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Patients with short bowel syndrome require long term
parenteral nutrition support. However, after massive
intestinal resection the intestine undergoes adaptation and
nutritional autonomy may be obtained. Given that the
complications of parenteral nutrition may be life
threatening or result in treatment failure and the need for
intestinal transplantation, a more attractive option is to
wean patients off nutrition support by optimising the
adaptive process. The article examines the evidence that
after extensive small bowel resection adaptation occurs in
humans and focuses on the factors that influence
adaptation and the strategies that have been used to
optimise this process. The review is based on an English
language Medline search with secondary references
obtained from key articles. There is evidence that
adaptation occurs in humans. Adaptation is a complex
process that results in response to nutrient and non-nutrient
stimuli. Successful and reproducible strategies to improve
adaptation remain elusive despite an abundance of
experimental data. Nevertheless given the low patient
survival and quality of life associated with other treatments
for irreversible intestinal failure it is imperative that clinical
research continues into the optimisation of the adaptation.
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S
hort bowel syndrome occurs when the
functioning gut mass is reduced below the
amount necessary for adequate digestion

and absorption of food and fluid.1 Although the
absorptive function of the intestine does not
always correlate with residual bowel length,
short bowel syndrome is usually defined anato-
mically as less than 30% of normal intestinal
length (,75 cm in children and ,200 cm in
adults). In the failing intestine the inability to
absorb nutrients, fluids, and electrolytes even-
tually leads to clinical deficiencies, and if an
increase in oral intake is not sufficient to
compensate for this malabsorption, parenteral
nutritional support is required. European prac-
tices vary, but overall the incidence and pre-
valence of home parenteral nutrition (HPN) is
six patients per million per year and four patients
per million population respectively.2 Intestinal
failure is the indication for HPN in 59%, with the
rest requiring nutritional support because of
cancer or AIDS. Parenteral nutrition is associated
with significant morbidity, mortality, and a
reduced quality of life.3 4 As such alternative
treatments for intestinal failure have been
considered.

PN related liver failure, repeated catheter
sepsis, or venous thrombosis with loss of
vascular access, result in failure of parenteral
therapy.5 In patients who can no longer receive
parenteral support small bowel transplantation
has been performed. The results of transplanta-
tion for intestinal failure using either an isolated
intestine or composite grafts (liver and intestine
or multivisceral including intestine), have
improved but remain disappointing. One year
graft/patient survival for transplants performed
after 1999 in large centres (.10 transplants), are
60%/80%, 60/65%, 65%/70% for isolated intes-
tinal, liver-intestinal, and multivisceral trans-
plants respectively.6 Overall five year graft and
patient survival from the USA are 20% and 51%
respectively.7

A more attractive option is to wean patients off
parenteral support. After extensive gut resections
it has been observed that the need for permanent
support is difficult to predict.8 Such patients
requiring home parenteral therapy continue to
take fluids and nutrition orally. Over time, the
intestine seems to adapt to the extent that some
patients with short bowel lengths can autono-
mously maintain acceptable fluid, electrolyte,
and nutritional balances.
The aim of this article is to evaluate the direct

and indirect evidence that adaptation occurs in
humans after extensive small bowel resection,
review the factors that influence adaptation, and
assess the strategies that have been used in
attempts to optimise this process.

EXPERIMENTAL EVIDENCE FOR
ADAPTATION (SEE BOX)
In rodent systems, animals subjected to exten-
sive (.70%) intestinal resection undergo a
pattern of well described morphological and
functional changes. The remaining intestine
changes macroscopically with dilatation, thick-
ening, and an increase in length.9 There is an
increase in villus height and diameter, and an
elongation of the crypts. An increase in epithelial
cellular proliferation, coupled with a decrease in
apoptosis, produces increases in intestinal RNA,
DNA, and protein content.10–13 The changes are
increased with more extensive resections and the
most pronounced changes occur in the ileum.14

Functionally there is an increase in absorption
per unit length of carbohydrates, proteins, water,

Abbreviations: HPN, home parenteral nutrition; SCFA,
short chain fatty acid; LCFA, long chain fatty acid; IGF-I,
insulin-like growth factor I; IGF-II, insulin-like growth
factor II; EGF, epidermal growth factor; TGFa,
transforming growth factor a; HBEGF, heparin binding
epidermal epidermal-like growth factor; GLP2, glucagon-
like peptide 2; HGF, hepatocyte growth factor

178

www.postgradmedj.com

http://pmj.bmj.com


and electrolytes.12 Indeed within six hours there is upregula-
tion of the sodium-glucose cotransporter, the dominant
mechanism by which fluid and electrolytes are handled by
the small intestinal enterocyte.15

HUMAN EVIDENCE FOR ADAPTATION
The direct evidence for such changes in humans is limited.
Although the macroscopic changes of intestinal hypertrophy
and lengthening have been described, the changes in villus/
crypt architecture described in rodents have not been
reproduced by most studies.12 13 16

Functional changes have been shown to occur in humans,
both in the small and large intestine. Xylose and calcium
absorption increases per unit length after resection and
continues to increase for at least two years.17 The oligopeptide
transporter, PepT1, the H+ dependent mechanism for trans-
port of di-peptides and tri-peptides in the gastrointestinal
tract, has been shown to be up-regulated in colon but not the
small intestine.16

Indirect evidence that adaptation of the intestine occurs
comes from the fact that patients with very short bowel
lengths can become independent of the need for parenteral
nutrition after a period of months or even years. Whether a
patient can be weaned from parenteral nutrition is dependent
on a number of factors. The length of small bowel8 and the
presence of colon18 19 are particularly important. Other factors
that are useful in predicting whether intestinal failure is
permanent are the time on parenteral nutrition (.2 years)
and the amount of energy the patient can derive from enteral
feeding.8 20–22

Other indirect evidence comes from patients who receive
live related segmental intestinal transplants, in whom only
180–200 cm of ileum is transplanted.23 24 These grafts do
undergo morphological and functional adaptation, with an
increase in villus area of up to 50%25 and normal carbo-
hydrate and fat absorption tests by six months.26

NORMAL INTESTINAL EPITHELIAL HOMOEOSTASIS
The intestinal epithelium is a continually renewing single cell
layer sheet, containing four different columnar cell types,
which is folded into invaginated crypts and finger-like villi.
The cell lineages include the absorptive enterocyte (columnar
lineage), which is the majority cell (.96%)27 and three types
of secretory cell (mucus lineage): the goblet cell; the entero-
endocrine cell, and the crypt Paneth cell. All types of
epithelial cell within the intestine are derived from multi-
potent stem cells found near the base of the crypts.28

Mouse studies have shown that in steady state conditions
the absorptive enterocyte, the goblet cell, and the entero-
endocrine cell all migrate and differentiate over a period of
two to five days from the crypt upwards to the villus tip,
whereupon they are lost.29 The Paneth cells complete their
differentiation and remain within the crypt for around
20 days, at which point they are removed by phagocytosis.30

Each crypt contains 250–300 epithelial cells, and it is
estimated in the intestine of an adult mouse that there are
about 106 crypts.29 In these animals, stem cells produce
equivalent to 1 g (109 cells) of new epithelial cells every five
days.31 32

An increase in proliferation of crypt cells, coupled with a
decrease in apoptosis, increases the villus height and a total
increase in DNA, RNA, and protein content. Proliferation
therefore requires a supply of polyamines, putrescine,
spermidine, and spermine, which are organic cations,
influencing DNA, RNA, and tissue synthesis.33 Nutrient and
non-nutrient factors are purported to have a role in intestinal
epithelial cell turnover in both steady state conditions and
after extensive resection.

NUTRIENT FACTORS INVOLVED IN ADAPTATION
Amino acids
Enteral feeding is the primary source of amino acids for
intestinal tissue as, apart from glutamine, there is little or no
arterial uptake of any amino acids.34 Glutamine, rather than
glucose, is the major fuel for mitochondrial respiration in
enterocytes.35 Glutamine is used for protein synthesis either
directly or as a result of catabolic pathways.
Within 24 hours of 80% small bowel resection in the

rodent, glutamine and total amino acid uptake per gram of
tissue is increased.36 However, with the decrease mass of
tissue, overall glutamine consumption in the long term is less
than controls37 and muscle stores of glutamine remain
unchanged.38 The addition of glutamine or arginine to enteral
feeds after extensive resection does not seem to produce a
consistent effect between studies, indeed there is little
evidence that either amino acid increases adaptation and
some groups have reported lower protein and DNA levels
than controls.39–44 Supplementation of enteral feeds with
ornithine a ketoglutarate (OKG), the soluble ornithine salt,
does seem to have a positive effect on intestinal morphology
and mucosal polyamine synthesis.45

Carbohydrates
Luminal enzymes, such as amylase, digest polysaccharide
carbohydrate into oligosaccharides and disaccharides.
Oligosaccharides and disaccharides are hydrolysed to mono-
saccharides by intestinal membrane brush border enzymes,
such as disaccharidases. Disaccharidase activity increases
significantly after resection.42 45

The monosaccharides are absorbed by the enterocyte by
facilitative and active dependent transport. Glucose absorp-
tion is by sodium dependent transporters both actively, via
SLGT 1, and down concentration gradients, via GLUT 2 and
GLUT 5.46 The expression of SGLT 1 is transiently increased
after experimental resection.15 46

Changes associated with experimental
adaptation

Morphological

N Macroscopic

– Dilatation
– Thickening
– Increase in length

N Microscopic

– Villus: increase height and diameter
– Crypt: elongation
– Epithelial cell life cycle: increase proliferation;

decrease apoptosis

N Protein content

– Increase RNA content
– Increase DNA content

Functional

N Absorption

– Carbohydrate: increase absorption per unit length
– Protein: increase absorption per unit length
– Electrolytes: upregulation of sodium-glucose

transporter
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Short chain fatty acids (SCFA), such as butyrate, are
produced by bacterial hydrolysation and fermentation of
carbohydrates and proteins that reach the colon undigested.
SCFA can be absorbed by colonocytes and provide energy.
Complex carbohydrates such as fibre are one such source of
SCFA in the diet. Diets high in fibre and butyrate have been
shown to increase the content of DNA, RNA, and protein per
unit weight of small intestine mucosa after resection in
rodents compared with controls.47

In humans, fermentation of non-digested carbohydrate in
the colon to SCFA can result in a decrease in luminal pH and
an overgrowth in D-lactate producing bacteria, such as
Lactobacillus acidophilus, Lactobacillus fermenti, and streptococ-
cus. This may result in D-lactic acidosis,5 48 which presents
with non-hepatic encephalopathy, ataxia, dysarthria, and
severe metabolic acidosis. Management requires low carbo-
hydrate diets and supportive treatments, such as dialysis.48

Lipids
The main mechanism of lipid absorption is by passive
diffusion, although the evidence for protein facilitated
transfer is accumulating.49–51 Fatty acid binding protein
(I-FABP)52 and fatty acid translocase (FAT/CD36)53 54 are
expressed in the intestine and upregulated after resection in
rodents.55 56 However, this is not accompanied by the
increased intestinal uptake of long chain fatty acids (LCFA).57

Essential fatty acids may be required for optimal adapta-
tion after resection. Rats fed fatty acid deficient diets had
reduced mucosal hyperplasia compared with controls.58

However, a low fat normo-caloric diet, reduces but does not
abolish the adaptive response.56 59

LCFAs, such as arachiodonic acid and eicosapentaenoic
acid also contribute towards the adaptive response.60

Supplementation of the diet with linoleic acid or medhaden
oil both produce increases in adaptive changes compared
with controls.61 62 LCFA, may exert their effects by arachio-
donic acid metabolites such as prostaglandin.60 Inhibition of
prostaglandin by administration of aspirin, or cyclo-oxygen-
ase inhibitors only reduces the expected adaptive response of
the distal ileum.60 63 Unfortunately, patients with extensive
distal small bowel resections have reduced bile salt concen-
trations in the duodenum as re-absorption normally occurs in
the ileum. This leads to a decrease in micellar solubilisation,
and malabsorption of LCFA in particular.5

EFFECTS OF PARENTERAL NUTRITION (SEE BOX)
In normal rodents maintained on parenteral nutrition with
no luminal nutrition there is significant mucosal hypoplasia,
with lower mucosal protein and DNA content, and increases
in apoptosis accompanied by decreases in mitoses in the
villus and crypt.64 65 After extensive experimental gut resec-
tions, the adaptive response is limited but not abolished
when no nutrition is provided orally.66–70 Scarce data exist
regarding the effects on healthy human subjects. In eight
volunteers, nutrition was provided parenterally for 14 days.
The investigators found subtle mucosal changes, with an
increase in intestinal permeability and a decrease in jejunal
biopsy mucosal thickness attributable solely to a decrease in
villus cell count.71 A small randomised human study showed
that short term addition of glutamine to TPN prevented the
increase in permeability and loss of villus height.72

DIET TYPES
Elemental diets are liquid feeds containing protein as free
amino-acids, carbohydrates as glucose or simple sugars, fat as
small quantities of defined essential fatty acids, plus vitamins
and minerals.73 The elemental diet is theoretically more easily
absorbed. In patients with short bowel syndrome, studies
have found no74 or little75 difference in protein, energy, or

fluid absorption between complex or elemental diets. Indeed
providing nutrition to rodents only as an elemental diet
produces mucosal hypoplasia.76 77

NON-NUTRIENT FACTORS INVOLVED IN
ADAPTATION
Table 1 gives a summary of the factors involved in
adaptation.

Growth hormone and insulin-like growth factors
In rodent systems growth hormone has been shown to
promote adaptation by increasing bowel length and function
per unit length.78 79 Human trials have been performed and
these are discussed later.
Growth hormone mediates its trophic effects by insulin-

like growth factor-I (IGF-I).33 80 81 IGF-I produces its main
biological actions through the type 1 insulin-like growth
factor receptor,81 which is distributed uniformly on epithelial
cells through the small intestine, but is present to a higher
degree in the colon.82 In serum, IGF-I is bound to circulating
binding proteins (insulin like growth factor binding proteins
(IGFBP)). The IGFBPs can also have independent effects on
cell growth; for example IGFBP-3, the predominant binding
protein, has pro-apoptotic activity.83

Growth hormone stimulates IGF-I production in the liver
and locally within the intestine, leading to an increase in
serum and intestinal IGF-I.80 84 Normal small bowel epithe-
lium expresses little of no IGF-I.81 Treatment of human
duodenal biopsy specimens with IGF-I significantly increased
crypt cell proliferation rate,80 while administration of IGF-I
and glutamine to rodents increases total ileal DNA content
after resection, suggesting that IGF-I induces proliferation in
vivo.85 Exogenous IGF-I given to rodents strongly increases
IGFBP-5 mRNA in the jejunal lamina propria and muscularis,
while growth hormone produces modest increases in
IGFBP-5 mRNA in the muscularis only.81 86 IGFBP-5 stimu-
lates proliferation in isolated human intestinal smooth
muscle cells, both independent of IGF-I, and by potentiating
the effect of IGF-I-receptor interaction.87

The role of IGF-I in human short bowel syndrome in vivo is
yet to be evaluated. Several studies have reported a link
between raised serum IGF-I, in the presence of low levels
IGFBP-3, with increased risks of breast,88 prostate,89 colo-
rectal,90 and lung91cancers. As such human trials of IGF-I may
prove ethically difficult to perform.
Insulin-like growth factor II (IGF-II), which is important

for normal development and growth, has also been studied.
However there is little evidence that parenteral administra-
tion of IGF-II produces significant changes in villus height,
crypt depth, or small bowel weight after experimental
resection.92 Indeed rats given IGF-II after resection lose
weight compared with baseline and controls.92

Epidermal growth factors
The family of epidermal growth factors, includes epidermal
growth factor (EGF), transforming growth factor a (TGFa),
and heparin binding epidermal-like growth factor
(HBEGF).93 All bind the epidermal growth factor receptor
(c-erb B-1)93 that is expressed on the basolateral surface of
intestinal epithelial cells.94 EGF is produced by the Brunner
glands of the duodenum and in salivary glands.95 Increases in
EGF improve the normal adaptive response after extensive
rodent small bowel resection.96 97 Reduction of circulating
EGF or inhibition of EGF receptor reduces adaptation in
rodent models.98 99

TGFa is produced by the gastrointestinal epithelium,
mainly by fully mature villus enterocytes100 101 and stimulates
epithelial cell proliferation in vitro. Exogenous TGFa
increases the adaptive response after experimental resection,
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with increased epithelial cell proliferation and decreased
apoptosis.102

HBEGF, a powerful mitogen for epithelial cells, is
expressed in a number of tissues, including the intestinal
epithelium itself.103 104 In vitro the expression of HBEGF
mRNA is upregulated in injured culture intestinal epithelial
cells.105 In vitro stimulation of pre-adipocyte cells via the IGF
receptor produces selective upregulation of HBEGF mRNA.106

HBEGF may therefore play a part in the mitogenic effect of
IGF-I.

Glucagon-like peptides
Proglucagon derived peptides are secreted from the intestinal
mucosa after ingestion of food and may be important in
adaptation.107 Nude mice with subcutaneous proglucagon
producing tumours show signs of intestinal epithelium
proliferation. Glucagon-like peptide 2 (GLP2) was proposed
to be the derivative of proglucagon responsible, as parenteral
administration of GLP2 produced an increased bowel length,
and villus height in both jejunum and ileum.108 GLP2
stimulates intestinal epithelial proliferation in vitro.109 After
resection of .75% of the intestine in rodents, parenteral
GLP2 increased the intestinal diameter, crypt-villus ratio,
sucrase activity, total protein, and DNA per centimetre of
jejunum but not the ileum when compared with controls.110

The role of endogenously produced GLP2 has been studied
in experimental resection models. It is secreted by L-type
entero-endocrine cells on nutrient stimulation. These cells are
situated mainly in the distal small intestine and colon.94 In
rodents, resection followed by oral feeding produces
increased expression of proglucagon mRNA in the ileum,
with an associated sustained increase in plasma GLP2, and a
large increase in observed crypt cell mitoses. Resection,
followed by parenteral nutrition alone, produced a transient
increase in plasma GLP2 and an increased expression of pro-
glucagon mRNA of the colon. Resection produced a sig-
nificant adaptive response in both groups; however in the
resection/parenteral nutrition group there was only a modest
increase in crypt mitoses.70

In mice, the mRNA encoding the receptor for GLP2
(GLP2R) is expressed in the intestine. However, it seems
that GLP2R is expressed only on enteric neurons27 and not
entero-endocrine cells as previously reported.111 These neu-
rons lie in the submucosal plexus and most of their
projections are in the sub-epithelial region around the crypts.
Blocking enteric neurons using tetrodotoxin suppresses the
proliferation of epithelial cells in response to GLP2.27 The
evidence for the influence of GLP2 on the enteric nervous
system is added by the finding it may also increase gut transit
time.112

Other factors
A number of other factors have been shown to increase
adaptation but not studied extensively.
Hepatocyte growth factor (HGF) and its receptor c-Met are

expressed in many tissues including the intestine.100 After
massive experimental resection, intestinal mass and function
are increased with administration of HGF compared with
controls.113 There is evidence that HGF produces increases in
the gene expression of glucose transporters, SGLT1 and
GLUT5.114

Keratinocyte growth factor induces epithelial cell prolif-
eration and up-regulates antiapoptotic factors in the intes-
tine.115 It is produced locally in the gut by intraepithelial
lymphocytes and stromal cells in the lamina propria.116

Parenteral administration of KGF has been shown to increase
adaptation in a rat117 and a mouse118 model of short bowel
syndrome.
Neurotensin, a 13-amino acid peptide is produced mainly

by N-type entero-endocrine cells in the ileum,77 and released
normally after fat ingestion. When given exogenously,
neurotensin has been shown to increase the villus height
but increases in intestinal mass compared with control
animals after massive intestinal resection have not been
reproduced between studies.119 120 The effects of neurotensin
may be mediated by pro-glucagon derived peptides.120

Leptin is produced by adipocytes, and regulates thermo-
genesis and appetite.121 The initial study that located leptin
receptors in the small intestine, concluded that, in normal

Table 1 Factors involved in adaptation

Factor Experimental Human

Growth hormone Increase bowel length and function per unit length Low dose beneficial in the
short term

Effects are probably mediated via insulin-like growth
factors

Insulin-like growth factors
IGFI Increase crypt cell and smooth muscle proliferation No human trials

Associated increases in binding protein, IGFBP5 also
stimulate proliferation.

Epidermal growth factors
EGF, TGFa Increase enterocyte proliferation and decrease

apoptosis.
No human trials

Glucagon-like peptides
GLP2 Increase in crypt cell proliferation. Effects may be

mediate by enteric nervous system
Improves absorption of
carbohydrate, and increases
body weight compared with
placebo, in patients with no
colon.

Other factors
HGF Increase in DNA content, mass and function of

resected intestine
No human trials

KGF Increase epithelial cell proliferation, decrease
apoptosis

No human trials

Neurotensin Increase villus height—may act via pro-glucagon
derived peptides

No human trials

Leptin Increase carbohydrate absorption No human trials
Interleukin 11 Increase epithelial proliferation No human trials

Increase absorption at high doses
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rats, administration of leptin inhibits sugar absorption.122

However, other studies have shown that leptin seems to
increase carbohydrate absorption in the intestine of normal123

and massively restected rats.121 DNA content and mucosal
mass were not increased by leptin in the short bowel
syndrome model.
Interleukin 11 (IL11) is a bone marrow derived cytokine

that has been shown to have effects on numerous tissues
including the blood, central nervous system, reproductive
organs, and the gut.124 It has been shown experimentally to
reduce gastrointestinal mucosal injury caused by chemother-
apy and radiation125 126 by increasing mitoses in crypt cells. In
a resection model of short bowel syndrome in rats, IL11
administration increases mucosal thickness, with prolifera-
tion of enterocytes,127 but only at high doses can it increase
carbohydrate absorption.128

OPTIMISING ADAPTATION IN CLINICAL PRACTICE
Attempts to maximise the number of patients who can be
weaned off PN have been made by optimising the adaptive
process using strategies based on experimental short bowel
systems described previously.

Growth hormone and glutamine
Uncontrolled cohort studies have shown that 40% of patients
with short bowel syndrome, were independent of HPN within
one year of treatment with 28 days high dose growth
hormone (0.09 mg/kg/day), continual glutamine (30 g/day)
and high fibre diet supplementation.129 130 A more recent
report has found that this strategy was more successful in
patients with a preserved colon.131

Three small, randomised controlled trials using growth
hormone have been performed. Scolapio and colleagues132

randomised eight patients with short bowel syndrome,
dependent on HPN (.3 years), to receive a 21 day course
of either active treatment or placebo. Active treatment
involved growth hormone (0.14 mg/kg/day), glutamine and
a high carbohydrate, low fat diet (1500 kcal/day). Patients
crossed over to the other treatment arm at three weeks. There
were no significant differences in basal metabolic rate,
carbohydrate absorption, villus/crypt morphology, or crypt
cell proliferation. There was however a significant increase in
sodium and potassium absorption, and a delay in gastric
emptying in the treatment group. All patients gained weight
because of oedema, but any positive effects were not
sustained.133

A second trial134 examined the effect of four weeks high
dose growth hormone (0.12 mg/kg/day) and glutamine, with
no change in diet, in eight patients, all of whom had been
dependent on HPN for at least one year. No significant
changes in absorption of energy, wet weight, carbohydrate,
sodium, potassium, calcium, magnesium, or nitrogen were
found five days after withdrawal of treatment. All patients
complained of side effects during the treatment arm of the
study, including peripheral oedema, carpal tunnel syndrome,
and gynaecomastia.
The most recent randomised cross over trial135 has found a

positive effect with three weeks treatment of low dose growth
hormone (0.05 mg/kg/day) in combination with an unres-
tricted hyperphagic diet (.onefold estimated basal metabolic
rate, with at least 1 g protein/kg/day). Twelve adult patients
with short bowel syndrome, dependent on HPN for at least
one year, were included, and patients assessed for five days
after treatment. Significant increases in lean body mass and
absorption of energy, nitrogen, carbohydrate, and fat were
found after treatment compared with controls. The mean
(SD) increase in intestinal absorption corresponded to 37%
(16%) of total HPN energy delivery. Although this study only
examined the short term results, the potential longer term

effects of this treatment may have an impact on parenteral
nutrition dependence.

Glucagon-like peptide
The normal rises in plasma concentrations of GLP2 after a
test meal, are reduced in size and duration in HPN patients
who have undergone massive small bowel resection and
colectomy.112 However, patients with intestinal failure who
had a preserved colon have increased fasting GLP2 and an
increased meal stimulated response compared with age
match controls.136 Administration of GLP2 may improve
nutrient absorption in patients with no colon. Eight patients,
with short bowel syndrome, all of whom had undergone ileal
and colonic resection were given 400 mg of GLP2 subcuta-
neously twice daily for five weeks. Improvements with
treatment compared with controls were seen in intestinal
absorption of energy, wet weight, and nitrogen, as well as
increases in lean body mass and overall body weight. There
were no changes in transit time. There were minimal adverse
effects described and patient compliance was good.137

However, only four patients in this study actually required
home PN.

CONCLUSION
Adaptation is a complex process that results in response to
nutrient and non-nutrient stimuli. Successful and reprodu-
cible strategies to increase adaptation remain elusive despite
an abundance of experimental data. Given the small number
of patients with irreversible intestinal failure, conducting
trials with sufficient power in appropriate populations is
difficult. Unless multicentre studies are undertaken the
evidence for the effectiveness of treatments designed to
increase adaptation is likely to remain weak. Nevertheless
given the low patient survival and quality of life associated
with other treatments for irreversible intestinal failure it is
imperative that research continues into the optimisation of
the adaptation.
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