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Aims: In occupational settings, carcinogenic exposures are often repeated or protracted over time. The
time pattern of exposure accrual may influence subsequent temporal patterns of cancer risk. The authors
present several simple models that may be used to evaluate the influence of time since exposure or age at
exposure on cancer incidence or mortality in an occupational cohort.

Methods: A cohort of 40 415 nuclear industry workers was identified via the Canadian National Dose
Registry. Vital status and cause of death were ascertained through 1994. Associations between ionising
radiation and mortality due to lung cancer, leukaemia, and cancers other than lung and leukaemia were
quantified using conditional logistic regression models with risk sets constructed by incidence density
sampling. A step function, a bilinear function, and a sigmoid function were used to evaluate temporal
variation in exposure effects.

Results: Step and sigmoid functions were used to explore latency and morbidity periods. For analyses of
lung cancer, leukaemia, and other cancers the best fitting models were obtained when exposure
assignment was lagged by 13, 0, and 5 years, respectively. A bilinear function was used to evaluate
whether exposure effects diminished with time since exposure. In analyses of lung cancer and leukaemia,
there was evidence that radiation effects attenuated with protracted time since exposure. In analyses of age
at exposure, there was evidence of variation in radiation mortality associations for analyses of lung cancer
and leukaemia; discounting radiation doses accrued at younger ages (for example, 15-35 years) led to
significant improvements in model fit.

Conclusions: This paper illustrates empirical approaches to evaluating temporal variation in the effect of @
protracted exposure on disease risk.

repeated or protracted over time. In this paper we present

methods for evaluating the influence of exposure time
patterns on disease risk. We illustrate these methods using an
example from a cohort study of the effects of occupational
exposures to ionising radiation in the nuclear industry.

We start by examining the influence of time since
exposure. When deriving estimates of association between
cumulative exposure to an occupational carcinogen and
cancer mortality, investigators often lag exposure assignment
by several years. Lagging of exposure assignment is done
under the assumption that exposures accrued in the period
immediately before death are unlikely to be aetiologically
relevant because of a period of induction, latency, and
morbidity between exposure and resultant cancer mortality."
The validity of an exposure lag assumption is a potential
determinant of the validity of a cumulative exposure
mortality estimate, because if an exposure lag assumption
is incorrect estimates of cumulative exposure mortality
associations may be biased as a result of exposure mis-
classification.?

In addition to considerations about induction, latency, and
morbidity periods, a researcher might postulate that the
relative risk of disease following exposure to a hazardous
agent varies with continued time since exposure.”* For
example, in studies of the association between ionising
radiation exposure and mortality due to acute lymphatic and
myeloid forms of leukaemia there is typically evidence of a
brief induction, latency, and morbidity period, after which
the relative risk of leukaemia peaks and then diminishes with
continued time since exposure.” Accounting for such varia-
tion may be important for deriving reliable estimates of
exposure disease trends.

In occupational settings, carcinogenic exposures are often

The carcinogenic effect of an agent may also vary with age
at exposure or attained age. In occupational settings, workers
tend to accrue exposures over a wide range of ages. At young
ages, sensitivity to exposure effects might vary due to
developmental processes. With older age there are declines
in the accuracy and efficiency of most biological systems,
including those involved in immune and cellular repair
processes.® Therefore, the ages at which exposures occur may
also be important to understanding patterns of disease risk.

A standard approach used for evaluating heterogeneity in
the effects of exposures accrued at different points in time is
the method of time window analysis.”” This approach may be
viewed as the application of a time dependent exposure
weighting function.* A weight of 1 is applied to exposures
accrued within the critical time window of exposure and a
weight of zero is applied to exposures accrued at all other
times. A standard summary measure of an exposure history,
such as a cumulative measure of exposure, can be calculated
using this weighted exposure information. Multiple exposure
time windows may be included simultaneously in a regres-
sion analysis in order to evaluate the effect of exposures
accrued in one time period while adjusting for the effect of
exposures accrued at other time periods."

However, one limitation of this approach is that an
investigator has to, a priori, define boundaries for time
windows, and epidemiological risk estimates may be sensi-
tive to decisions about boundary values."" Another limitation
of the time window approach is that the boundaries of
windows are typically defined by step functions. The

Abbreviations: AECL, Atomic Energy of Canada Ltd; CLL, chronic
lymphocytic leukaemia; CMDB, Canadian Mortality Data Base; ICD,
Infernational Classification of Diseases; NDR, National Dose Registry
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assumption that the effect of an exposure is uniform within a
window, and changes abruptly at the boundary of this
window, is less plausible than the assumption that effects
transition gradually over time. Finally, time window specific
dose-response trend estimates tend to be statistically
unstable as doses may be accrued within relatively narrow
windows of exposure and exposure levels for adjacent
windows may be correlated.”

These limitations led us to consider alternative methods to
describe variation over time in sensitivity to the effects of an
exposure. In this paper, we propose a series of models that
may be used to empirically evaluate the influence of time
since exposure and age at exposure on ionising radiation
cancer mortality associations. We apply these models to
analyses of data derived from a large nuclear worker cohort
study.

METHODS

A roster was constructed of all radiation monitored nuclear
workers identified through the Canadian National Dose
Registry (NDR), a federally operated, centralised occupa-
tional radiation dose record keeping system."” '* The Registry
includes records for individuals employed by the three
Canadian companies involved in nuclear power generation
(New Brunswick Power, Quebec Hydro, and Ontario Power
Generation) and for individuals employed by Atomic Energy
of Canada Ltd (AECL) which is a nuclear power research and
development company.

In order to ensure reliable linkage with death records,
workers included in the study cohort had to have complete
information on sex, surname, and either first initials and date
of birth, or first names and year of birth. In addition, workers
in the study cohort were required to be over 15 years of age at
hire, to have been monitored for radiation exposure in more
than one calendar year, and to be less than 100 years old at
end of follow up.

Monitoring for external radiation exposure was primarily
conducted using personal radiation dosimeters. Over time the
types of dosimeters, monitoring frequencies, and recording
thresholds changed, although the impact of these changes on
the accuracy of historical radiation dose estimates is believed
to be small.” Radiation dose estimates from tritium deposi-
tion were derived via bioassay monitoring. Estimates of
whole body ionising radiation dose are expressed as
equivalent doses in milliSievert (mSv) and reflect the sum
of estimates of external penetrating radiation dose and
internal tritium dose; quality factors for x ray, gamma, and
beta were assumed equal to 1.0, and the quality factor for
neutrons was assumed to be 10.0. The NDR is an inclusive
repository for all available information on radiation expo-
sures accrued by Canadian workers; consequently, doses
received by cohort members in other industrial or medical
settings were also included in these analyses. Dosimetry
records for AECL workers for the period before 1956 were
destroyed in a fire but were subsequently reconstructed for
the purposes of epidemiological research and also reviewed
and updated as part of an intercomparison study of NDR and
nuclear facility dose records.'® Historical records, notably
memoranda, were used to reconstruct doses for AECL
workers for the period before 1956; estimated doses greater
than 3 mSv in a monitoring period were reported by memo-
randum to the worker’s department head (these memoranda
were not destroyed in the fire). In addition, original dosi-
metry records for monitoring during a 1953 reactor cleanup
effort were not lost in the fire; these records permitted reli-
able reconstruction of what are believed to be the most signi-
ficant doses accrued during this period. Similar to most,"” ** ** "
but not all,"” previous epidemiological studies that have
included AECL workers, we have included employees hired
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since the start of AECL operations by incorporating these
reconstructed dose estimates. Inclusion of information on
workers employed in the early years of operation of the
industry was important for this investigation because our
focus is on temporal variation in radiation exposure effects.

Vital status as of 31 December 1994, was determined by
linking NDR records with the Canadian Mortality Data Base
(CMDB) and tax summary records in order to confirm both
alive and deceased vital status. The CMDB includes death
records from 1950 for all Canadians, including those who
died while residing in the United States, and is routinely used
to ascertain mortality in a number of cohort studies."”
Underlying causes of death was coded to the version of the
International Classification of Diseases (ICD) in use at time
of death. We examined the following three causes of death:
lung cancer (ICD6 and 1CD7 codes 162 and 163, ICD8 and
ICD9 code 162); leukaemia excluding chronic lymphocytic
leukaemia (ICD6 and 1CD7 code 204, ICD8 codes 204-207
excluding 204.1, and ICD9 codes 204-208 excluding 204.1);
and all cancers (ICD6 and ICD7 codes 140-205, ICD8 codes
140-207, and ICD9 codes 140-208) other than lung cancer
and leukaemia. Although ICD6 and ICD7 did not include a
separate code for chronic lymphocytic leukaemia (CLL), this
did not pose a problem for identifying the category of
leukaemia excluding CLL in these analyses because no deaths
due to lymphatic leukaemia (acute or chronic) were recorded
in this population during the period when ICD6 and ICD7
were in use.

Statistical methods

Analyses were conducted using a nested case control
approach. Risk sets were formed by incidence density
matching of cases (cancer deaths) to non-cases on attained
age.” For each case, a risk set was formed that included all
workers who were alive and eligible to be in the study at the
attained age of the index case. For analyses of lung cancer
and all cancers other than lung and leukaemia, controls were
also matched to cases on sex, calendar year at risk (defined in
five year categories from <1960 to 1990+), facility (AECL or
other facility), socioeconomic status (based upon the work-
er’'s most recent occupation, and defined in the following
categories: professional white collar, other white collar,
skilled blue collar, other blue collar, and unknown), duration
of monitoring (<5, 5 to <10, 10 to <15, 15 to <20, and 20+
years), and monitoring status (radiation monitored in the
last five years or not). For analyses of leukaemia mortality,
risk sets were matched on attained age, with the other
covariates controlled for as main effects in the regression
model. Twenty five controls were selected for each case by
random sampling without replacement from all members of
the risk set (excluding the index case itself).”!

Conditional logistic regression was used to evaluate
associations between case status and radiation exposure
history. Let us say that y; denotes the case status of individual
jin a risk set that is matched on attained age A. The radiation
exposure history for each worker was recorded as a radiation
dose estimate for each calendar year of observation. We
assigned an age-at-exposure, a, to each calendar year based
on the worker’s age at the midpoint of the calendar year.
Therefore, the array xj(a) indexes the radiation dose accrued
by individual j at age, a. The summation of these doses up to
attained age 4

A

D xla)

a=1

is the total cumulative dose accrued by individual ;.
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Figure 1 Weighting functions. The function [[“logical expression”]
equals 1 if “logical expression” is true and O if it is false. The value tis
the timescale over which weights vary. For analyses of age at exposure
t=a and denotes the age at ﬁwe midpoint of each ca|encf:r ear of
exposure. For analyses of time since exposure t=A-a and denotes the
diﬁerence between the attained age and the age at the midpoint of each
calendar year of exposure.

We begin by evaluating whether the relative effect of
exposure varies with time since exposure. An exposure
weighting function, w(t), was used to express this varia-
tion, with the timescale, ¢, defined as the difference
between a worker’s attained age, A4, and their age when
an increment of exposure occurred, a. We evaluated three
simple parametric forms for the exposure weighting function
(fig 1). The most parsimonious model was a step function. A
step function can be defined by a single parameter, #; a
weight of zero is applied to doses that occurred less than 5
years in the past, and a weight of one is applied to all other
doses.

A sigmoid function is a simple alternative to a step
function that allows for a more gradual transition in the
relative effect of exposure over time. The sigmoid function
was defined by the following parameters: o, defines the
shape of the function and o, specifies the inflection point for
the curve. If the value of o, is greater than unity then this
describes a situation in which the effect of exposure increases
with increasing time since exposure. The sigmoid function
approximates the step function at large values of o; (for
example, 50). If the value of o, is less than unity then this
describes a situation in which the effect of exposure
decreases with increasing time since exposure.

The bilinear exposure weighting function is an alterna-
tive parametric form that allows evaluation of the assump-
tion that the relative effect of exposure increases to some
maximal value and then diminishes with additional time
since exposure.”” It consists of two attached lines that
form a triangular function. For the first ¢, years after
exposure, the relative effect of exposure increases linearly to
its maximum value, ¢, years after exposure; then, the effect
diminishes linearly with additional time since exposure,
reaching a relative effect of zero (no effect) ¢, years in the
past.””

The sum of the time weighted exposures,

A
> iy el

a=1

describes the cumulative effective dose accrued by individual
J at attained age A. We examined the relation between this
effective dose metric and mortality using a conditional
logistic regression model of form

553

A
logit rly; =1 (al) = o + 81 D, wit) o

a=1

The value [IOOO(ﬁl)] provides an estimate of the (log) per
cent change in mortality risk per 10 mSv dose under an
exponential relative risk model. At low doses, this value
approximates the estimate of excess relative risk per Sv (ERR/
Sv) that would be derived under an additive relative risk
model.”> One advantage of using an exponential relative risk
model is that parameter estimates are not constrained (as
they are when using an additive relative risk model), thereby
reducing problems with model convergence and estimation
of confidence intervals.

An SAS program was written in order to calculate the
cumulative effective dose for each study member at specified
values for the parameter(s) defining w(¢).”> Conditional
logistic regression models were fit to these data using SAS
PHREG in order to estimate the association between
cumulative effective dose and cancer mortality.* The search
algorithm involved estimating the dose-response para-
meter over a grid of weighting function parameters (for
example, o;, o), tabulating the residual deviances, and
then recentering the grid for the next iteration of the
search. Intervals between grid points were progressively
reduced; in this way the maximum likelihood estimates for
the weighting function parameter(s) were determined by
identifying the model that produced the minimal residual
deviance.

Analyses were also conducted using a piecewise constant
model (that is, a model for time window analysis), in order to
provide a non-parametric description of the pattern of
variation in radiation exposure effects with time since
exposure. In analyses of time since exposure, a separate
regression parameter is included for the cumulative dose
accrued within each of the following exposure time windows:
0 to <10 years, 10 to <30 years, and 30+ years before the age
at which risk is being estimated. Specifically, we applied a
piecewise constant model of the form

A
logit Prly; =1| 27, ylal) = o + B Z I[f < 10]x(a) +

a=1

A A
By Z 10 < = t < 30]x;(a) + s 2 I[f> = 30]x(a)

a=1 a=1

where I[“logical expression”] which equals 1 if “logical
expression” is true and 0 if it is false. Parameter estimates f;,
p>, and 5 describe the change in the log of the relative risk
per 10 mSv dose, for cumulative radiation doses accrued in
time windows defined by <10, 10 to <30, and 30+ years since
exposure, respectively.

The same exposure weighting functions (fig 1) were used
to evaluate variation in exposure effects with age at exposure.
In these analyses the timescale, ¢, for the exposure weighting
function was age at exposure (that is, the age when an
increment of exposure occurred, a). A piecewise constant
model of age at exposure effects was developed for doses
accrued in time windows defined by ages <35, 35 to <50,
and 50+ years, respectively. In order to allow for an
induction, latency, and morbidity period before radiation
induced mortality, exposure assignment was lagged by 10
years for analyses of lung cancer and all cancers other than
lung and leukaemia, and by two years for analyses of
leukaemia mortality.
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Table T Number of workers, vital status, and number of
deaths due to all cancers, lung cancer, and leukaemia by
sex

Vital status Male Female Total

Alive 32922 (94.9) 5661 (98.8) 38583 (95.5)

Dead 1761 (5.1) 71(1.2) 1832 (4.5)
All cancer 537 39 576
Lung 203 3 206
Leukaemia 15 1 16

Total 34683 5732 40415

Our primary interest in these analyses was in evaluation of
whether exposure effects were influenced by the time pattern
of exposure. Therefore, each model was compared to a “‘null”
model under which there was no variation in exposure effect
over the timescale of interest.

RESULTS

Table 1 shows the vital status of the workers in the study
cohort at the end of follow up. The percentage of deceased
male workers (5.1%) was greater than for females (1.2%).
The number of all cancers, lung cancers, and leukaemia
deaths is also presented in table 1. Whole body radiation
doses tended to be relatively low among the workers in this
study cohort. The average cumulative whole body dose was
14 mSv, while the 90th percentile of the cumulative whole
body dose distribution was 35 mSv and the maximum
cumulative whole body dose was 952 mSv.

Time since exposure

Lung cancer

Figure 2A shows the profile likelihood estimation of the step
function parameter, 7, in analyses of radiation lung cancer
mortality associations. The best fitting regression model
(indicated by the minimal residual deviance in fig 2A) was
derived under a 13 year exposure lag assumption, although
the fit of models was very similar under values for 5 ranging
from 5-20 years.

Analyses of radiation lung cancer mortality associations
under the piecewise constant function (fig 2B) suggest that
lung cancer mortality is positively associated with radiation
doses accrued in the periods 10-30 years prior (3.25%/
10 mSv, 90% CI 1.52 to 4.98), and negatively associated with
doses accrued <10 years prior (—1.77%/10 mSv, 90% CI
—6.03 to 2.49) and 30+ years prior (—0.54%/10 mSv, 90% CI
—4.92 (0 3.83).

The fitted sigmoid function (6, =10, 6, = 15) describes a
situation in which the effect of exposure gradually increases
with time since exposure, attaining a maximum effect more
than 15 years after exposure. Under the fitted bilinear
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function (fig 2C), exposure effects progressively increase for
the first 32 years since exposure and subsequently diminish
in a rapid monotonic fashion (¢, = 32, ¢, = 33). The fit of the
regression model under the bilinear weighting function was
substantially better than the fit of models under the step and
sigmoid weighting functions (table 2).

Leukaemia

Figure 3A shows the profile likelihood estimation for the step
function parameter for analyses of leukaemia mortality. The
best fitting association was derived under a 0 year exposure
lag assumption; therefore, the best fitting estimate is
identical to the “‘null” model, # =0, for lifetime cumulative
dose (table 2).

Exposure time windows analyses of radiation leukaemia
mortality associations suggest that the association between
leukaemia mortality and cumulative radiation dose is
positively associated with radiation doses accrued in the
periods <10 years prior (12.59%/10 mSv, 90% CI —0.78 to
25.96) and 10-30 years prior (8.72%/10 mSv, 90% CI 0.73 to
16.71), but there is essentially no association with doses
accrued in the period 30+ years prior (0.02%/10 mSv, 90% CI
—16.22 to 16.25). All of these time window specific estimates
of association, however, are highly imprecise (fig 2B).

The fitted sigmoid function (&, = —50, 6, = 31) describes a
situation in which the effect of radiation exposure on
leukaemia rates occurs promptly after exposure, but
diminishes in the period 30+ years after exposure (fig 3C).
Under the fitted bilinear function, exposure effects progres-
sively decrease in magnitude with increasing time since
exposure (¢; =0, ¢ =52). The fit of the regression model
under the bilinear function was very similar to the fit of the
model under the sigmoid function, and neither was
significantly better than the null model (table 2).

Cancers other than lung and leukaemia

Figure 4A shows the profile likelihood for the step function
parameter, 1 in analyses of cancers other than lung and
leukaemia. The best fitting association was derived when
exposure assignment was lagged by five years (fig 4A). While
discounting the most recently accrued radiation doses
improved model fit, the null hypothesis, n =0, was not
rejected (table 2).

Figure 4B illustrates the piecewise constant model under
which lifetime cumulative dose is partitioned into three
windows. Mortality from cancers other than lung and
leukaemia is positively associated with cumulative radiation
doses accrued 10-30 years prior (1.71%/10 mSv, 90% CI 0.28
to 3.14) and 30+ years prior (2.56%/10 mSv, 90% CI —0.19 to
5.31), and negatively associated with doses accrued
<10 years prior (—0.70%/10 mSv, 90% CI —4.29 to 2.89)
although the radiation risk estimate for the most recent time
window of exposure is highly imprecise.
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Figure 2 Lung cancer mortality. Evaluation of variation in radiation dose lung cancer mortality association with time since exposure. (A) Profile search

for step

function parameter, 1. (B) Time window estimates. Dashed lines indicate 90% confidence interval. (C) Fitted sigmoid (solid line) and bilinear

(dashed line) functions. Risk sets were matched on attained age, and analyses were adjusted for sex, calendar year at risk, facility, socioeconomic

status, duration of monitoring, and monitoring status.
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Table 2 Evaluation of variation in exposure effect with
time since exposure under three exposure weighting
functions. Canadian nuclear industry workers study

Exposure weight  Residual Likelihood Degrees of
function deviance ratio statistic* freedom p Value
Lung cancer
Step function 1237.25 1.91 1 0.17
Sigmoid function 1237.41 1.75 1 0.19
Bilinear function 1233.89 5.27 2 0.07
Leukaemia
Step function 83.16 0.00 1 1.00
Sigmoid function ~ 82.12 1.04 1 0.31
Bilinear function 82.54 0.62 2 0.73
Cancers other than
lung and leukaemia
Step function 2049.00 1.40 1 0.24
Sigmoid function 2049.07 1.33 1 0.25
Bilinear function 2049.16 1.24 2 0.54

*Test for variation in exposure effect with time since exposure. Model fit is
compared to the model for total cumulative dose (that is, 77=0 for the step
function; o1 =1 for the sigmoid function; and, ¢ = d2=0 for the bilinear
function with ¢, parameterised as a slope). Analyses of lung cancer, and
cancers other than lung and leukaemia, were matched on attained age,
sex, calendar year at risk, facility, socioeconomic status, duration of
monitoring, and monitoring status; analyses of leukaemia were matched
on attained age and adjusted for sex, calendar year at risk, facility,
socioeconomic status, duration of monitoring, and monitoring status.

The sigmoid function allows for a more gradual transition
in exposure effect with time since exposure than the step
function; the inflection point of the sigmoid function is at
four years time since exposure (6, =42, 6, =4). Under the
fitted bilinear function (¢, =15, ¢, = 196), exposure effects
progressively increase for the first 15 years since exposure
and do not appear to diminish with continued time since
exposure (fig 4C). Use of the step exposure weighting
function led to better model fit than use of the sigmoid or
bilinear weighting functions (table 2).

Age at exposure

Lung cancer

Under a step function, the best fitting radiation lung cancer
model is obtained when discounting doses accrued at ages
less than 34 years. Figure 5A shows the profile likelihood
estimation of the parameter for this simple exposure
weighting function. There is substantial support for rejection
of the “null” model under which exposure effects are
uniform with age at exposure (table 3).

When cumulative dose is partitioned into three time
windows defined by age at exposure (fig 5B) there is
evidence which suggests that the association between lung
cancer mortality and radiation dose is primarily limited to
associations with doses accrued in the period of older ages at
exposure. The association between lung cancer mortality and

A B

0
o

o

fee)
|
—_ - N W
O O O O o

©
N

Residual deviance
&
% change/10 mSy
5
S
I

e
N

0 5 101520253035 40

Time since exposure

_30 L L)

0 5 101520253035 40

Time since exposure

555

cumulative radiation dose accrued at ages less than 35 years
was negative but imprecise (—2.23%/10 mSv, 90% CI —6.75
to 2.33), the association with radiation doses accrued at ages
35 to <50 years was positive (2.97%/10 mSv, 90% CI 0.73 to
5.21), and the association with radiation doses accrued at
50+ years of age was of largest magnitude (3.65%/10 mSy,
90% CI 0.57 to 6.73).

Under the sigmoid exposure weighting function, the best
fitting radiation exposure lung cancer mortality model is
obtained via a sigmoid function that is centered at age
34 years with steepness that approximates a step function
(6, =50, 6, =34). The sigmoid and step functions provide
similar goodness of fit to these data; the bilinear function, in
contrast, does not fit these data well (table 4).

Leukaemia

Under a step function in which we discount doses accrued in
early adulthood, the best fitting model is obtained when
discounting doses accrued at ages less than 31 years.
Figure 6A shows the profile likelihood estimation of the
parameter for the step exposure weighting function. There is
significant empirical support for rejection of the “null”
model, n =0, under which exposure effects are uniform with
age at exposure (table 3).

Under the piecewise constant model, we estimated the
association between radiation dose and leukaemia mortality.
The cumulative radiation dose accrued at ages less than
35 years is positively associated with cancer mortality (3.22%/
10 mSv, 90% CI —6.04 to 12.48), and the radiation dose
accrued at ages 35 to <50 years exhibits a positive associa-
tion of larger magnitude but little precision (15.16%/10 mSyv,
90% CI —1.54 to 31.86); in contrast, the radiation dose
accrued at 50+ years of age exhibits a smaller association
with extremely poor precision (8.88%/10 mSv, 90% CI —10.78
to 28.54).

We estimated parameters for the sigmoid model for age at
exposure effects. The best fitting model is obtained for an age
at exposure model that is centred at age 31 years (6, = 50,
G, =31).

Cancers other than lung and leukaemia

Figure 7A shows the profile likelihood estimation of the
parameter for this simple exposure weighting function. The
“null” model, under which radiation exposure effects are
uniform with age at exposure, provided the best fitting model
(table 3).

Using the piecewise constant function to explore age at
exposure effects (fig 7B), the cumulative radiation dose
accrued at ages less than 35 years was positively associated
with mortality from these cancer causes (2.23%/10 mSv, 90%
CI —0.81 to 5.27), as was cumulative radiation dose accrued
at ages 35 to <50 years (2.11%/10 mSv, 90% CI 0.22 to 4.00)

C

% change/10 mSv
ovhO®ON N

0 5 101520253035 40

Time since exposure

Figure 3 Leukaemia mortality. Evaluation of variation in radiation dose leukaemia mortality association with time since exposure. (A) Profile search
for step function parameter, 7. (B) Time window estimates. Dashed lines indicate 90% confidence interval. (C) Fitted sigmoid (solid line) and bilinear
(dashed line) functions. Risk sets were matched on attained age, and analyses were adjusted for sex, calendar year at risk, facility, socioeconomic

status, duration of monitoring, and monitoring status.
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Figure 4 Cancers other than lung and leukaemia. Evaluation of variation in radiation dose leukaemia morfq|i3/ association with time since exposure.
(A) Profile search for step function parameter, . (B) Time window estimates. Dashed lines indicate 90% confidence inferval. (C) Fitted sigmoid (solid
line) and bilinear (dashed line) functions. Risk sets were matched on attained age, and analyses were adjusted for sex, calendar year at risk, facility,

socioeconomic status, duration of monitoring, and monitoring status.

and cumulative radiation dose accrued at 50+ years of age
(1.22%/10 mSv, 90% CI —1.31 to 3.75).

The best fitting regression model under a sigmoid exposure
weighting function (6, =34, 6, = 14) is one in which that
the effect of radiation exposure on cancer mortality is
uniform with age at exposure (fig 7C). The bilinear function
suggests a small decline in exposure effects with age at
exposure (fig 7C).

DISCUSSION

A cumulative measure of exposure is commonly used in
epidemiological studies to summarise a potentially long
history of exposures.” Implicit in the use of a cumulative
measure of exposure is the assumption that the effects of
exposures accrued at different points in time are additive and
remain constant over time. In this paper we illustrate
methods that may be used to evaluate departures from this
assumption; these methods use time dependent exposure
weighting functions under which the relative effect of
exposures may vary with time.

Our findings provide support for the standard approach of
using a step weighting function to lag exposure assignment
(table 2). We found no empirical support for use of the more
complicated sigmoid function that allows for a more gradual
transition in exposure effect over an induction, latency, and
morbidity period. The bilinear function, which allows for
diminishing effects of exposure with protracted time since
exposure, provided a somewhat better regression model fit
for analyses of lung cancer than a simple exposure lag
model (that is, a step weighting function). Evidence of
attenuation of radiation dose lung cancer associations with
protracted time since exposure has been reported in previous
studies of the effects of acute and protracted radiation
exposures.'” **** In our analyses of leukaemia excluding CLL,
the best fitting models for time since exposure effects are
consistent with an extremely short lag period. While an
estimate of a 0 year exposure lag for leukaemia is implau-
sible, these analyses had relatively little power to discrimi-
nate between similar models given the small numbers of
leukaemia cases. The results of model development using the
sigmoid and bilinear weighting functions suggest a dimin-
ishing effect of radiation exposure with time since exposure.
Again, such a pattern is consistent with temporal patterns of
leukaemia risk following radiation exposure observed in
other populations.”” *°

Our ability to investigate variation in radiation effects with
time since exposure is constrained, however, by the fact that
entrance into the cohort was relatively recent for most cohort
members. Fifty per cent of the workers were first monitored
after 1980, and 25% of the workers were first monitored after
1987. Consequently, analyses that investigate variation in
exposure effects with protracted time since exposure are
limited by sparse data. In addition, dosimetry information for
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the early years of the nuclear industry plays a greater role in
estimates exposure effects in the longest period time since
exposure. Although the observed trends of diminishing
radiation exposure effects for lung cancer and leukaemia
are consistent with findings from other studies, an alter-
native possibility is that exposure misclassification is greater
for doses accrued in the more distant past (and therefore risk
estimates for periods of greater time since exposure are
increasingly biased towards the null).

Our analyses of the influence of age at exposure suggest
stronger radiation dose lung cancer associations at older ages
at exposure. These findings are of interest given similar
patterns of association observed in several other nuclear
worker cohorts.” **' ** Interestingly, there was minimal
evidence of variation in exposure effects for cancers other
than lung and leukaemia (table 3). Similarly, in the Lifespan
Study of atomic bomb survivors, for most solid cancers
estimates of ERR/Sv are greater for people who were exposed
at younger ages than for people exposed at older ages;
however, the opposite pattern is observed for lung cancer.”
One possibility is that the temporal patterns of variation in
radiation lung cancer mortality associations reflect temporal
patterns of confounding, for example by smoking. Spurious

Table 3 Evaluation of variation in exposure effect with
age at exposure under three exposure weighting
functions. Canadian nuclear industry workers study

Exposure weight  Residual Likelihood ~ Degrees of
function deviance ratio statistic* freedom  p Value
Lung cancer
Step function 1234.12 3.86 1 0.05
Sigmoid function 1234.73 3.25 1 0.07
Bilinear function 1237.26 0.72 2 0.70
Leukemia
Step function 79.67 3.82 1 0.05
Sigmoid function ~ 79.93 3.56 1 0.06
Bilinear function 82.64 0.85 2 0.65
Cancers other than
lung and leukemia
Step function 2049.07 0.00 1 1.00
Sigmoid function 2049.07 0.00 1 1.00
Bilinear function 2048.83 0.24 2 0.89

*Test for variation in exposure effect with age at exposure. Model fit is
compared to the model for total cumulative (that is, =0 for the step
function; o1 =1 for the sigmoid function; and, ¢ = ¢, =0 for the bilinear
function with ¢, parameterised as a slope). Exposure assignment is
lagged 10 years for analyses of lung cancer and cancers other than lung
and leukaemia, and two years for analyses of leukaemia. Analyses of
lung cancer, and cancers other than lung and leukaemia, were matched
on attained age, sex, calendar year at risk, facility, socioeconomic status,
duration of monitoring, and monitoring status; analyses of leukaemia
were matched on attained age and adjusted for sex, calendar year at
risk, facility, socioeconomic status, duration of monitoring, and
monitoring status.
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Investigating time patterns
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Figure 5 Lung cancer mortality. Evaluation of variation in radiation dose leukaemia mortality association with age at exposure. (A) Profile search for
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Figure 6 Leukaemia mortality. Evaluation of variation in radiation dose leukaemia mortality association with age at exposure. (A) Profile search for
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Figure 7 Cancers other than lung and leukaemia. Evaluation of variation in radiation dose leukaemia mortality association with age at exposure.
(A) Profile search for step function parameter, #. (B) Time window estimates. Dashed lines indicate 90% confidence interval. (C) Fitted sigmoid (solid
line) and bilinear (dashed line) functions. Risk sets were matched on attained age, and analyses were adjusted for sex, calendar year at risk, facility,

socioeconomic status, duration of monitoring, and monitoring status.

evidence of association between radiation doses accrued at
older ages and lung cancer could arise due to confounding if
smoking were positively associated with radiation doses
accrued at older age, but not with radiation doses accrued at
younger ages. Alternatively, birth cohort trends in smoking
could lead to apparent age at exposure effects if regression
analyses assume multiplicative relations involving birth
cohort effects yet the interaction between smoking and
radiation is sub-multiplicative.” **

In this paper we examined patterns of radiation risk with
time since exposure and age at exposure singly, rather than
jointly. The joint estimation of weighting functions for these
time related factors would stretch the limits of these data.
One way to address this issue is to conduct analyses that
make use of a theoretical model of carcinogenesis, such as the
Armitage-Doll model. We explored the use of relatively
simple parametric forms for exposure weighting functions to
describe temporal variation in exposure effects. We used
these models for testing simple hypotheses about temporal

variation in exposure effects. Hauptmann ef al have proposed
an alternative regression modelling approach in which cubic
splines are used to describe latency effects.”® ** Cubic splines
provide a highly flexible approach to modelling exposure
time response associations. However, similar to considera-
tions about using cubic splines to model dose response
trends, a limitation of the approach is that it uses a relatively
large number of degrees of freedom to produce model forms
that are not necessarily easy to interpret. For these analyses,
we have favoured the use of simpler parametric models to
address questions about whether exposure effects tended to
increase or decrease over time.

We found that we had a limited ability with these data to
discriminate between models that provide similar goodness
of fit. However, these analyses illustrate how exposure
weighting functions may be applied in order to empirically
evaluate hypotheses about variation in the relative effect of a
protracted exposure with time since exposure and/or age at
exposure.
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Main message

Simple parametric models may be used to empirically
evaluate the influence of time since exposure or age at
exposure on cancer incidence or mortality in occupational
and environmental cohort studies.
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