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Streptococcus pneumoniae was identified as a
major respiratory pathogen shortly after its iso-
lation in 1881.1 Despite a century of intensive
study, and antibiotics which readily kill the
organism, respiratory tract infections caused by
the pneumococcus remain a formidable prob-
lem. S pneumoniae is the commonest cause of
community acquired pneumonia, accounting
for up to 70% of cases in hospital.2 3 Pneumo-
coccal pneumonia is associated with bacter-
aemia more frequently than other bacterial
pneumonias4 and mortality from bacteraemic
pneumococcal pneumonia during the first few
days of hospitalisation has changed little since
the pre-antibiotic era.5 6 There is also evidence,
from the UK and other countries, that the
number of cases of pneumococcal bacteraemia
is rising.7 8 In the third world five million
children under the age of five die each year
from acute lower respiratory tract infections in
which S pneumoniae is probably the primary
agent,9 and patients with HIV infection and
AIDS also have a high risk of pneumococcal
pneumonia and bacteraemia.10 Furthermore,
the worldwide increase in penicillin resistance
among pneumococci11–15 and the limited use of
the pneumococcal vaccine16 suggest that mor-
bidity and mortality from pneumococcal dis-
ease may increase.

In recent years there has been an increased
understanding of the interactions between the
pneumococcus and the host, both in terms of
how the virulence factors of the organism con-
tribute to the pathogenesis of pneumonia and
how the host’s response to infection can be
harmful as well as protective. The role of
cytokines in pneumococcal pneumonia, the
detailed behaviour of neutrophils in the
disease, and the mechanisms by which the
pneumococcus attaches to the host both during
nasopharyngeal colonisation and during inva-
sive disease have all been the subject of recent
investigation. Whilst antibiotics and supportive
care are likely to remain the keystone of the
treatment of established infection, these areas
of research oVer the best prospects for reducing
the high incidence of the disease and the high
mortality during the first few days following
hospital admission.17

This review will therefore concentrate on the
pathogenesis of pneumococcal pneumonia,
with emphasis on recent advances at the cellu-
lar and molecular level. For descriptions of the
epidemiology, diagnosis and management of
the disease, and for an up to date evaluation of

the eVectiveness of the current pneumococcal
vaccine, readers are referred to other recent
reviews which cover these subjects
comprehensively.18–20

The organism: virulence factors and
antibiotic resistance
Although S pneumoniae exists in encapsulated
and unencapsulated forms, only encapsulated
strains have been isolated from clinical mate-
rial. The importance of the capsule in pneumo-
coccal virulence was first established by
enzymatic removal of the capsule,21 and has
recently been confirmed using genetically
engineered pneumococci which diVer only in
capsular type. The virulence of the mutants in
relation to the parental strains was determined
mainly, though not entirely, by the capsular
type.22

However, the capsule itself is not toxic.23

Composed of one of 90 serologically distinct
polysaccharides,24 25 the virulence of the cap-
sule lies mainly in its antiphagocytic properties
(fig 1). The level of virulence is determined
more by the chemical nature of the capsule
then by its size,26 and the production of
serotype specific protective antibody in re-
sponse to capsular polysaccharide is the basis
of the current anti-pneumococcal vaccine.
Geographical, temporal, and age diVerences in
the distribution of the 90 diVerent serotypes24 25

and the ability of S pneumoniae to transfer cas-
settes of capsular genes from one strain to
another leading to a change in capsule
specificity27 28 all have potential implications for
vaccine strategy.25 29 The current 23 valent vac-
cine includes the serotypes that cause 88% of
the bacteraemic infections in the USA30 and
96% of those in the UK.18

In contrast to the capsule, the cell wall is a
potent inducer of inflammation,23 probably via
the activation of complement31 and the induc-
tion of cytokines.32 33 The active component is
cell wall polysaccharide, a complex teichoic
acid which—very unusually among bacteria—
contains phosphorylcholine.34 As discussed
later, phosphorylcholine provides a site of
attachment to activated endothelial cells dur-
ing the course of invasive disease. Antibody
against cell wall polysaccharide or phosphoryl-
choline is protective against pneumococcal
challenge, though the protective eVect is
substantially weaker than that of antibody to
capsular polysaccharide.35
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In addition to surface polysaccharides, the
pneumococcus contains a number of proteins
that have been shown to contribute to virulence
(fig 1).35–39 These comprise pneumolysin, an
intracellular toxin which is released only when
the cell wall undergoes lysis; autolysin, the
enzyme which is responsible for cell wall lysis;
and pneumococcal surface protein A (PspA), a
protein on the cell surface which is highly
immunogenic in mice.39 Other pneumococcal
products which may contribute to the patho-
genicity of the organism, but whose role in
virulence has not been established, include
neuraminidase,40 41 hyaluronidase,42 a neutro-
phil elastase inhibitor,43 various proteases
including an enzyme which cleaves human
IgA1,

44 45 an inhibitor of the respiratory burst of
neutrophils,46 47 and a number of putative pro-
tein adhesins.35 48–52

The most extensively studied of the protein
virulence factors is pneumolysin, a toxin which
lyses cholesterol-containing cell membranes
and activates complement. Pneumolysin has a
variety of detrimental eVects on host cells and
functions in vitro,36 and causes a severe lobar
pneumonia when injected into the apical bron-
chus of rats.53 More direct evidence for its role
in pathogenicity comes from the demonstra-
tion that laboratory mutated strains of pneu-
mococci deficient in pneumolysin have re-
duced virulence compared with wild type
organisms36 54–56 and that immunisation with
pneumolysin or its toxoid protects mice against
subsequent challenge with virulent
pneumococci.36 The cytolytic and complement
activating properties of pneumolysin have
recently been mapped to separate regions of
the molecule. Using strains of pneumococci
with mutations for each of these molecular
sites, it has been shown that both sites contrib-
ute to the early pathogenesis of pneumococcal
pneumonia at diVerent stages of infection and
by diVerent mechanisms.56–58 Similar studies
with antisera and genetically engineered mu-

tants have demonstrated the contributions of
autolysin35 59 and PspA39 to pathogenicity.

Interest in pneumococcal proteins lies not
only in their pathogenicity but also in the fact
that, as proteins, they are T dependent antigens
and have the potential to be used to improve
pneumococcal vaccines. The current vaccine is
based on capsular polysaccharides which, as T
independent antigens—that is, they can elicit
an antibody response by stimulating B lym-
phocytes directly without the help of T cells—
have two disadvantages: very poor immuno-
genicity in children under the age of two years
and the lack of a memory booster response on
rechallenge with antigen. By conjugating the
polysaccharide antigens to a protein, however,
they can be converted into a T dependent form
which does not have these drawbacks.17 35 38

Although there is no immunological necessity
for the carrier protein to be from the pneumo-
coccus, a pneumococcal protein may have the
advantage of conferring species-specific immu-
nity. One potential disadvantage of the new
conjugate vaccines, however, is that only a lim-
ited number of serotypes may be included. To
determine whether this outweighs the potential
advantages it will be necessary to follow both
the incidence of pneumococcal disease and the
serotype distribution of pneumococci after
introduction of the conjugate vaccines.25

Another group of clinically relevant proteins
are the transcarboxypeptidases in the cell wall
which also bind penicillin (penicillin binding
proteins).11 38 Alterations to the penicillin bind-
ing properties of these proteins are brought
about by transfer of portions of the genes for
the penicillin binding proteins from other
streptococcal species resulting in mosaic genes,
and can occur without aVecting the cell wall
building functions of the enzymes. Because
only portions of the genes are transferred, and
because there are a range of penicillin binding
proteins which can be modified in a stepwise
manner, the level of resistance to penicillin can
vary considerably.11

This graded nature of penicillin resistance
has direct relevance to clinical practice, for
most “resistant” species of S pneumoniae
isolated from clinical samples show only inter-
mediate resistance (minimum inhibitory con-
centration (MIC) 0.12–1.0 µg/ml) to penicil-
lin. These MICs can easily be exceeded in the
lungs by intravenous treatment with high dose
penicillin, and Pallares et al12 have recently
shown, that even in Spain where the instance of
pneumococcal resistance to penicillin is high,
the administration of penicillin G or ampicillin
in high doses intravenously is still an eVective
treatment for pneumococcal pneumonia.
These authors recommend an alternative—a
third generation cephalosporin—only when
community acquired pneumonia is life threat-
ening or when risk factors are present for high
level penicillin resistance (MIC >2.0 µg/ml). It
should be noted that the same principles have
not been shown to apply to the treatment of
erythromycin resistant S pneumoniae. Although
some of the new macrolides have better lung
penetration than erythromycin, clinical studies
with these agents have not been performed in

Figure 1 Schematic figure of the known virulence factors of Streptococcus pneumoniae
including their main functions and cellular location. Only factors with proven virulence are
included. For other putative virulence factors, see text.
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patients with erythromycin resistant pneumo-
coccal pneumonia, and in such patients it is
recommended that non-macrolide agents be
used.15 19

Resistance to penicillin in S pneumoniae is
increasing throughout the world.11–15 The prob-
lem is particularly common in Spain, Eastern
Europe, South Africa, South America, New
Guinea, and Korea where resistance up to
30–50% is commonly reported.11 However,
even in countries with generally low numbers
of resistant organisms, including the UK, the
proportion of S pneumoniae resistant to penicil-
lin is steadily increasing, along with resistance
to erythromycin and other antibiotics (fig
2).14 15 Most of the resistant strains belong to a
small number of serotypes (6, 14, 19, and 23)
which are prevalent in young children and
which are being included in the new conjugate
vaccines.14

Nasopharyngeal colonisation
The initial step in the pathogenesis of pneumo-
coccal infection is the attachment of the organ-
ism to the mucus and cells of the
nasopharynx.60–62 Acquisition of the causative
strain usually occurs during the month preced-
ing clinical infection, and studies in closed
communities,63 including recent observations
on the spread of penicillin resistant pneumonia
in children attending nurseries,64 have shown
that rates of pneumococcal disease depend on
the frequency with which invasive serotypes are
carried by healthy individuals.

However, colonisation frequently occurs
without the development of disease. Colonisa-
tion can occur within hours of birth and by the
12th postnasal day the carrier rate is similar to
that of the babies’ mothers.63 Carriage rates are
highest in pre-school children, whilst rates
amongst adults depend on the likelihood of
contact with children.64 Up to four diVerent
serotypes can be found at one time usually for
periods of several weeks or months.65–67 Recent
studies during two outbreaks of pneumococcal
pneumonia in military camps have shown that
asymptomatic nasopharyngeal colonisation
with S pneumoniae frequently results in the
production of circulating type specific antibody

at levels which confer protection from pneu-
monia against that serotype.68 It therefore
appears that, although aspiration of colonising
organisms during the first few weeks of coloni-
sation may lead to pneumonia, after that time
most healthy adults are likely to be protected.

At the molecular level adherence of S
pneumoniae to nasopharyngeal cells probably
occurs through interaction with a specific
disaccharide (N-acetyl-D-glucosamine â1–3
galactose, GlcNAcâ1–3Cal) which forms part
of a glycolipid receptor on the epithelial cell
surface.62 The pneumococcal ligand which
binds to this specific disaccharide has not yet
been identified, but it has been observed that
pneumococci will only bind to nasopharyngeal
cells and to this receptor when they are in a
particular morphological phase.69 70 It is hoped
that the biochemical basis of this morphologi-
cal phase change will be elucidated and help to
clarify the pneumococcal factors which favour
adherence.

Transition from colonisation to
pneumonia and invasive disease
The factors which permit pneumococci to
spread beyond the nasopharynx are poorly
characterised and are likely to vary depending
on the virulence of the organism, the state of
the host’s defences, and the existence of
preceding viral infection. Spread to the lungs
probably occurs by aspiration71 which is aided
by impairment of the cough reflex, by increased
production of mucus (in which pneumococci
also replicate61), and by impairment of the
mucociliary escalator. Whilst all of these can be
caused by host related disorders, the pneumo-
coccus itself can contribute by causing im-
paired ciliary activity, and by pneumolysin
dependent disruption of the epithelial type
junctions which are essential for the production
of normal mucus.54 72 Both influenza virus and
adenovirus enhance in vitro adherence of S
pneumoniae to respiratory tract epithelial cells.60

Recent studies have shown that S pneumoniae
can adhere to human bronchial epithelial
cells.73 However, the molecular basis of this
interaction is not known, nor is its pathogenetic
significance, either in pneumonia or in acute or
chronic bronchitis. In healthy individuals the
bronchi are sterile, but in patients with chronic
bronchitis the organism can be present in the
lower respiratory tract even in between
exacerbations.74 To date, our understanding of
this form of colonisation is poor, as is the rela-
tionship between this and acute exacerbations
of chronic obstructive pulmonary disease
(COPD). Attempts to evaluate the role of S
pneumoniae have been hampered by the pres-
ence of colonising organisms in the nasophar-
ynx and lower respiratory tract and the lack of
a standard definition of an acute exacerbation
of COPD.74

Within the alveoli pneumococci initially
adhere to the alveolar wall, probably preferen-
tially to alveolar type II cells.75 They also spread
very rapidly to the blood, suggesting an aggres-
sive capacity to cross the vascular endothelial
cells.71 Attachment of S pneumoniae to resting
type II lung cells and vascular endothelial cells

Figure 2 Trends in the prevalence of antibiotic resistance of pneumococci in England and
Wales. Results from two observational studies in 1990 and 1995. Modified from references
14 and 15.
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is mediated by host cell glycoconjugate recep-
tors with specific disaccharides (N-acetyl-D-
glucosamine â1–4 galactose, GalNAC â1–4
Gal, or N-acetyl galactosamine â1–3 galactose,
GalNAc â1–4 Gal) as the minimum receptor
subunits. These galactose based disaccharides
are similar to, but distinct from, the glu-
cosamine based disaccharide receptor on naso-
pharyngeal epithelial cells.75 Pneumococcal
binding to these glycoconjugates is mediated
both by phosphorylcholine in the cell wall76 and
by pneumococcal proteins. By using libraries of
genetic mutants of S pneumoniae with defects in
specific proteins,77 a number of putative protein
adhesins have been identified.35 48–52 However, it
is likely that many of these proteins, some of
which function as enzymes, act indirectly in
this role.48

When these lung and endothelial cells are
activated, however, there is evidence that the
pneumococcus shifts its target to a new recep-
tor, that for platelet activating factor (PAF).

Cundell et al78 found that cytokine activation
of endothelial cells and lung cells was associ-
ated with a marked increase in expression of
PAF receptor compared with resting cells, and
that pneumococci adhered to the receptor via
phosphorylcholine, a determinant which it
shares with PAF, with both increased adher-
ence of pneumococci to the cells and increased
invasion of the cells. Only virulent pneumo-
cocci engaged the PAF receptor, and the
sequence of events could be arrested in vitro
and in vivo by pretreatment with PAF receptor-
specific antagonists. The authors suggested
that this may be a critical and potentially
reversible step in the transition from asympto-
matic colonisation to invasive disease.

Development and resolution of
pneumonia
The earliest histological abnormality in pneu-
mococcal pneumonia is engorgement of the
alveoli with proteinaceous fluid and red blood
cells67 due to damage and increased permeabil-
ity of the alveolar-capillary barrier. Fibrin also
forms, due to the induction of procoagulant
activity on human endothelial cells by S
pneumoniae, reducing the blood supply to the
aVected area and also permitting neutrophils to
trap the pneumococci against the surface of
pulmonary cells.67 79 A range of studies involv-
ing animal models of pneumonia and in vitro
studies with monolayers of type I alveolar epi-
thelial cells and vascular endothelial cells have
shown that these cells, and the tight junctions
between them, can be damaged either by
pneumococcal cell wall products32 or by
pneumolysin,57 58 though there is evidence that,
with cell wall products, the changes are
mediated by tumour necrosis factor (TNF)
from the host since the cytopathic eVect on
endothelial cells can be abrogated by anti-TNF
antibodies.23 32 These events do not require the
presence of neutrophils80 and, as with other
aspects of the inflammatory process, there is no
evidence that the pneumococcal capsule plays
a part.23

Clearance of pneumococci from the alveoli
by phagocytosis is dependent on

complement31 65 and facilitated by anticapsular
antibody,35 65 both of which function opsoni-
cally. Resident alveolar macrophages play a
phagocytic role in the early stage of infection81

but after 1–2 hours they are joined and quickly
outnumbered by the more eYcient polymor-
phonuclear leucocytes (PMNs).79 The PMNs
are sequestered into capillaries throughout the
lung but migrate into alveoli only at the site of
infection.79 The chemotaxins involved include
the complement factor C-5a82 which is released
by direct activation of complement by pneu-
mococcal cell wall teichoic acid,31 and both
interleukin 8 (IL-8)83 and leukotriene B484

released from alveolar macrophages. However,
the molecular pathway by which neutrophils
migrate from the vascular to the alveolar space
has not been established. Unlike many proc-
esses involving sequestration and migration of
neutrophils, the process does not depend on
selectins85 86 and it is also probably independent
of CD11-CD18 adhesion molecules,87 88 even
though there is evidence of upregulation of
some of these adhesion molecules in commu-
nity acquired pneumonia.89 This lack of
dependence on selectins and CD11-CD18
appears partly to reflect anatomical diVerences
between the pulmonary and the systemic
microvasculature but also probably diVerences
between pneumococci and other
organisms.68 86

The increased demand for PMNs in the
blood and lungs is met by increased release of
new cells from the bone marrow.79 These cells
are immature,90 having had a shorter transit
time in the bone marrow91 and, as such, are
larger and less deformable than mature PMNs.
It has been observed that only a small
proportion of these immature cells migrate into
the alveoli, leaving an excess in the pulmonary
vascular space.90 Since immature PMNs, when
stimulated, have a greater potential to release
oxygen radicals and proteolytic enzymes than
mature cells, it has been suggested that
pneumococcal bacteraemia may result in intra-
vascular activation of these cells, leading to
lung injury, and possibly providing an explana-
tion for the high mortality associated with
bacteraemia in pneumococcal pneumonia.90

However, one of the remarkable features of
pneumococcal pneumonia is that the lungs of
patients who recover from the disease almost
invariably return to normal, irrespective of the
severity of the systemic or pulmonary condi-
tion when the disease was at its peak. Whilst
this has been recognised since early descrip-
tions of the disease,92 93 it is only recently that
the details of possible contributory mecha-
nisms have emerged. It has been found, for
example, that alveolar macrophages from
patients with community acquired pneumonia
are hyporesponsive to stimulation, with less
release of pro-inflammatory cytokines than
either circulating monocytes from the same
patients or from alveolar macrophages from
healthy control subjects.94 This is in keeping
with the general tendency of alveolar macro-
phages to reduce or dampen down the immune
response within the alveoli.95 It has also been
observed that viable S pneumoniae in suspen-
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sion inhibit the release of reactive oxygen
species from PMNs, in contrast to Staphylococ-
cus aureus and Klebsiella pneumoniae which each
stimulate PMNs to release increased amounts
of extracellular reactive oxygen species.46 47

This inhibition of the neutrophil oxidative
burst by S pneumoniae may help to explain why
the pneumococcus rarely causes permanent
lung damage whereas pneumonia caused by
the other two organisms is often associated
with abscess formation and fibrosis. Further-
more, in experimental pneumococcal pneumo-
nia it has been shown that PMN recruitment to
the lungs is complete within 24 hours,92 96 that
PMN activity as measured by the uptake of a
radiolabelled glucose analogue ceases within
48 hours,97 and that, before PMNs are cleared
by macrophages, they readily undergo
apoptosis—that is, death in a programmed or
“physiological” fashion rather than releasing
their potentially toxic products on death.92 93

All of these aspects of neutrophil activity will
reduce the chances of lung damage.

Bacteraemia, systemic antibody and the
role of the spleen
The risks of bacteraemia and death from pneu-
mococcal pneumonia are greatly reduced by
the presence of type specific anticapsular anti-
body in serum.35 Generation of the antibody
was shown by early investigators to herald
recovery from invasive pneumococcal disease,
and the first eVective treatment for pneumo-
coccal pneumonia was provided by passive
immunisation with specific antisera.1 Antibod-
ies to other pneumococcal components such as
cell wall polysaccharide, pneumolysin, PspA,
and other proteins are also produced in the
course of colonisation or infection but their
protective capacity is less.35

However, in the course of pneumococcal
infection, antibody is produced late in the
sequence of host defences, usually on the 5th or
6th day of disease,98 and not all studies have
suggested that this defence is necessarily
adequate or the important one. For example,
opsonophagocytosis of S pneumoniae can occur
in vitro in the absence of specific antibody,99

and in vivo recovery from pneumococcal pneu-
monia not treated with antibiotics can occur in
the pre-antibody phase.98 Furthermore, pneu-
mococcal bacteraemia has been observed
despite high levels of preformed anticapsular
antibody and with either a fall or no change in
the convalescent sera.63 64 Although the accu-
racy of anticapsular antibody levels has been
questioned in recent years because of the
co-detection of antibodies to cell wall polysac-
charide in many immunoassays,100 this is
unlikely to provide a full explanation for the
lack of a relationship between antibody levels
and clinical disease in these studies.

In the absence of type specific antibody the
clearance of pneumococci has been shown to
rely on the reticuloendothelial system, with the
macrophages of the spleen playing a greater
relative role than those of the liver.101 This, as
well as the spleen’s role in enhancing antibody
production,102 presumably accounts for the
increased risk of mortality from pneumococcal

bacteraemia in asplenic and functionally
asplenic patients. In an experimental model of
pneumococcal pneumonia the survival rate of
splenectomised mice after an aerosol challenge
of S pneumoniae was improved more than
threefold by administration of granulocyte
colony stimulating factor (G-CSF).103 The
improvement occurred when G-CSF was
administered from 24 hours before to three
days after the challenge and was associated
with a rise in the number of circulating
neutrophils. The therapeutic implications of
this are still unknown.104

Role of cytokines
The molecular and cellular events which make
up the host’s response to infection are regu-
lated by cytokines, a network of low molecular
weight polypeptides secreted by many cells
including the alveolar macrophage. However,
whilst cytokines can act as beneficial chemical
mediators in the course of inflammatory and
immunological processes, they can also be
harmful.105 106 Recent studies in patients with
(mainly Gram negative) sepsis and/or the adult
respiratory distress syndrome (ARDS) suggest
that the net eVects depend on the balance
between pro-inflammatory cytokines such as
TNF-á and IL-1 and anti-inflammatory cyto-
kines such as IL-10, and that disturbance of
this balance can be associated with a poor
prognosis.107 108 The question which arises is
whether diVerent cytokine responses account
for diVerent clinical outcomes in pneumococ-
cal disease, and specifically whether cytokine
imbalance can account for the currently unex-
plained systemic upset of pneumococcal pneu-
monia and the many deaths which are
unexplained by respiratory failure.

Both clinical and experimental studies have
shown that there is a brisk local cytokine
response to inhaled S pneumoniae. In two stud-
ies of unilateral community acquired pneumo-
nia, for example, one in which TNF-á, IL-1
and IL-6 levels were measured94 and one
involving measurement of IL-8,83 the cytokine
response was greater in the involved lung than
in the paired non-involved lung and, with the
exception of IL-6, there was no rise in the cir-
culating levels of these cytokines. Similarly, in
an animal model in which mice became ill
16–24 hours after nasal inoculation of S pneu-
moniae and died of bacteraemic pneumococcal
pneumonia within five days, TNF-á, IL-6, and
IL-10 levels in the lungs all rose within
12 hours and remained high at 72 hours, but
IL-6 was the only cytokine of the three
measured which was significantly raised in the
blood.109–111 Tasaka et al have also recently
shown increased pulmonary expression of the
gene for interferon ã (IFN-ã) early in the
course of experimental pneumococcal
pneumonia.112

However, evidence of the cytokine response
is not confined to the lung. In addition to IL-6
being raised in the serum, circulating levels of
G-CSF are raised during the acute phase of
respiratory tract infections.113 Nevertheless,
G-CSF, which probably contributes to the
increased release of neutrophils from the bone
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marrow,90 is likely to originate in the lung dur-
ing pneumonia for Tazi et al114 found that
alveolar macrophages from patients with pneu-
monia produce G-CSF spontaneously, in con-
trast to alveolar macrophages from healthy
subjects which produce G-CSF only when
stimulated.

More direct evidence that the cytokines con-
tribute to host defence against S pneumoniae
has come from passive immunisation experi-
ments with monoclonal antibodies against the
cytokines (fig 3) and studies with “knock out”
mice which have genes for individual cytokines
deleted. In a murine model of pneumococcal
pneumonia, for example, intranasal adminis-
tration of IL-10 in combination with S
pneumoniae resulted in decreased lung concen-
trations of TNF-á and IFN-ã, increased bacte-
rial counts in lungs and blood, and early
lethality. Conversely, pretreatment of mice with
an anti-IL-10 antibody was associated with
increased lung levels of TNF-á and IFN-ã,
reduced bacterial counts in lungs and plasma
40 hours after the inoculation, and prolonged
survival.109 In another series of experiments
mice passively immunised against the pro-
inflammatory cytokine TNF-á had increased

numbers of S pneumoniae isolated from the
lungs and died earlier than non-treated mice.110

Using the same model of pneumococcal pneu-
monia, mice deficient in the gene for IL-6 had
increased lung levels both of the pro-
inflammatory cytokines TNF-á, IL-1â and
IFN-ã and of the anti-inflammatory cytokine
IL-10, increased numbers of S pneumoniae in
the lungs, and reduced survival compared with
controls, indicating a net protective eVect of
IL-6.111 Taken together, along with similar
cytokine studies in animal models of pneumo-
nia involving other organisms,104 115–117 these
results suggest that the compartmentalised
cytokine response of pneumonia contributes to
host defence, and that interference with the
cytokine network in such a way that pulmonary
inflammation is reduced is likely to be harmful
to the host.

The relationship between cytokine profiles
and clinical outcome in pneumonia remains
unclear.118–123 For example, in two studies in
which TNF-á was measured in serum there
was no relationship with patient outcome118 119

whilst in another study patients judged to be
critically ill with pneumonia had higher TNF-á
levels than patients with pneumonia who were
not critically ill.120 The preliminary results of
another study, confined to patients with
community acquired pneumonia, found that
IL-10 levels were significantly more likely to be
detectable in patients with systemic inflamma-
tory response syndrome than in patients who
did not have this syndrome.121 In two other
studies, mainly concerned with ARDS but also
including patients with pneumonia as a control
group, plasma levels of IL-6 and TNF-á in
pneumonia correlated with the degree of lung
injury, and there was also a significant relation-
ship between plasma levels of the cytokines and
death rate in the study, though this was only
significant when patients with ARDS and with
pneumonia were grouped together.122 123

In view of the complexity of the cytokine
network and the large number of variables
involved in clinical studies, it is perhaps not
surprising that the clinical picture remains
unclear. For example, the timing of the
measurements in relation to the onset of infec-
tion, the presence of cytokine binding proteins,
and the technical problem of ex vivo release of
cytokines from clinical material can all make
interpretation diYcult and may account for
diVerences in results between the studies.124 125

Furthermore, only a small number of cytokines
have been studied to date and in only a small
number of patients. Also, studies relating cyto-
kine profiles to clinical outcome have largely
involved cytokine measurements in blood even
though the primary immune response is known
to be in the lung.83 94 It should also be noted
that S pneumoniae was cultured in only a
minority of patients in some studies, and that in
other studies patients with pneumococcal
pneumonia were grouped with patients who
had other pulmonary conditions. It is possible
that diVerent infecting organisms and diVerent
pulmonary disorders will be associated with
diVerent cytokine profiles.126 Nevertheless, de-
spite the diYculties involved in studies of this

Figure 3 EVects of monoclonal antibodies against (A) the pro-inflammatory cytokine
TNF-á and (B) the anti-inflammatory cytokine IL-10 on survival in a murine model of
pneumococcal pneumonia. Lower numbers of S pneumoniae were used in the experiments
with IL-10. In both series of experiments death of the mice corresponded with the number of
surviving pneumococci isolated from blood and lungs. Modified from references 109 and
110.
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kind, clinical research in this area will be
needed both to confirm hypotheses arising
from experimental studies and to identify
whether there are clinically important diVer-
ences between individuals in cytokine produc-
tion, as suggested by recent studies in menin-
gococcal disease.127

Conclusion
The interactions between the pneumococcus
and the host are complex. However, the patho-
genesis of pneumococcal pneumonia is begin-
ning to be understood at the molecular level,
and recent studies have opened the door to the
prospect of novel approaches to the prevention
and treatment of the condition.

In the foreseeable future conjugate vaccines
with pneumococcal proteins are likely to be the
most important practical development against
S pneumoniae. It is expected that they will pro-
vide the first reliable method of protecting
children from pneumococcal pneumonia, and
possibly the first protection against S pneumo-
niae that is independent of capsular serotype.

In established pneumococcal pneumonia
and bacteraemia there is increasing evidence
that cytokine imbalance plays an important
role in determining outcome. Although
progress is limited by the complexity of the
cytokine network and the lack of reliable
biological markers which can identify the
patients most likely to gain potential benefit
from cytokine intervention,128 studies in animal
models have shown that beneficial eVects can
be achieved by immunomodulation of this
kind, and it is in this area that future research is
likely to be targeted.

The author thanks Mrs Susan Allsopp, Mrs Katharine Bale and
Dr Adrian Kendrick for help in the preparation of this
manuscript.
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