Abstract
Sialyltransferase (Stase) in Neisseria gonorrhoeae organisms (gonococci [GC]) transfers sialic acid (N-acetylneuraminic acid [NANA]) from cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NANA) mainly to the terminal galactose (Gal) residue in the Gal beta-1,4 N-acetylglucosamine (Gal-GlcNAc)-R lipooligosaccharide (LOS) structure. Sialylated GC resist killing by normal human serum, sometimes show reduced invasion of epithelial cells, and have reduced adhesion to and stimulation of human neutrophils. We questioned whether Stase itself modulates the interactions of GC with human epithelial cells and neutrophils in the absence of exogenous CMP-NANA. To that end, we treated strain F62 with ethyl methanesulfonate and grew approximately 175,000 colonies on CMP-NANA plates, and screened them with monoclonal antibody 1B2-1B7 (MAb 1B2). MAb 1B2 is specific for Gal-GlcNAc and reacts only with asialylated GC. We isolated 13 MAb 1B2-reactive mutants, including five null mutants, that had Stase activities ranging from barely detectable to fivefold less than that of wild-type (WT) F62. The LOS phenotype of Stase null mutants was identical to that of WT F62, yet the mutants could not sialylate their LOS when grown with CMP-NANA. The Stase null phenotype was rescuable to Stase+ by transformation with chromosomal DNA from WT F62. Stase null mutants remained serum sensitive even when grown with CMP-NANA. One Stase null mutant, ST94A, adhered to and invaded the human cervical epithelial cell line ME-180 at levels indistinguishable from that of WT F62 in the absence of CMP-NANA. In human neutrophil studies, ST94A stimulated the oxidative burst in and adhered to human neutrophils at levels similar to those of WT F62. ST94A and WT F62 were also phagocytically killed by neutrophils at similar levels. These results indicate that expression of Stase activity is not required for interaction of GC with human cells.
Full Text
The Full Text of this article is available as a PDF (420.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apicella M. A., Ketterer M., Lee F. K., Zhou D., Rice P. A., Blake M. S. The pathogenesis of gonococcal urethritis in men: confocal and immunoelectron microscopic analysis of urethral exudates from men infected with Neisseria gonorrhoeae. J Infect Dis. 1996 Mar;173(3):636–646. doi: 10.1093/infdis/173.3.636. [DOI] [PubMed] [Google Scholar]
- Apicella M. A., Mandrell R. E., Shero M., Wilson M. E., Griffiss J. M., Brooks G. F., Lammel C., Breen J. F., Rice P. A. Modification by sialic acid of Neisseria gonorrhoeae lipooligosaccharide epitope expression in human urethral exudates: an immunoelectron microscopic analysis. J Infect Dis. 1990 Aug;162(2):506–512. doi: 10.1093/infdis/162.2.506. [DOI] [PubMed] [Google Scholar]
- Apicella M. A., Westerink M. A., Morse S. A., Schneider H., Rice P. A., Griffiss J. M. Bactericidal antibody response of normal human serum to the lipooligosaccharide of Neisseria gonorrhoeae. J Infect Dis. 1986 Mar;153(3):520–526. doi: 10.1093/infdis/153.3.520. [DOI] [PubMed] [Google Scholar]
- Belland R. J., Chen T., Swanson J., Fischer S. H. Human neutrophil response to recombinant neisserial Opa proteins. Mol Microbiol. 1992 Jul;6(13):1729–1737. doi: 10.1111/j.1365-2958.1992.tb01345.x. [DOI] [PubMed] [Google Scholar]
- Bramley J., Demarco de Hormaeche R., Constantinidou C., Nassif X., Parsons N., Jones P., Smith H., Cole J. A serum-sensitive, sialyltransferase-deficient mutant of Neisseria gonorrhoeae defective in conversion to serum resistance by CMP-NANA or blood cell extracts. Microb Pathog. 1995 Mar;18(3):187–195. doi: 10.1016/s0882-4010(95)90040-3. [DOI] [PubMed] [Google Scholar]
- Datta A. K., Paulson J. C. The sialyltransferase "sialylmotif" participates in binding the donor substrate CMP-NeuAc. J Biol Chem. 1995 Jan 27;270(4):1497–1500. doi: 10.1074/jbc.270.4.1497. [DOI] [PubMed] [Google Scholar]
- Dempsey J. A., Cannon J. G. Locations of genetic markers on the physical map of the chromosome of Neisseria gonorrhoeae FA1090. J Bacteriol. 1994 Apr;176(7):2055–2060. doi: 10.1128/jb.176.7.2055-2060.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elkins C., Carbonetti N. H., Varela V. A., Stirewalt D., Klapper D. G., Sparling P. F. Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipopolysaccharide is not sialylated. Mol Microbiol. 1992 Sep;6(18):2617–2628. doi: 10.1111/j.1365-2958.1992.tb01439.x. [DOI] [PubMed] [Google Scholar]
- Farrell C. F., Rest R. F. Up-regulation of human neutrophil receptors for Neisseria gonorrhoeae expressing PII outer membrane proteins. Infect Immun. 1990 Sep;58(9):2777–2784. doi: 10.1128/iai.58.9.2777-2784.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer S. H., Rest R. F. Gonococci possessing only certain P.II outer membrane proteins interact with human neutrophils. Infect Immun. 1988 Jun;56(6):1574–1579. doi: 10.1128/iai.56.6.1574-1579.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frangipane J. V., Rest R. F. Anaerobic growth and cytidine 5'-monophospho-N-acetylneuraminic acid act synergistically to induce high-level serum resistance in Neisseria gonorrhoeae. Infect Immun. 1993 May;61(5):1657–1666. doi: 10.1128/iai.61.5.1657-1666.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frangipane J. V., Rest R. F. Anaerobic growth of gonococci does not alter their Opa-mediated interactions with human neutrophils. Infect Immun. 1992 May;60(5):1793–1799. doi: 10.1128/iai.60.5.1793-1799.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hitchcock P. J. Analyses of gonococcal lipopolysaccharide in whole-cell lysates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis: stable association of lipopolysaccharide with the major outer membrane protein (protein I) of Neisseria gonorrhoeae. Infect Immun. 1984 Oct;46(1):202–212. doi: 10.1128/iai.46.1.202-212.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim J. J., Zhou D., Mandrell R. E., Griffiss J. M. Effect of exogenous sialylation of the lipooligosaccharide of Neisseria gonorrhoeae on opsonophagocytosis. Infect Immun. 1992 Oct;60(10):4439–4442. doi: 10.1128/iai.60.10.4439-4442.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitagawa H., Paulson J. C. Cloning of a novel alpha 2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups. J Biol Chem. 1994 Jan 14;269(2):1394–1401. [PubMed] [Google Scholar]
- Lesse A. J., Campagnari A. A., Bittner W. E., Apicella M. A. Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods. 1990 Jan 24;126(1):109–117. doi: 10.1016/0022-1759(90)90018-q. [DOI] [PubMed] [Google Scholar]
- Livingston B. D., Paulson J. C. Polymerase chain reaction cloning of a developmentally regulated member of the sialyltransferase gene family. J Biol Chem. 1993 Jun 5;268(16):11504–11507. [PubMed] [Google Scholar]
- Mandrell R. E., Apicella M. A. Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS. Immunobiology. 1993 Apr;187(3-5):382–402. doi: 10.1016/S0171-2985(11)80352-9. [DOI] [PubMed] [Google Scholar]
- Mandrell R. E., Lesse A. J., Sugai J. V., Shero M., Griffiss J. M., Cole J. A., Parsons N. J., Smith H., Morse S. A., Apicella M. A. In vitro and in vivo modification of Neisseria gonorrhoeae lipooligosaccharide epitope structure by sialylation. J Exp Med. 1990 May 1;171(5):1649–1664. doi: 10.1084/jem.171.5.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandrell R. E., Smith H., Jarvis G. A., Griffiss J. M., Cole J. A. Detection and some properties of the sialyltransferase implicated in the sialylation of lipopolysaccharide of Neisseria gonorrhoeae. Microb Pathog. 1993 Apr;14(4):307–313. doi: 10.1006/mpat.1993.1030. [DOI] [PubMed] [Google Scholar]
- McAllister C. F., Stephens D. S. Analysis in Neisseria meningitidis and other Neisseria species of genes homologous to the FKBP immunophilin family. Mol Microbiol. 1993 Oct;10(1):13–23. doi: 10.1111/j.1365-2958.1993.tb00899.x. [DOI] [PubMed] [Google Scholar]
- Nairn C. A., Cole J. A., Patel P. V., Parsons N. J., Fox J. E., Smith H. Cytidine 5'-monophospho-N-acetylneuraminic acid or a related compound is the low Mr factor from human red blood cells which induces gonococcal resistance to killing by human serum. J Gen Microbiol. 1988 Dec;134(12):3295–3306. doi: 10.1099/00221287-134-12-3295. [DOI] [PubMed] [Google Scholar]
- Parsons N. J., Boons G. J., Ashton P. R., Redfern P. D., Quirk P., Gao Y., Constantinidou C., Patel J., Bramley J., Cole J. A. Lactic acid is the factor in blood cell extracts which enhances the ability of CMP-NANA to sialylate gonococcal lipopolysaccharide and induce serum resistance. Microb Pathog. 1996 Feb;20(2):87–100. doi: 10.1006/mpat.1996.0008. [DOI] [PubMed] [Google Scholar]
- Parsons N. J., Curry A., Fox A. J., Jones D. M., Cole J. A., Smith H. The serum resistance of gonococci in the majority of urethral exudates is due to sialylated lipopolysaccharide seen as a surface coat. FEMS Microbiol Lett. 1992 Jan 15;69(3):295–299. doi: 10.1016/0378-1097(92)90663-9. [DOI] [PubMed] [Google Scholar]
- Parsons N. J., Patel P. V., Tan E. L., Andrade J. R., Nairn C. A., Goldner M., Cole J. A., Smith H. Cytidine 5'-monophospho-N-acetyl neuraminic acid and a low molecular weight factor from human blood cells induce lipopolysaccharide alteration in gonococci when conferring resistance to killing by human serum. Microb Pathog. 1988 Oct;5(4):303–309. doi: 10.1016/0882-4010(88)90103-9. [DOI] [PubMed] [Google Scholar]
- Porat N., Apicella M. A., Blake M. S. A lipooligosaccharide-binding site on HepG2 cells similar to the gonococcal opacity-associated surface protein Opa. Infect Immun. 1995 Jun;63(6):2164–2172. doi: 10.1128/iai.63.6.2164-2172.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porat N., Apicella M. A., Blake M. S. Neisseria gonorrhoeae utilizes and enhances the biosynthesis of the asialoglycoprotein receptor expressed on the surface of the hepatic HepG2 cell line. Infect Immun. 1995 Apr;63(4):1498–1506. doi: 10.1128/iai.63.4.1498-1506.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rest R. F., Frangipane J. V. Growth of Neisseria gonorrhoeae in CMP-N-acetylneuraminic acid inhibits nonopsonic (opacity-associated outer membrane protein-mediated) interactions with human neutrophils. Infect Immun. 1992 Mar;60(3):989–997. doi: 10.1128/iai.60.3.989-997.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rest R. F., Mandrell R. E. Neisseria sialytransferases and their role in pathogenesis. Microb Pathog. 1995 Dec;19(6):379–390. doi: 10.1006/mpat.1995.0073. [DOI] [PubMed] [Google Scholar]
- Rest R. F. Measurement of human neutrophil respiratory burst activity during phagocytosis of bacteria. Methods Enzymol. 1994;236:119–136. doi: 10.1016/0076-6879(94)36012-x. [DOI] [PubMed] [Google Scholar]
- Rest R. F., Speert D. P. Measurement of nonopsonic phagocytic killing by human and mouse phagocytes. Methods Enzymol. 1994;236:91–108. doi: 10.1016/0076-6879(94)36010-3. [DOI] [PubMed] [Google Scholar]
- Schneider H., Griffiss J. M., Boslego J. W., Hitchcock P. J., Zahos K. M., Apicella M. A. Expression of paragloboside-like lipooligosaccharides may be a necessary component of gonococcal pathogenesis in men. J Exp Med. 1991 Dec 1;174(6):1601–1605. doi: 10.1084/jem.174.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Simon D., Rest R. F. Escherichia coli expressing a Neisseria gonorrhoeae opacity-associated outer membrane protein invade human cervical and endometrial epithelial cell lines. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5512–5516. doi: 10.1073/pnas.89.12.5512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith H., Cole J. A., Parsons N. J. The sialylation of gonococcal lipopolysaccharide by host factors: a major impact on pathogenicity. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):287–292. doi: 10.1111/j.1574-6968.1992.tb14054.x. [DOI] [PubMed] [Google Scholar]
- Smith H., Parsons N. J., Cole J. A. Sialylation of neisserial lipopolysaccharide: a major influence on pathogenicity. Microb Pathog. 1995 Dec;19(6):365–377. doi: 10.1006/mpat.1995.0071. [DOI] [PubMed] [Google Scholar]
- Stein D. C., Danaher R. J., Cook T. M. Characterization of a gyrB mutation responsible for low-level nalidixic acid resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1991 Apr;35(4):622–626. doi: 10.1128/aac.35.4.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
- Ullrich J., van Putten J. P. Identification of the gonococcal glmU gene encoding the enzyme N-acetylglucosamine 1-phosphate uridyltransferase involved in the synthesis of UDP-GlcNAc. J Bacteriol. 1995 Dec;177(23):6902–6909. doi: 10.1128/jb.177.23.6902-6909.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Virji M., Heckels J. E. The effect of protein II and pili on the interaction of Neisseria gonorrhoeae with human polymorphonuclear leucocytes. J Gen Microbiol. 1986 Feb;132(2):503–512. doi: 10.1099/00221287-132-2-503. [DOI] [PubMed] [Google Scholar]
- Wetzler L. M., Barry K., Blake M. S., Gotschlich E. C. Gonococcal lipooligosaccharide sialylation prevents complement-dependent killing by immune sera. Infect Immun. 1992 Jan;60(1):39–43. doi: 10.1128/iai.60.1.39-43.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiseman G. M., Caird J. D. Composition of the lipopolysaccharide of Neisseria gonorrhoeae. Infect Immun. 1977 May;16(2):550–556. doi: 10.1128/iai.16.2.550-556.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de la Paz H., Cooke S. J., Heckels J. E. Effect of sialylation of lipopolysaccharide of Neisseria gonorrhoeae on recognition and complement-mediated killing by monoclonal antibodies directed against different outer-membrane antigens. Microbiology. 1995 Apr;141(Pt 4):913–920. doi: 10.1099/13500872-141-4-913. [DOI] [PubMed] [Google Scholar]
- van Putten J. P. Phase variation of lipopolysaccharide directs interconversion of invasive and immuno-resistant phenotypes of Neisseria gonorrhoeae. EMBO J. 1993 Nov;12(11):4043–4051. doi: 10.1002/j.1460-2075.1993.tb06088.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Putten J. P., Robertson B. D. Molecular mechanisms and implications for infection of lipopolysaccharide variation in Neisseria. Mol Microbiol. 1995 Jun;16(5):847–853. doi: 10.1111/j.1365-2958.1995.tb02312.x. [DOI] [PubMed] [Google Scholar]
