Abstract
The host response to Pseudomonas aeruginosa lung infection varies among inbred mouse strains. Mice of the BALB/c strain are resistant to P. aeruginosa lung infection, whereas mice of the DBA/2 strain are susceptible. This phenotypic variation correlates with a difference in the magnitude of the inflammatory response induced early following infection. In order to determine whether the ability of lung phagocytic cells to kill P. aeruginosa plays a role in the host response to the infection, we measured the in vitro bactericidal activity of resident and inflammatory alveolar and interstitial macrophages, using a temperature-sensitive mutant of P. aeruginosa. Lung macrophages obtained from resistant and susceptible animals displayed similar bactericidal activities, suggesting that the ability of phagocytes to kill P. aeruginosa does not play a crucial role in the outcome of infection. The bactericidal activity of lung phagocytes was also assessed in vivo following endobronchial infection with the temperature-sensitive mutant of P. aeruginosa. Resistant mice showed a rapid influx of polymorphonuclear leukocytes (PMNs) to the bronchoalveolar space which was shortly followed by an efficient clearance of the bacteria. Susceptible mice had a delay in both the inflammatory response to P. aeruginosa and the initiation of bacterial clearance. Susceptible mice have been shown to have a defect in tumor necrosis factor alpha production when infected intratracheally with P. aeruginosa. Intratracheal instillation of tumor necrosis factor alpha to susceptible mice at the time of infection significantly improved the recruitment of PMNs to the site of infection without affecting the process of bacterial clearance. Overall, these results suggest that both recruitment of a high number of PMNs to the lungs and an efficient activation process of the phagocytes are crucial for the prompt clearance of P. aeruginosa.
Full Text
The Full Text of this article is available as a PDF (383.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amura C. R., Fontan P. A., Sanjuan N., Sordelli D. O. The effect of treatment with interleukin-1 and tumor necrosis factor on Pseudomonas aeruginosa lung infection in a granulocytopenic mouse model. Clin Immunol Immunopathol. 1994 Nov;73(2):261–266. doi: 10.1006/clin.1994.1196. [DOI] [PubMed] [Google Scholar]
- Baltimore R. S., Christie C. D., Smith G. J. Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. Am Rev Respir Dis. 1989 Dec;140(6):1650–1661. doi: 10.1164/ajrccm/140.6.1650. [DOI] [PubMed] [Google Scholar]
- Berger M. Inflammation in the lung in cystic fibrosis. A vicious cycle that does more harm than good? Clin Rev Allergy. 1991 Spring-Summer;9(1-2):119–142. doi: 10.1007/978-1-4612-0475-6_8. [DOI] [PubMed] [Google Scholar]
- Bonfield T. L., Panuska J. R., Konstan M. W., Hilliard K. A., Hilliard J. B., Ghnaim H., Berger M. Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):2111–2118. doi: 10.1164/ajrccm.152.6.8520783. [DOI] [PubMed] [Google Scholar]
- Buret A., Dunkley M. L., Pang G., Clancy R. L., Cripps A. W. Pulmonary immunity to Pseudomonas aeruginosa in intestinally immunized rats roles of alveolar macrophages, tumor necrosis factor alpha, and interleukin-1 alpha. Infect Immun. 1994 Dec;62(12):5335–5343. doi: 10.1128/iai.62.12.5335-5343.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Correlation between genotype and phenotype in patients with cystic fibrosis. The Cystic Fibrosis Genotype-Phenotype Consortium. N Engl J Med. 1993 Oct 28;329(18):1308–1313. doi: 10.1056/NEJM199310283291804. [DOI] [PubMed] [Google Scholar]
- Cripps A. W., Dunkley M. L., Clancy R. L., Kyd J. Pulmonary immunity to Pseudomonas aeruginosa. Immunol Cell Biol. 1995 Oct;73(5):418–424. doi: 10.1038/icb.1995.65. [DOI] [PubMed] [Google Scholar]
- Crowell R. E., Heaphy E., Valdez Y. E., Mold C., Lehnert B. E. Alveolar and interstitial macrophage populations in the murine lung. Exp Lung Res. 1992 Jul-Aug;18(4):435–446. doi: 10.3109/01902149209064338. [DOI] [PubMed] [Google Scholar]
- Doerschuk C. M., Winn R. K., Coxson H. O., Harlan J. M. CD18-dependent and -independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J Immunol. 1990 Mar 15;144(6):2327–2333. [PubMed] [Google Scholar]
- Dunkley M., Pabst R., Cripps A. An important role for intestinally derived T cells in respiratory defence. Immunol Today. 1995 May;16(5):231–236. doi: 10.1016/0167-5699(95)80165-0. [DOI] [PubMed] [Google Scholar]
- Gervais F., Morris-Hooke A., Tran T. A., Skamene E. Analysis of macrophage bactericidal function in genetically resistant and susceptible mice by using the temperature-sensitive mutant of Listeria monocytogenes. Infect Immun. 1986 Nov;54(2):315–321. doi: 10.1128/iai.54.2.315-321.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gosselin D., DeSanctis J., Boulé M., Skamene E., Matouk C., Radzioch D. Role of tumor necrosis factor alpha in innate resistance to mouse pulmonary infection with Pseudomonas aeruginosa. Infect Immun. 1995 Sep;63(9):3272–3278. doi: 10.1128/iai.63.9.3272-3278.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerem E., Corey M., Kerem B. S., Rommens J., Markiewicz D., Levison H., Tsui L. C., Durie P. The relation between genotype and phenotype in cystic fibrosis--analysis of the most common mutation (delta F508). N Engl J Med. 1990 Nov 29;323(22):1517–1522. doi: 10.1056/NEJM199011293232203. [DOI] [PubMed] [Google Scholar]
- Klebanoff S. J., Vadas M. A., Harlan J. M., Sparks L. H., Gamble J. R., Agosti J. M., Waltersdorph A. M. Stimulation of neutrophils by tumor necrosis factor. J Immunol. 1986 Jun 1;136(11):4220–4225. [PubMed] [Google Scholar]
- Koch C., Høiby N. Pathogenesis of cystic fibrosis. Lancet. 1993 Apr 24;341(8852):1065–1069. doi: 10.1016/0140-6736(93)92422-p. [DOI] [PubMed] [Google Scholar]
- Kolls J. K., Nelson S., Summer W. R. Recombinant cytokines and pulmonary host defense. Am J Med Sci. 1993 Nov;306(5):330–335. doi: 10.1097/00000441-199311000-00012. [DOI] [PubMed] [Google Scholar]
- Morissette C., Skamene E., Gervais F. Endobronchial inflammation following Pseudomonas aeruginosa infection in resistant and susceptible strains of mice. Infect Immun. 1995 May;63(5):1718–1724. doi: 10.1128/iai.63.5.1718-1724.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris Hooke A., Sordelli D. O., Cerquetti M. C., Bellanti J. A. Differential growth characteristics and immunogenicity of tight and coasting temperature-sensitive mutants of Pseudomonas aeruginosa. Infect Immun. 1987 Jan;55(1):99–103. doi: 10.1128/iai.55.1.99-103.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogle C. K., Wu J. Z., Mao X., Szczur K., Alexander J. W., Ogle J. D. Heterogeneity of Kupffer cells and splenic, alveolar, and peritoneal macrophages for the production of TNF, IL-1, and IL-6. Inflammation. 1994 Oct;18(5):511–523. doi: 10.1007/BF01560698. [DOI] [PubMed] [Google Scholar]
- Ohno A., Miyazaki S., Tateda K., Kaneko Y., Huruya N., Tsuji A., Yamaguchi K., Goto S. [The study of pathogenic mechanisms of chronic Pseudomonas aeruginosa lung infections by mucoid strains]. Kansenshogaku Zasshi. 1992 Mar;66(3):407–415. doi: 10.11150/kansenshogakuzasshi1970.66.407. [DOI] [PubMed] [Google Scholar]
- Pedersen S. S. Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS Suppl. 1992;28:1–79. [PubMed] [Google Scholar]
- Pierangeli S. S., Sonnenfeld G. Treatment of murine macrophages with murine interferon-gamma and tumour necrosis factor-alpha enhances uptake and intracellular killing of Pseudomonas aeruginosa. Clin Exp Immunol. 1993 Aug;93(2):165–171. doi: 10.1111/j.1365-2249.1993.tb07960.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santis G., Osborne L., Knight R. A., Hodson M. E. Independent genetic determinants of pancreatic and pulmonary status in cystic fibrosis. Lancet. 1990 Nov 3;336(8723):1081–1084. doi: 10.1016/0140-6736(90)92566-z. [DOI] [PubMed] [Google Scholar]
- Santis G., Osborne L., Knight R. A., Hodson M. E. Linked marker haplotypes and the delta F508 mutation in adults with mild pulmonary disease and cystic fibrosis. Lancet. 1990 Jun 16;335(8703):1426–1429. doi: 10.1016/0140-6736(90)91448-j. [DOI] [PubMed] [Google Scholar]
- Santis G., Osborne L., Knight R., Hodson M. E., Ramsay M. Genetic influences on pulmonary severity in cystic fibrosis. Lancet. 1990 Feb 3;335(8684):294–294. doi: 10.1016/0140-6736(90)90114-k. [DOI] [PubMed] [Google Scholar]
- Schmal H., Shanley T. P., Jones M. L., Friedl H. P., Ward P. A. Role for macrophage inflammatory protein-2 in lipopolysaccharide-induced lung injury in rats. J Immunol. 1996 Mar 1;156(5):1963–1972. [PubMed] [Google Scholar]
- Tang W. W., Yi E. S., Remick D. G., Wittwer A., Yin S., Qi M., Ulich T. R. Intratracheal injection of endotoxin and cytokines. IX. Contribution of CD11a/ICAM-1 to neutrophil emigration. Am J Physiol. 1995 Nov;269(5 Pt 1):L653–L659. doi: 10.1152/ajplung.1995.269.5.L653. [DOI] [PubMed] [Google Scholar]
- Zlotnik A., Vatter A., Hayes R. L., Blumenthal E., Crowle A. J. Mouse pleural macrophages: characterization and comparison with mouse alveolar and peritoneal macrophages. J Reticuloendothel Soc. 1982 Mar;31(3):207–220. [PubMed] [Google Scholar]
- van Furth R., van Zwet T. L., Buisman A. M., van Dissel J. T. Anti-tumor necrosis factor antibodies inhibit the influx of granulocytes and monocytes into an inflammatory exudate and enhance the growth of Listeria monocytogenes in various organs. J Infect Dis. 1994 Jul;170(1):234–237. doi: 10.1093/infdis/170.1.234. [DOI] [PubMed] [Google Scholar]