS STRATIFICATION
Control of confounding by stratification
Stratification methods have a long history of use in

epidemiology to make age adjusted comparisons of the

mortality experience of different groups; for example, to

compare an exposed occupational cohort and the general

population. Typically in such studies, the crude comparison of

rates is confounded by differences in the age distributions of

the cohort and general population: ‘‘age adjusted’’ statistics

are needed. The steps of the stratification method, illustrated

in table 2 for a comparison of lung cancer mortality rates

among male pottery workers with all men in England and

Wales, are as follows:
c S1: Stratify each group—cohort and population—into a

number of subgroups, based on levels of the confounder.
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Here the subgroups (‘‘strata’’) are age bands, each

spanning five years.
c S2: Compare the cohort and population death rates in each

stratum by calculating a simple comparative statistic in

each. For example, in table 2, the rate ratio (cohort rate 4

population rate) is calculated for each age band.
c S3 (optional): For brevity, combine the comparative

statistics from each stratum into a single summary figure.

Usually a weighted mean of the statistics is calculated; a

weighted mean tends to give more ‘‘weight’’ to bigger

strata. Details of how to choose weights need not concern

us here.

Suppose there are no other confounders besides age, and

consider the first age band in table 2. If it is reasonable to

assume that mortality rates do not vary appreciably within the

range 55–59 years, then everyone within this band can be

treated as having the same effective age. It follows that the rate

ratio (RR) for this band, 2.3, is not biased by age differences.

The same will be true of the RRs for the other two bands. The

three rate ratios are quite close in value and it therefore seems

reasonable to combine them (S3) into a single figure. Based on

the weights in table 2, their weighted mean is 1.88. As its

three components are unbiased, this weighted mean is also

unbiased. Hence 1.88 is an estimate of the RR among pottery

workers, which is not confounded by age.

Usually an SMR is calculated for such data. If this is done

here, using the usual formula,11 it is found that SMR=

188=1.886100. This is not a coincidence; steps S1–S3 are an

alternative way of computing an SMR. The method explained

here has the advantage of illustrating clearly the logic of

‘‘adjustment by stratification’’, which can also be used in

other settings.

Another statistic based on the stratification approach is the

Mantel-Haenszel (MH) adjusted odds ratio, often used in

case-control studies;12 in this case, the statistic used at S2 is

an odds ratio and the MH statistic is a weighted average of

odds ratios from different strata. In theory, stratification can

be applied to any study design and any choice of statistic. For

example, to compare mean FEV1 between an exposed and

unexposed group while adjusting for age, we could stratify

both groups by age (S1), calculate the difference in exposed

and unexposed FEV1 means in each stratum (S2), and

calculate a weighted average of the differences across strata

(S3).

Stratification versus regression based methods
Assumptions
Stratification based methods are not free of assumptions but,

in general, they require fewer assumptions than regression.

In particular, using stratification, it is not necessary to make

formal assumptions about the relationship between the

confounder(s) and the disease/health measure. Consider

the lung cancer example above: we did not have to define

the form of the relationship between lung cancer risk and

age, and hence potentially difficult questions as to the shape

of this relationship were avoided. In contrast, in regression

we have to formally model these relationships and consider

the consequences if we get this wrong.

Measurement accuracy
The stratification method only works if the stratification is

sufficiently fine to eliminate the relationship between the

disease and the confounder within strata. If it is not, then

there will be residual confounding. This point is closely

connected to the issue of poor measurement of confounders

mentioned above. With stratification, we effectively replace

the original scale of measurement (for example, year of age)

of a confounder by a less accurate, categorical version (for

example, 5-year age bands). This may not matter too much

with narrow categories, but wide categories (20-year age

bands) would lead to residual confounding.

Extension to several confounders
In theory the stratification approach can be extended to

several confounders. Suppose we define eight age bands and

five smoking bands. To adjust for both variables may mean

that subjects have to be divided up into all 40 (= 568)

bands formed by the age and smoking combinations. As

the number of strata increases, the size of each decreases and

the within-stratum estimation process—step S2—becomes

unstable. Rothman and Greenland8 refer to the point ‘‘when

stratification has exceeded the limits of the data’’, and note

that then it can give extreme results which are biased. This

problem therefore places a practical limit on the number of

variables that can be adjusted for by stratification methods.

In contrast the number of variables in a regression model can

be quite large—especially when the outcome has a contin-

uous scale—without any major effect. Hence this method

tends to be favoured when there are many confounders to be

controlled.

PROPENSITY SCORE METHODS TO ADJUST FOR
CONFOUNDING
To date, this more recent approach13 14 has not been used

much in occupational or environmental epidemiology, but

this may change. It is explained here for the simple case

where there are two exposure groups—exposed and unex-

posed—and the health outcome is disease status. A propen-

sity score analysis has two stages:
c P1: Build a regression model to predict exposure group. In

this model the left hand side of the equation is exposure

Table 2 Stratification as a means of adjusting rate comparisons for age: death rates
among male pottery workers versus all males in England and Wales, 1986–90

Age (y)

Male pottery workers
England and Wales
male population

P-years
Ca lung
deaths

Death rate /1000/y Death rate/1000/y Rate ratio
Weight*(1) (2) (1)/(2)

55–59 4334 13 3.0 1.3 2.3 0.346
60–64 2200 11 5.0 2.8 1.8 0.378
65–69 1096 8 7.3 4.1 1.8 0.276
Total 7630 32

*Weights were chosen to minimise the standard error of the weighted mean (see text).
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group, while the right hand side includes variables which

influence exposure group membership. This analysis can

be viewed as an attempt to model the selection process

which leads to some people being exposed and others not,

and thereby to understand how exposed and unexposed

differ before exposure took place. Research authors often

address this issue informally by a table which compares

characteristics—for example, gender, age, year of birth,

smoking—of exposed and unexposed. The difference here

is that these characteristics are considered jointly in a

regression model. Furthermore, this model is used to

give each person a propensity score which measures the

propensity (probability) to be exposed given their individual

characteristics.
c P2: In the second stage, disease rates are compared

between exposed and unexposed after adjustment for

propensity scores. The adjustment method can be based

on regression or on stratification. In these analyses, the

propensity score—a single measure—takes the place

usually occupied by several confounders in traditional

analyses.

There has been little research into the advantages and dis-

advantages of propensity methods for confounder control

compared to traditional regression methods. Since propensity

methods use regression in P1, they involve the usual assump-

tions and issues of variable selection. As elsewhere, reliance

on purely statistical criteria to choose variables correctly at this

step is not guaranteed to take care of confounders.

FURTHER TOPICS IN REGRESSION
Regression models for comparing groups
If we are only able to classify subjects into exposure groups,

for example, low, medium, high, the exposure variable is said

to be categorical. Categorical variables can be included as

predictors on the right hand side of a model equation

although special rules are needed when there are three or

more categories. We concentrate here on the case of two

categories—exposed and unexposed.

Consider a study comparing FEV1 in two groups where we

want to adjust the comparison for age, height, and smoking.

The data set contains a variable ‘‘group’’ which takes the

value 1 if the subject is exposed and 0 if unexposed. Now

consider the following model:

The coefficient e is the one of primary interest. Its

interpretation follows from the general definition given

above: it is the effect of increasing ‘‘group’’ by 1 unit,

assuming all other variables are fixed and the model is correct.

In other words, it is the mean difference in FEV1 between

exposed (group=1) and unexposed (group=0) if age,

height, and cigarettes were the same in each group.

Some models for disease outcomes: logistic and
Poisson regression
Suppose that the outcome measure is presence or absence of

respiratory disease at a point in time. This is a dichotomous

variable with values 1 or 0 according to disease status. To

model the probability (p) of disease as a function of age,

cumulative pack-years of cigarettes smoking and exposure

concentration, a possible model would be:

This is called a logistic regression model; the term logistic

denotes the form of the left hand side of the equation. In this

model the random component is assumed to have a binomial

distribution. Data from prevalence studies, and longitudinal

incidence studies with a fixed duration of follow up, can be

analysed using logistic models.

A logistic regression model is not suitable for incidence

studies where the length of follow up varies among subjects.

In such studies the basic measure of interest is the incidence

density rate=number of cases of disease (Y say) divided

by person-time of observation (T say). Poisson regression

models are a natural extension for investigating factors

which affect these rates. Imagine an occupational cohort

study with two exposure groups monitored over many years

for lung cancer. A possible Poisson model, with predictors

age, cigarette pack-years, and exposure group is:

The term ‘‘Poisson’’ stems from the assumption of a

Poisson distribution for the random component of the model.

Further discussion of these and other possible models for

disease data is beyond the scope of this article, but can be

found in Checkoway and colleagues11 and Jewell.12

Minimising assumptions: semi-parametric regression
Regression models are attractive because of their flexibility in

dealing with several influences on disease. But this flexibility

comes with a price—reliance on strong assumptions about

relationships, for example, linear, quadratic, exponential

assumptions. Here we consider two ways of avoiding these

‘‘parametric’’ assumptions, which can be applied to all or just

some of the variables in a model. The resulting regressions

are then labelled ‘‘semi-parametric’’.

Consider a model of the effects of pack-years of cigarettes

on disease risk. The first method, based on categorisation,

requires very little specialist knowledge to implement. The

continuous variable, pack-years, is categorised—into k

categories say—and all but one of these categories (that is,

k21) is represented in the model separately. The omitted

category is a ‘‘baseline’’ category, often the category with the

lowest risk, for example, never smokers. In this model, risks

in different categories are not constrained to follow a set

pattern. We can visualise the relationship between risk

(y axis) and smoking category (x axis) in such models as a

series of steps: as we move from one smoking category to

another, risk jumps up (or down) to another step but the

steps can be of different heights. One difficulty with this

method is that it is susceptible to ‘‘gerrymandering’’,8 that is,

changing the boundaries of the categories until one gets a

result that one likes. Nevertheless this method is recom-

mended as an exploratory first step, even if a parametric

model is the eventual goal, since it can help in choosing the

parametric model form.

In the above method, risk ‘‘jumps’’ at the category

boundaries but is flat in between. In reality, risk functions

are likely to be smooth. A way of achieving a smooth

relationship—without parametric assumptions—is to use a
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scatterplot smoothing technique. Spline methods15 are an

example. In these, the predictor variable x (pack-years) is

again divided into a number of categories; a smooth curve

linking risk and x is fitted within each category but the

curves are made to join smoothly at the category boundaries

(now called ‘‘knots’’). The number of categories can be made

very large so that the overall curve is quite free to bend and

flex as needed. Spline methods are often used in studies of

environmental pollution and daily mortality to remove

confounding by time related factors such as season and

influenza epidemics. Such methods may also be used to

explore the exposure-disease relationship itself, as in a recent

study16 of the relationship between lung cancer risk and

exposure to silica. An attraction of such methods over

parametric regression is their ability to reveal threshold

effects.

When wrong assumptions lead to false relationships:
an example
The following example illustrates a situation where the

wrong parametric assumption makes a substantial difference

to the results of a causal analysis. The data—on systolic blood

pressure and age—were generated artificially from a known

model form, but analysed assuming a different form.

Suppose the true relationship, among all adult men in a

certain community, is given by the solid curve in fig 2A; this

non-linear relationship was generated by the equation: SBP

= 99 + 0.16age + exp(age/15). Also assume that individual

SBP values vary randomly about the curve, with the random

component having a Normal distribution with SD of

5 mm Hg. The dots in fig 2A are blood pressures for a

fictional sample of 171 men from this community, their

values having been generated for present purposes using the

above assumptions and a random number generator. For

simplicity we assume there is no diurnal variation in SBP and

that it can be measured without error.

Now suppose all these men work in a factory where 87 of

them are exposed to a factor wrongly suspected of increas-

ing blood pressure; the remaining 84 are unexposed. An

investigator measures their SBP and age. From fig 2B, one

can see that exposed men are generally older than the

unexposed. To estimate the effect of exposure, ‘‘adjusted’’ for

differences in age, the investigator proposes a linear regres-

sion model as follows: SBP = a + b.age + c.group + r, where r

is a Normal random component. The results of the regres-

sion analysis are shown in table 3. Of most interest is the

coefficient for c which estimates the effect of exposure,

‘‘adjusted’’ for age: it is 27 mm Hg (95% CI 212 to 22,

p=0.004). Thus this analysis, which ‘‘controls for age’’, has

found a statistically difference in SBP between exposure

groups, yet we know there is no exposure effect.

What has gone wrong? The linear model wrongly assumes

a constant age gradient across the whole age range. Since the

exposed men lie at one end of this range and the unexposed
20 30

SBP=99+0.1*age+exp(age/15)
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Figure 2 Relationship between SBP and age in 171 men. (A) True
relationship. (B) Fitted relationship, assuming linear model.

Main messages

c Regression models are a flexible way of investigating the
separate or joint effects of several risk factors for disease
or ill health. These factors may include exposures and
confounders of the exposure-disease relationship.

c Usual (parametric) regression requires strong assumptions
to be made about the form of the relationship between
disease risk and each risk factor in the model.

c Claims of having ‘‘controlled for confounders’’ depend to
some extent on the validity of such assumptions. Hence
sensitivity analysis and regression diagnostic methods are
recommended.

c Other methods for dealing with confounders, some of
which require fewer assumptions, include non-parametric
regression, stratification-based methods, and the propen-
sity score approach.

c Automated statistical algorithms based on statistical
significance, should not be relied on for selecting
confounders to include in regression models.

Table 3 Estimation of coefficients of linear model fitted to data in fig 2

SBP Coefficient Std error t statistic Probability 95% CI

Age 1.81 0.0963 18.75 ,0.001 1.62 to 2.00
Group 26.93 2.3973 22.89 0.004 211.66 to 22.19
Constant 53.28 3.1976 16.66 ,0.001 46.97 to 59.59

Mean Square Error (that is, SD(r)) = 8.3 mm. 505
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at the other, the implications of this false assumption are

different for the two groups. This differential gets translated

into an ‘‘exposure effect’’. It might be argued that no sensible

person would try to make a comparison between two groups

when their age distributions are so different. But the point is,

whether sensible or not, regression methods enable an

‘‘adjusted’’ comparison to be made—provided we make some

assumptions about how SBP changes with age. It is

instructive to consider what would happen in an analysis

based on stratification into 5-year age groups. The stratifica-

tion method makes no assumptions about how SBP varies

with age. All men under 35 and over 49 would be dropped

from the comparison and no exposure effect would be found

in the remainder.
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QUESTIONS (SEE ANSWERS ON P 472)
Indicate whether each of the following statements is true or

false.
(1) Parametric regression models for disease require assump-

tions to be made about the form of the relationships
between risk and each variable, including confounders.

(2) Automated statistical selection methods are the best way
to decide which variables are confounders.

(3) Wrong assumptions about the form of the relationship
between confounder and disease can lead to wrong
conclusions about exposure effects.

(4) The SMR is a statistic where the adjustment for age is
based on stratification.

(5) There is no alternative to linear regression modelling.
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