Skip to main content
Thorax logoLink to Thorax
. 2005 Jul;60(7):538–544. doi: 10.1136/thx.2004.034009

Systemic inflammation in COPD visualised by gene profiling in peripheral blood neutrophils

E Oudijk 1, E Nijhuis 1, M Zwank 1, E A van de Graaf 1, H Mager 1, P Coffer 1, J Lammers 1, L Koenderman 1
PMCID: PMC1747456  PMID: 15994259

Abstract

Background: The inflammatory process in chronic obstructive pulmonary disease (COPD) is characterised by the presence of neutrophils in the lung that are able to synthesise de novo several inflammatory mediators. The local chronic persistent inflammatory response is accompanied by systemic effects such as cytokine induced priming of peripheral leucocytes and muscle wasting. The preactivation or priming of peripheral blood neutrophils was used to gain more insight into the mechanisms of this systemic inflammatory response.

Methods: Gene arrays were performed on peripheral blood neutrophils obtained from healthy donors after stimulation in vitro with tumour necrosis factor (TNF)-α, granulocyte-macrophage colony stimulating factor (GM-CSF), or both. The expression of many inflammatory genes was regulated in these cells following stimulation. The expression of inflammatory genes in peripheral blood neutrophils in healthy subjects and those with COPD was measured by real time RT-PCR after stimulation with TNFα, GM-CSF, interleukin (IL)-8, fMLP, TNFα + GM-CSF, and lipopolysaccharide (LPS).

Results: The genes regulated in the gene array with TNFα/GM-CSF stimulated neutrophils included cytokines (such as IL-1ß), chemokines (such as IL-8), and adhesion molecules (such as ICAM-1). Disease severity as measured by forced expiratory volume in 1 second (FEV1) in COPD patients correlated with expression of several of these genes including IL-1ß (r = –0.540; p = 0.008), MIP-1ß (r = –0.583; p = 0.003), CD83 (r = –0.514; p = 0.012), IL-1 receptor 2 (r = –0.546; p = 0.007), and IL-1 receptor antagonist (r = –0.612; p = 0.002).

Conclusions: These data are consistent with the hypothesis that progression of COPD is associated with the activation of neutrophils in the systemic compartment. De novo expression of inflammatory mediators by peripheral blood neutrophils suggests a pro-inflammatory role for these cells in the pathogenesis of COPD.

Full Text

The Full Text of this article is available as a PDF (144.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaron S. D., Angel J. B., Lunau M., Wright K., Fex C., Le Saux N., Dales R. E. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001 Feb;163(2):349–355. doi: 10.1164/ajrccm.163.2.2003122. [DOI] [PubMed] [Google Scholar]
  2. Arend W. P. Cytokine imbalance in the pathogenesis of rheumatoid arthritis: the role of interleukin-1 receptor antagonist. Semin Arthritis Rheum. 2001 Apr;30(5 Suppl 2):1–6. doi: 10.1053/sarh.2001.23693. [DOI] [PubMed] [Google Scholar]
  3. Carter D. B., Deibel M. R., Jr, Dunn C. J., Tomich C. S., Laborde A. L., Slightom J. L., Berger A. E., Bienkowski M. J., Sun F. F., McEwan R. N. Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature. 1990 Apr 12;344(6267):633–638. doi: 10.1038/344633a0. [DOI] [PubMed] [Google Scholar]
  4. Cassatella M. A. Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol. 1999;73:369–509. doi: 10.1016/s0065-2776(08)60791-9. [DOI] [PubMed] [Google Scholar]
  5. Colotta F., Re F., Muzio M., Bertini R., Polentarutti N., Sironi M., Giri J. G., Dower S. K., Sims J. E., Mantovani A. Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science. 1993 Jul 23;261(5120):472–475. doi: 10.1126/science.8332913. [DOI] [PubMed] [Google Scholar]
  6. Cosio M. G., Guerassimov A. Chronic obstructive pulmonary disease. Inflammation of small airways and lung parenchyma. Am J Respir Crit Care Med. 1999 Nov;160(5 Pt 2):S21–S25. doi: 10.1164/ajrccm.160.supplement_1.7. [DOI] [PubMed] [Google Scholar]
  7. Douma W. Rob, Kerstjens Huib A. M., de Gooijer Ad, Overbeek Shelley E., Koëter Gerard H., Postma Dirkje S., Dutch Chrionic Nonspecific Lung Disease Study Group Initial improvements in lung function and bronchial hyperresponsiveness are maintained during 5 years of treatment with inhaled beclomethasone dipropionate and terbutaline. Chest. 2002 Jan;121(1):151–157. doi: 10.1378/chest.121.1.151. [DOI] [PubMed] [Google Scholar]
  8. Fabbri Leonardo, Pauwels Romain A., Hurd Suzanne S., GOLD Scientific Committee Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease: GOLD Executive Summary updated 2003. COPD. 2004 Apr;1(1):105–104. doi: 10.1081/COPD-120030163. [DOI] [PubMed] [Google Scholar]
  9. Fujishima S., Hoffman A. R., Vu T., Kim K. J., Zheng H., Daniel D., Kim Y., Wallace E. F., Larrick J. W., Raffin T. A. Regulation of neutrophil interleukin 8 gene expression and protein secretion by LPS, TNF-alpha, and IL-1 beta. J Cell Physiol. 1993 Mar;154(3):478–485. doi: 10.1002/jcp.1041540305. [DOI] [PubMed] [Google Scholar]
  10. Iking-Konert C., Wagner C., Denefleh B., Hug F., Schneider M., Andrassy K., Hansch G. M. Up-regulation of the dendritic cell marker CD83 on polymorphonuclear neutrophils (PMN): divergent expression in acute bacterial infections and chronic inflammatory disease. Clin Exp Immunol. 2002 Dec;130(3):501–508. doi: 10.1046/j.1365-2249.2002.02008.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jawa R. S., Quaid G. A., Williams M. A., Cave C. M., Robinson C. T., Babcock G. F., Lieberman M. A., Witt D., Solomkin J. S. Tumor necrosis factor alpha regulates CXC chemokine receptor expression and function. Shock. 1999 Jun;11(6):385–390. [PubMed] [Google Scholar]
  12. Keatings V. M., Barnes P. J. Granulocyte activation markers in induced sputum: comparison between chronic obstructive pulmonary disease, asthma, and normal subjects. Am J Respir Crit Care Med. 1997 Feb;155(2):449–453. doi: 10.1164/ajrccm.155.2.9032177. [DOI] [PubMed] [Google Scholar]
  13. Khandaker M. H., Xu L., Rahimpour R., Mitchell G., DeVries M. E., Pickering J. G., Singhal S. K., Feldman R. D., Kelvin D. J. CXCR1 and CXCR2 are rapidly down-modulated by bacterial endotoxin through a unique agonist-independent, tyrosine kinase-dependent mechanism. J Immunol. 1998 Aug 15;161(4):1930–1938. [PubMed] [Google Scholar]
  14. Koenderman L., Kanters D., Maesen B., Raaijmakers J., Lammers J. W., de Kruif J., Logtenberg T. Monitoring of neutrophil priming in whole blood by antibodies isolated from a synthetic phage antibody library. J Leukoc Biol. 2000 Jul;68(1):58–64. [PubMed] [Google Scholar]
  15. Kreuzer K. A., Lass U., Landt O., Nitsche A., Laser J., Ellerbrok H., Pauli G., Huhn D., Schmidt C. A. Highly sensitive and specific fluorescence reverse transcription-PCR assay for the pseudogene-free detection of beta-actin transcripts as quantitative reference. Clin Chem. 1999 Feb;45(2):297–300. [PubMed] [Google Scholar]
  16. Malyak M., Smith M. F., Jr, Abel A. A., Arend W. P. Peripheral blood neutrophil production of interleukin-1 receptor antagonist and interleukin-1 beta. J Clin Immunol. 1994 Jan;14(1):20–30. doi: 10.1007/BF01541172. [DOI] [PubMed] [Google Scholar]
  17. Noguera A., Batle S., Miralles C., Iglesias J., Busquets X., MacNee W., Agustí A. G. Enhanced neutrophil response in chronic obstructive pulmonary disease. Thorax. 2001 Jun;56(6):432–437. doi: 10.1136/thorax.56.6.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. O'Shaughnessy T. C., Ansari T. W., Barnes N. C., Jeffery P. K. Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1. Am J Respir Crit Care Med. 1997 Mar;155(3):852–857. doi: 10.1164/ajrccm.155.3.9117016. [DOI] [PubMed] [Google Scholar]
  19. Pals C. M., Verploegen S. A., Raaijmakers J. A., Lammers J. W., Koenderman L., Coffer P. J. Identification of cytokine-regulated genes in human leukocytes in vivo. J Allergy Clin Immunol. 2000 Apr;105(4):760–768. doi: 10.1067/mai.2000.104382. [DOI] [PubMed] [Google Scholar]
  20. Pauwels R. A., Buist A. S., Calverley P. M., Jenkins C. R., Hurd S. S., GOLD Scientific Committee Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med. 2001 Apr;163(5):1256–1276. doi: 10.1164/ajrccm.163.5.2101039. [DOI] [PubMed] [Google Scholar]
  21. Pesci A., Balbi B., Majori M., Cacciani G., Bertacco S., Alciato P., Donner C. F. Inflammatory cells and mediators in bronchial lavage of patients with chronic obstructive pulmonary disease. Eur Respir J. 1998 Aug;12(2):380–386. doi: 10.1183/09031936.98.12020380. [DOI] [PubMed] [Google Scholar]
  22. Schiff M. H. Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. Ann Rheum Dis. 2000 Nov;59 (Suppl 1):i103–i108. doi: 10.1136/ard.59.suppl_1.i103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Takabatake N., Nakamura H., Abe S., Inoue S., Hino T., Saito H., Yuki H., Kato S., Tomoike H. The relationship between chronic hypoxemia and activation of the tumor necrosis factor-alpha system in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000 Apr;161(4 Pt 1):1179–1184. doi: 10.1164/ajrccm.161.4.9903022. [DOI] [PubMed] [Google Scholar]
  24. Vernooy Juanita H., Kükaycan Mehmet, Jacobs Jan A., Chavannes Niels H., Buurman Wim A., Dentener Mieke A., Wouters Emiel F. Local and systemic inflammation in patients with chronic obstructive pulmonary disease: soluble tumor necrosis factor receptors are increased in sputum. Am J Respir Crit Care Med. 2002 Nov 1;166(9):1218–1224. doi: 10.1164/rccm.2202023. [DOI] [PubMed] [Google Scholar]
  25. Verploegen Sandra, van Leeuwen Caroline M., van Deutekom Hanneke W. M., Lammers Jan-Willem J., Koenderman Leo, Coffer Paul J. Role of Ca2+/calmodulin regulated signaling pathways in chemoattractant induced neutrophil effector functions. Comparison with the role of phosphotidylinositol-3 kinase. Eur J Biochem. 2002 Sep;269(18):4625–4634. doi: 10.1046/j.1432-1033.2002.03162.x. [DOI] [PubMed] [Google Scholar]
  26. Yamashiro S., Wang J. M., Yang D., Gong W. H., Kamohara H., Yoshimura T. Expression of CCR6 and CD83 by cytokine-activated human neutrophils. Blood. 2000 Dec 1;96(12):3958–3963. [PubMed] [Google Scholar]
  27. Yousefi S., Cooper P. R., Mueck B., Potter S. L., Jarai G. cDNA representational difference analysis of human neutrophils stimulated by GM-CSF. Biochem Biophys Res Commun. 2000 Oct 22;277(2):401–409. doi: 10.1006/bbrc.2000.3678. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES