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matter of airway inflammation
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According to the most recent definition, bron-
chial asthma is a chronic inflammatory disorder
of the airways associated with reversible airway
obstruction and increased airway responsiveness
to a variety of stimuli.1 An intuitive inference
from this definition is that a causal relationship
may exist between airway inflammation and air-
way hyperresponsiveness. Along this line of rea-
soning, most of the research in the last two dec-
ades in this field was aimed at identifying
inflammatory cell products possibly responsible
for the pathogenesis of bronchial asthma and
airway hyperresponsiveness.2 However, the com-
mon observation that the asthmatic airways are
equally hyperresponsive to a variety of diVerent
stimuli does challenge the idea that a single
inflammatory cell or mediator may be central to
the pathogenesis of asthma and airway hyperre-
sponsiveness and focuses on the importance of
an altered mechanical response of the target
organ. This view has been recently corroborated
by the finding that airway responsiveness of nor-
mal individuals may become similar to that of
asthmatics by simply changing the pattern of
breathing during the bronchial challenge.3 It is
therefore legitimate to wonder how much of air-
way hyperresponsiveness is due to inflammation
or to inherent predisposing factors.

The aims of the present review are to show
that airway narrowing in asthma is the ultimate
result of an interaction between complex and
multiple mechanisms not necessarily and
uniquely related to airway inflammation, and to
revisit the evidence on which the theorem “air-
way inflammation equal to airway hyperre-
sponsiveness” has been constructed.

Mechanisms of airway narrowing in
asthma
Airway calibre in vivo is the result of a delicate
balance between the force generated by the air-
way smooth muscle (ASM) and a number of
opposing factors.4 The latter are mainly repre-
sented by autonomic mechanisms that tend to
limit the ASM tone and by mechanical forces
that oppose ASM shortening.

AIRWAY SMOOTH MUSCLE (ASM)
Although it is widely accepted that ASM
contraction is a major cause for airway obstruc-
tion in asthma, there is uncertainty as to whether
abnormalities of ASM play any part in the
pathogenesis of airway hyperresponsiveness. In
terms of force-length characteristics, the asth-
matic ASM does not behave diVerently from the
normal ASM.5 6 These data lend support to a
purely immunological view of bronchial asthma
in which the ASM cell is regarded as a normal
eVector of response to abnormal inflammatory
stimuli. Nevertheless, the smooth muscle of

asthmatic airways may be able to generate
greater force than normal because of hypertro-
phy and hyperplasia,7 thus causing excessive air-
way narrowing.8 9 Although the thickness of the
ASM in the airway wall of asthmatic patients
might have been overestimated10 and there is no
proof that an increased mass of smooth muscle
is associated with an increased force generation
capacity,11 the possibility that an increased con-
tractile force developed by ASM might contrib-
ute to airway hyperresponsiveness in asthma
cannot be ruled out.

Recent work has suggested that normal and
asthmatic ASM may diVer in terms of length
shortening characteristics. The capacity and
the velocity of shortening are increased after
passive sensitisation of ASM.12 The increase of
shortening velocity is due to an increase in the
amount and the activity of the myosin light
chain kinase13 and increased phosphorylation
of the 20 kD regulatory unit with increased
cross-bridge cycling rate.14–17 Albeit small, the
diVerence in shortening velocity between asth-
matic and normal ASM may be relevant to the
generation and maintenance of force. Under
normal conditions stretching causes a transient
reduction in ASM tone.18 19 This is considered
an important mechanism for preventing exces-
sive airway narrowing (see below) but it may be
less eYcient if the velocity of shortening is
increased.20

Moreover, sensitised ASM may develop a
myogenic contractile response to stretching.21

This response, which is believed to be a conse-
quence of conversion from multi-unit to
single-unit ASM,22 has been invoked to explain
the sustained bronchoconstriction that occurs
in some asthmatics after taking one or more
deep breaths.23 24

MECHANICAL AND GEOMETRIC FACTORS

The mechanical properties of ASM are such
that, if unimpeded, it may shorten to about
20–30% of its initial length when an appropri-
ate stimulus is applied.25 In vivo, such a short-
ening would result in complete airway closure.8

In normal humans the maximal response to
bronchoconstrictor stimuli is limited,26 which
suggests that some mechanisms opposing ASM
shortening are operative in vivo.

In vitro the shortening of ASM is considerably
less when elastic loads are applied.27 Further-
more, human ASM shortens less than ASM
from other species and this diVerence seems to
be related to a greater amount of connective tis-
sue present in human bronchi, which represents
a parallel elastic load.28 It has been suggested
that a decrease in the elastic load internal to
ASM may contribute to greater ASM shorten-
ing in asthma.29 The cartilaginous rings and
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plates may also limit ASM shortening, thus pre-
venting excessive airway narrowing8 28; in rab-
bits, softening the tracheal cartilage by papain
consistently increases airway resistance.30

The most eYcient force opposing ASM
shortening in vivo is provided by the elastic
recoil of the lung.8 28 When this is reduced, as in
emphysema, the airways can become more
narrow more easily.31 Although there is no con-
sistent proof that lung elastic recoil is reduced
in asthma,32–35 even small decrements of
transpulmonary pressure near functional re-
sidual capacity may have a deleterious eVect
when the ASM contracts. In normal individu-
als the response to methacholine is greatly
enhanced by breathing just 500 ml below
FRC—that is, at a lung volume at which
transpulmonary pressure is only a few cm H2O
less.36

The load imposed on the airways by the sur-
rounding lung parenchyma changes during
breathing. Due to their visco-plasto-elastic
properties, both lung parenchyma and airways
dissipate energy during breathing.18 19 37 38 For
example, the force necessary to elongate the
ASM in vitro is slightly but consistently greater
than that necessary to bring it back to its origi-
nal length.18 19 38 Such an energy dissipation
becomes as much as 15 times greater when the
ASM is contracted, depending on the fre-
quency and amplitude of the length
oscillations.38 Basically, energy dissipation im-
plies less ASM force and, by inference, less
bronchoconstriction. During inspiration the
airways are stretched by the force of interde-
pendence through which they are coupled with
lung parenchyma. If this force is eVectively
applied to the external airway wall, then ASM
shortening may be opposed. Increasing tidal
volume therefore reduces the response to
bronchoconstrictor stimuli.39 40 When a stretch
of similar amplitude of a deep inspiration to
total lung capacity is applied, ASM is fully
elongated and most of the energy generated
during active shortening is dissipated.38 39 In
normal individuals a deep inspiration is able to
reverse a bronchoconstriction fully, enough to
cause as much as a 50% decrease in forced
expiratory flow.32 33 41–44 In asthmatic subjects
deep inspiration has less bronchodilator eVect
on constricted airways32 33 42 44–46 or may even
cause bronchoconstriction.46 47 The
importance of the ability of deep inspiration to
dilate the airways has recently been explored by
Skloot et al3 and by Pellegrino et al.32 In normal
individuals prevention of deep inspirations
during a bronchial challenge causes dyspnoea
and the airway responsiveness becomes similar
to that of asthmatics.8 32 An inference from
these data may be that airway hyperresponsive-
ness is more a problem of inability to dilate
constricted airways rather than of increased
constrictor stimuli to ASM.

In a simple model where airway narrowing is
uniquely due to ASM shortening, the contrac-
tile elements may return to their relaxed status
after being stretched because the actin-myosin
cross bridges are detached. Then, the airways
remain dilated after a deep inspiration until
cross bridges reform and the tone prior to the

deep inspiration is re-established.39 This is what
seems to occur in normal individuals during
induced bronchoconstriction.41–44 To under-
stand why the bronchodilator response to deep
inspiration in asthmatic subjects is blunted or
even reversed, a more complex model must be
invoked where ASM does not dissipate energy
during cycling and/or it is prevented from doing
so by external factors. For the first condition to
be true, primary defects of the ASM that
prevent detachment of cross bridges must be
present. To date there are no data to support
such a mechanism, which suggests that the
behaviour of the ASM is more likely to be regu-
lated by external forces. In asthma the airways
may be less sensitive to the action of external
forces because the force of interdependence is
reduced3 4 33 36 41 46 47 or the non-contractile ele-
ments in the airway wall are more stiV.17

According to Fredberg et al17 the cross bridge
cycling rate decreases if the ASM stretching is
impeded, and the conversion to slow cycling
latch bridges occurs which promotes mainte-
nance of steady state tone and increased
stiVness of the ASM. Thus, even a minimal
transient unloading of the ASM due to the
eVects of deep inspiration on the non-
contractile tissues external to the ASM—for
example, the lung or parenchyma—could result
in passive shortening of the ASM. This could
explain, at least in part, the blunted broncho-
dilator eVect of deep inspirations associated
with the increase in parenchymal hysteresis in
asthma.46 Furthermore, if the velocity of short-
ening of the ASM in asthma is increased,12–17 the
active force may be quickly re-established after
inspiration so that the ASM is rapidly unloaded
upon expiration.20 Recently, Gunst et al48

advanced the hypothesis that the force devel-
oped by the ASM in response to constrictor
stimuli depends on the length at which the
stimulus is applied. If the ASM contracts at
longer length and then is shortened, the tensile
force is less than if the ASM is contracted at
shorter length. It has been suggested that this
behaviour reflects a diVerent arrangement of
the contractile elements inside the ASM cell.40

The lack of protection from excessive airway
narrowing observed in asthma can be, at least
in part, reasonably attributed to airway inflam-
mation or inflammatory remodelling of the air-
way walls.2 49 50 It has been suggested that peri-
bronchial oedema may attenuate the pulling
eVect of parenchymal attachments on airway
walls, thus unloading the ASM and allowing
more shortening for the same intensity of
stimulus.4 The airway wall thickening that
occurs in bronchial asthma49 51 due to oedema,
cellular infiltration, and vascular engorgement
may amplify the bronchoconstrictor response
as it causes airway calibre to decrease more for
a given ASM shortening.52 However, the eVect
of mucosal thickening on airway narrowing is
complex. Airway mucosa folds when ASM
shortens,9 53 a process that requires energy dis-
sipation and hence may represent a load for the
ASM. In addition, the subepithelial fibrosis
characteristic of asthma makes the airway stiV,
thus opposing ASM shortening.54 On the other
hand, the degree of airway narrowing is
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inversely proportional to the number of
mucosal folds,53 which decreases with mucosal
and basement membrane thickening.55 Para-
doxically, the same inflammatory abnormali-
ties could either favour or limit airway narrow-
ing, depending on interactions with other
concomitant changes.

In conclusion, owing to the complexity and
multiple interactions of the mechanism regu-
lating airway narrowing, it would be simplistic
to regard airway inflammation as the only cause
of airway hyperresponsiveness.

Airway inflammation and airway
hyperresponsiveness
The concept of asthma as an inflammatory
disorder derives from necroscopic studies on
asthmatic subjects who died because of an
asthma attack or other causes51 56 57 and in vivo
studies using bronchoalveolar lavage, induced
sputum, and bronchial biopsy specimens in
subjects with asthma of diVerent severity, either
at baseline58–60 or after exposure to allergens or
occupational sensitisers.61–63

The most prominent feature in necropsies of
patients with fatal asthma is a marked thicken-
ing of airway walls. This is commonly associ-
ated with epithelial damage, thickening of
basement membrane, marked increase of
bronchial capillary bed, fluid exudation with
oedema, goblet cell hyperplasia, ASM hyper-
plasia and hypertrophy, and intraluminal
mucus and cellular debris causing complete or
partial airway occlusion. The eosinophil is gen-
erally the dominating inflammatory cell in both
fatal and non-fatal asthma64 65 but neutrophils
may prevail in cases of sudden onset fatal
asthma.64 The airway walls of subjects with
non-fatal asthma are also thicker than normal
but to a lesser extent than those of subjects with
fatal asthma.66 67

Common findings in the biopsy specimens
of asthmatic airways are epithelial shedding,
collagen deposition below the basement
membrane,68 69 increased numbers of eosi-
nophils and mast cells in the mucosa. Eosi-
nophils, mast cells and their products are also
increased in the bronchoalveolar lavage fluid.70

In this scenario the recruitment and activation
of Th2 cells seem to play a central role.71

AIRWAY INFLAMMATION AS A CAUSE OF AIRWAY

HYPERRESPONSIVENESS: PROS

In asthmatic subjects inhalation of allergen or
occupational sensitisers causes an inflamma-
tory (mainly eosinophilic) response in the
airways which is associated with an increase in
airway hyperresponsiveness.61 72 In both healthy
humans and animals exposure to ozone causes
an inflammatory (mainly neutrophilic) re-
sponse and airway hyperresponsiveness.73 74 A
temporal relationship exists between the in-
flammatory events occurring in the airways and
the increase in airway responsiveness after
exposure to allergens. Both the influx of
eosinophils and the increase in airway respon-
siveness precede the development of the late
phase response.75 76

Airways hyperresponsiveness often first ap-
pears or worsens following a viral infection of

the upper airways or vaccination with live influ-
enza virus. The increase in airways responsive-
ness after rhinovirus infection is associated with
an increase in the number of eosinophils in the
sputum.77 Airways hyperresponsiveness in these
models may be the result of an increased reflex
bronchoconstriction via cholinergic and non-
cholinergic excitatory neural pathways. Epithe-
lial necrosis, reduced production of epithelial
relaxing factors such as PGE2 and neutral-
peptidases, or loosening of tight junctions with
overexposure of sensory nerve endings caused
by viral replication are the putative underlying
mechanisms.78 In animal models infection with
parainfluenza 3 virus blocks the ability of â2

adrenoceptor agonists to inhibit antigen in-
duced contraction of isolated ASM,79 reduces
the activity of muscarinic M2 autoreceptors,80

and increases the number and the releasability
of bronchial mast cells.81 The last two eVects
have been found to be strictly associated with
the development of sustained airways hyperre-
sponsiveness. A virus induced overproduction
of interferon gamma (IFNã) from macrophages
and lymphocytes has been indicated as the
responsible mechanism.82

AIRWAY INFLAMMATION AS A CAUSE OF AIRWAY

HYPERRESPONSIVENESS: CONS

Airway inflammation can be observed both in
asthmatic and in atopic non-asthmatic
subjects.83 84 In subjects with allergic rhinitis
who have never experienced asthma symptoms
both local85 and inhalational86 allergen chal-
lenge cause an eosinophilic inflammatory
response which cannot be easily distinguished
from that seen in asthmatic subjects, but the
functional responses are diVerent.86

There is no evidence to suggest that
neutrophils play a role in airway hyperrespon-
siveness in humans.70 In animal models airway
neutrophilia induced by sulphur dioxide87 or
endotoxin88 is associated with hyporesponsive-
ness rather than hyperresponsiveness.

The presence of high IgE levels in infancy
seems to be a more important predisposing
factor for the development of airway hyperre-
sponsiveness than the occurrence of common
viral infections in early life.89

Epithelial damage after vaccination with live
influenza virus occurs both in healthy and
asthmatic subjects but airway hyperresponsive-
ness develops only in the latter,90 suggesting
that individual related factors make an impor-
tant diVerence.

The results of studies on the relationships
between airway hyperresponsiveness and air-
way inflammation at baseline are largely incon-
sistent (table 1). In some instances weak corre-
lations were found between one or more of the
inflammatory markers (mainly eosinophils, T
lymphocytes and epithelial shedding) and the
degree of airway hyperresponsiveness. How-
ever, spurious correlations may have resulted
from the inclusion of non-asthmatic controls in
the regression analysis. Moreover, in an almost
equal number of studies no significant correla-
tions were found between airway inflammation
and airway hyperresponsiveness. In particular,
it was found that airway hyperresponsiveness
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may be present even in the absence of demon-
strable inflammatory cells in the airway lumen
or mucosa,114 which suggests that the presence
of inflammatory cells in the airways is not nec-
essary to sustain airway hyperresponsiveness.

In lung transplant recipients airway hyperre-
sponsiveness was reported without airway
inflammation,115 suggesting that an altered
neural control of ASM tone may play a major
role in these subjects.

OPEN QUESTIONS

Owing to the lack of evidence that airway
hyperresponsiveness and airway inflammation
are closely related, there are several questions
that must be answered before a causal relation-
ship between airway inflammation and airway
hyperresponsiveness in asthma can be estab-
lished or rejected.

Firstly, can airway hyperresponsiveness de-
velop independent of airway inflammation—
for example, as a consequence of inherited
abnormalities of ASM contractility or auto-
nomic regulation? This hypothesis cannot be
ruled out even if the gaussian distribution of
airway hyperresponsiveness in the general
population116 and its partial reversibility after
pharmacological treatments117 or allergen
avoidance118 seem to suggest a major role for
acquired rather than for inherited factors.

Secondly, is a specific type of inflammation
responsible for airway hyperresponsiveness? At
present the most appealing hypothesis is that
airway hyperresponsiveness is the consequence
of repeated episodes of airway inflammation in
susceptible subjects. In this connection, allergic
inflammation seems to play a major part as
atopy with high serum IgE levels is associated
with an increased risk of airway hyperrespon-
siveness in humans.119 In bronchial biopsy
specimens of asthmatic subjects the Th2
phenotype has been found to be associated
with airway hyperresponsiveness.120 Moreover,
in some animal models exposure to the
sensitising agent causes an inflammatory re-
sponse characterised by Th2 lymphocyte
phenotype, IL-5 and eosinophil activation,121

which is followed by the development of airway
hyperresponsiveness.122 In a murine model,
however, airway hyperresponsiveness was ob-
tained even without eosinophil infiltration and
was prevented by treatment with anti-IFNã
antibodies, suggesting that eosinophil recruit-
ment and airway responsiveness are diVerently
regulated.123

Thirdly, in which way may airway inflamma-
tion lead to the development of airway
hyperresponsiveness? One possibility is that the
release of mediators (histamine, leukotrienes,
PAF, proteases) changes ASM contractility or
autonomic regulation. Another possibility is
that airway inflammation leads to airway
remodelling through the release of chemokines
and cytokines. Eotaxin, RANTES, MCP-3,
MCP-4, IL-5 and IL-8 promote recruitment,
activation and survival of inflammatory cells.
IL-4, TGF-â, GM-CSF, TNF and IL-1â
modify other aspects of airway biophysiology as
antigen processing (Th1–Th2 switch), nitric
oxide synthesis, â2 adrenoceptor function and
the homeostasis of epithelial cells, fibroblasts,
myofibroblasts, and also ASM cells. The
former mechanism would be responsible for
transient hyperresponsiveness upon exposure
to triggers, the latter for sustained baseline
hyperresponsiveness.124

Fourthly, are there inherited factors that
modulate the consequences of inflammation
on airway structure? This possibility is sug-
gested by epidemiological data125 indicating
that a child with an allergic parent has an
increased risk of developing the same allergic
disease as aVects the parent, whereas the risk of
developing a diVerent allergic disease is not
significantly diVerent from that for the general
population.

Table 1 Studies in human subjects showing (+) and not
showing (−) significant correlations between airway
inflammation and airway hyperresponsiveness

Authors Year

Assessment

Marker(s)BAL BB Sputum

Kirby et al91 1987 + Eos
Wardlaw et al92 1988 + Eos, MBP
Kelly et al93 1988 − Eos
Chan Yeung et al94 1988 − Eos
Pliss et al95 1989 + Eos
JeVery et al96 1989 − Eos
Ferguson et al97 1989 + Eos
Gibson et al98 1989 − Eos
Djukanovic et al99 1990 − EG2
Brusasco et al72 1990 − Eos
Foresi et al100 1990 − − Eos
Adelroth et al101* 1990 − Eos, ECP
Bradley et al60 1991 + EG2
Walker et al102 1991 + Eos
Bentley et al103 1992 + EG2
Ollerenshaw et al104 1992 − Eos
Ferguson et al105 1992 ± Eos, ECP
Pin et al106 1993 + Eos
Duddridge et al107* 1993 − Eos
Iredale et al108 1994 − Eos
Woolley et al109 1996 + + EG2, Eos
Chetta et al110 1996 + Eos
Kidney et al111 1996 − Eos
Pizzichini et al112 1996 + Eos, MBP
Foresi et al113 1997 + EG2
Crimi et al114 1998 − − − Eos, ECP

BAL = bronchoalveolar lavage; BB = bronchial biopsy; Eos =
number or percentage of eosinophils; ECP = eosinophil cationic
protein; MBP = major basic protein; EG2 = cells stained with
anti-ECP antibodies.
*With anti-inflammatory treatment.

Figure 1 Hypothetical mechanisms and pathways of airway hyper-responsiveness.
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Airway hyperresponsiveness
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Conclusions
Airway inflammation and airway hyperrespon-
siveness, two major characteristics of bronchial
asthma, are loosely related to each other. It
seems that the presence of inflammatory cells in
the airways is neither suYcient nor necessary for
the development of airway hyperresponsiveness.
This would imply that an altered response of the
target organ is a prerequisite for airway hyperre-
sponsiveness to develop. In this scenario, chronic
airway inflammation is likely to play a key role as
a stimulus for structural changes (airway wall
remodelling, changes in airway to lung interde-
pendence, changes in ASM contractility) aVect-
ing the organ response to acute stimuli (fig 1) . A
practical conclusion is that no inferences about
airway hyperresponsiveness can be made from
measurements of airway inflammation and vice
versa.
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