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We propose a statistical approach for studying the close packing of
elastic rods. This phenomenon belongs to the class of problems of
confinement of low dimensional objects, such as DNA packaging in
viral capsids. The method developed is based on Edwards’ ap-
proach, which was successfully applied to polymer physics and to
granular matter. We show that the confinement induces a config-
urational phase transition from a disordered (isotropic) phase to an
ordered (nematic) phase. In each phase, we derive the pressure
exerted by the rod (DNA) on the container (capsid) and the force
necessary to inject (eject) the rod into (out of) the container. Finally,
we discuss the relevance of the present results with respect to
physical and biological problems. Regarding DNA packaging in
viral capsids, these results establish the existence of ordered
configurations, a hypothesis upon which previous calculations
were built. They also show that such ordering can result from
simple mechanical constraints.

C losely packed objects are ubiquitous in nature. Actual ex-
amples of such systems are the folding of leaves in buds (1),

wing folding of insects in cocoons (2), crumpled paper (3–6),
DNA packaging in capsids (7–11), or the confinement of chro-
matin in the nucleus of a cell (12). In all of these phenomena, the
way the object is folded has a role in determining its function or
in insuring its integrity during the unfolding process. Although
these systems exist at different length scales, they share some
common fundamental physical features, such as the symmetries
of the folded structure and the dimensionality of the packed
objects as well as those of the confining container.

Here, we study the packing of a one-dimensional object into
a three-dimensional container, the size of which is very small
compared to the length of the folded structure. This phenom-
enon arises in a number of scientific fields such as mechanics (6)
and biology (7–12). Viral DNA packaging may be seen as an
archetype of this phenomenon in biological systems. When
packing a rod into a spherical container, the following questions
naturally arise: which possible geometrical configurations does
the rod adopt? What pressure does the container experience?
What force is needed to inject (eject) the rod into (out of) the
container? How do these mechanical properties depend on the
configurations? Such questions stimulated a number of recent
numerical and analytical studies on DNA packaging (13–19).
However, a general theory that addresses these questions simul-
taneously is lacking. As a matter of fact, existing models of the
DNA packaging problem (13, 15–17, 19) either assume a priori
given conformations of the DNA inside the capsid or restrict
these configurations to a very small class. This hypothesis of
ordered configurations, although based on some experimental
observations, does not take into account the possibility of
topological changes in the conformations of the rod, whereas
molecular dynamics simulations show that the conformations
might change with the strength of the confinement (14). On the
other hand, distinguishing the conformations of the DNA inside
the capsid is very difficult experimentally, and noninvasive
methods are almost impossible (7–9, 11). Therefore, one needs
a theoretical model that gives the conformations as a function of
the strength of the packing and the properties of the rod.

We introduce a statistical minimal model based on Edwards’
theory to study the conformations of the rod. This approach
proved its applicability in other fields such as granular materials
(20) and polymer physics (21, 22). It led to important insights on
the configurational and excluded volume constraints. This ap-
proach is suitable for the present problem because we are
interested in close packing where thermal fluctuations are
negligible, and where the system has accessibility to the entire
phase space. In Edwards’ thermodynamic approach, the steady
state is characterized by a number of macroscopic quantities
whose average is fixed and the steady state measure is the one
obtained by maximizing the entropy over the configurations
subject to these constraints. Therefore, one needs extensive
manipulations such as tapping for equilibration.

This paper is organized as follows: we start by formulating the
packing problem by considering an inextensible rod put inside a
sphere of a given radius, and we write the reduced free energy
of the system as a path integral over all possible configurations
of the rod. The only interactions that are allowed are of elastic
and self-avoiding nature. The addition of other interactions will
be left for future investigations. Then, we proceed to the
calculation of the free energy, by evaluating the path integral in
a mean field approximation, and we show that a rod packed in
a sphere undergoes a continuous transition from an isotropic
phase to a nematic phase as the radius of the sphere is decreased
below a critical length (put in other words, when the density of
the rod on the sphere exceeds a critical value). This transition
allows for a reduction in the pressure applied on the sphere as
well as in the force needed to inject the rod into it. Let us
emphasize here that the present system is different from those
studied previously (21–23) because the transition is driven by the
macroscopic length scale induced by the container. Finally, we
discuss the relevance of our results with respect to physical and
biological problems. Especially, the results show that no special
intelligence is required on the side of the virus other than being
dense enough in the capsid. Mechanical constraints take care of
the rest.

Formulation of the Packing Problem
We consider an inextensible rod of length L put inside a sphere
of radius � and aim at a statistical study of its configurations. A
configuration is parameterized by the position vector R(s) as a
function of the curvilinear coordinate s along the rod. We
assume that ‘‘cut-off’’ lengths such as the rod’s typical thickness
or the ‘‘monomer size’’ are very small compared to the geomet-
rical lengths (L and �), so that the rod can be treated as a material
line. We also assume that the forces acting on the rod are only
due to elastic stresses and self-repulsion. The energy has two
contributions, one that penalizes bending of the rod and the
other that penalizes self-intersections. To minimize bending and
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since the cut-off lengths have been set to zero, the rod will
remain at the surface of the sphere. This condition is imple-
mented as a constraint in the formulation. Moreover, we assume
that the rod is long enough (L �� �) so that a large number of
energy minima are accessible and that states with the same
energy are equiprobable. This is true for instance when the rod
undergoes fluctuations either of thermal origin or coming from
some form of tapping. Thus we write the reduced free energy Y
as a path integral over all configurations R(s),

e�Y � � D�R�e��/2�dsR�2e�u/2��ds1ds2�R��s1	
R��s2	�2�2��R�s1	�R�s2	�

��R2 � �2	��R�2 � 1	 . [1]

The first term stands for the penalty for bending whose measure
is the curvature �R��, � being a persistence length. The second
term stands for the cost of self-intersections at (non zero) angles,
with a strength u. Its form comes from Onsager’s expression for
the excluded volume between two thin rods (second virial
approximation) (23), namely �R�(s1) 
 R�(s2)�. Here, we took
the widely used squared form (21, 22) (which has the same
essential properties: it is always nonnegative, has the same zeros,
extrema, . . .) to make the calculations tractable. The two Dirac
� functions enforce the constraints, that of remaining on the
sphere and that of inextensibility, on the rod configurations. For
the sake of simplicity, the isotropic self-avoiding energy � �
dsds��2[R(s) � R(s�)] is omitted. We checked that its inclusion
amounts to a renormalization of � and u. Note that Y can also
be viewed as an effective volume function in the spirit of
polymeric glasses (22). We call this model minimal since it does
not consider other possible (and probably relevant) interactions
such as internal twist of the rod or electrostatic forces.

It will prove useful in the following to introduce the orienta-
tion tensor defined as a function of the spatial coordinate r, and
given by

�ij�r	 � � dsR�iR�j�
2�r � R�s		 . [2]

The orientation tensor �ij(r), which is actually a collective
coordinate, is a local measure of how the rod is oriented. At a
given location, if there is no preferred orientation, R� is a random
unit vector so that �ij � �ij�d in d dimensions. In the present
case, the rod is held on the sphere so that there will always be
one direction (namely, the direction perpendicular to the surface
of the sphere), which is excluded, and for which �33 � 0.

Evaluation
Now we proceed to the calculation of the reduced free energy
defined in Eq. 1. Following refs. 21 and 22, the general approach
is to reformulate the problem using the orientation tensor (Eq.
2), and then to evaluate the path integral in a mean field
approximation. We begin with the introduction of conjugate
fields to rewrite the � functions as functional integrals. Then we
use the mean field approximation, and finally determine the
conjugate fields using the steepest descent method. We first
rewrite the � functions using the Fourier representation

��R2 � �2	 � N0� D���e�i�ds��s	�R2��2	, [3]

��R�2 � 1	 � N1� D���e�i�ds��s	�R�2�1	, [4]

where N0 and N1 are the normalization constants of the Fourier
integrals. �(s) and �(s) appear as the conjugate fields associated
with the position of the rod and its tangent vector respectively.
Therefore, the one body term of Eq. 1 reads

�D�R�� D���� D���e�i�ds��s	�R�2�1	�i�ds��s	�R2��2	��/2�dsR�2.

[5]

Similarly, we rewrite the two-body term of Eq. 1 as

e�u/2��ds1ds2�R��s1	
R��s2	�2�2�R�s1	�R�s2	� � N2� D���

� D���e�u/2�s2d2r�ia�jb��ia�jb��ih�ja	�i�s2d2r�ij�ji�i�dsR�i�ijR�j ,

[6]

where S2 is the sphere of radius � and we have used the identity

1 � �D������dsR�iR�j��r � R�s		 � � ij� [7]

� N2�D����D���ei�s2d2r�ij�r	�ji�r	�i�dsR�i�ij�R�s		R�j , [8]

to introduce the orientation tensor �ij, and its conjugate field �ij.
Putting together all terms we find that the free energy is given by

e�Y � N�D�R��D����D����D���

�D���e��ds��/2R�2�i�R�2�iR�i�ijR�j�i�R2	

	 ei�ds��i�ds��2�i�s2d2r�ij�jie�u/2�s2d2r��ii�jj��ij�ji	, [9]

where the three normalization constants have been absorbed
into a single constant N. We compute the path integral (Eq. 9)
using a mean field approximation such that � and � are treated
as constants over the rod (i.e., independent of s), and �ij and �ij

are constant over the sphere (i.e., independent of r). This
approximation corresponds to relaxing the local constraints
(such as R2 � �2) to global ones (e.g. R2� � �2), i.e. local
quantities can fluctuate but the average over the entire chain is
fixed.

Before determining the conjugate fields, we consider a field-
dependent free energy Ŷ in the form

e�Ŷ � N�D�R�e��ds��/2R�2�i�R�i2�iR�i�ijR�j�i�R2	

	 ei�ds��i�ds��2�i�s2d2r�ij�jie�u/2�s2d2r��ii�jj��ij�ji	. [10]

As mentioned above, we assume that the rod length L as well as
the radius of the confining sphere � are much larger than
‘‘microscopic’’ length scales. Therefore, the path integral can be
calculated by decomposing the trajectories R(s) in continuous
Fourier (Rouse) modes
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R�s	 � �
��

�

R̂�q	eiqsdq, [11]

and we obtain

Ŷ �
L

2

�
�

�
0

�

dq ln� �

2
q4 � � �̃ � �̃�� q2 � �̃�

� �̃L � �̃�2L � A �
�

�̃��� �
u
2

A���
�

���2��
�

��
2�,

[12]

where for convenience we use �̃ � i�, �̃ � i� and �̃� � i��. In
addition �� and �� are the eigenvalues of �ij and �ij respectively,
and A � 4
�2 is the area of the sphere.

The conjugated fields (�̃, �̃, and �̃�) and the orientation tensor
(��) are determined by the steepest descent method by setting
the partial derivatives of Ŷ with respect to those fields to zero.
Therefore, we get the following conditions

Ŷ
�̃

�
L

2

�
�

�
0

� dq

�/2 q4 � ��̃ � �̃�	q2 � �̃
� �2L � 0, [13]

Ŷ

�̃
�

L
2


�
�

�
0

� q2dq

�/2 q4 � ��̃ � �̃�	q2 � �̃
� L � 0, [14]

Ŷ

�̃�

�
L

2
 �
0

� q2dq

�/2 q4 � ��̃ � �̃�	q2 � �̃
� A�� � 0, [15]

Ŷ
��

� �A�̃� � uA� �
�

�� � ��� � 0. [16]

After some algebraic manipulations (and omission of an irrel-
evant constant), we get the free energy as

Y � �̃L � 3�̃�2L � A �
�

�̃��� �
u
2

A	
�� ���
2

� �
�

��
2�,

[17]

where the conjugate fields and the principal values of the
orientation tensor are determined by Eqs. 13–16.

Results
Solving for the conjugate fields and for the orientation tensor, we
find two possible phases: an isotropic�disordered phase and an
anisotropic�ordered phase. The transition between the two
phases occurs at the critical sphere radius � � t, defined by

t2 �
L�u
8


. [18]

This critical radius is proportional to the geometric mean of the
rod length L and the persistence length � and is an increasing
function of the strength u of self-repulsion.

When the sphere is big, i.e., the radius is larger than the critical
radius � � t, the disordered phase is preferred. This phase is
isotropic (on the sphere) because the local orientation tensor has
two equal eigenvalues

�1 � �2 �
L

8
�2 , [19]

and so using Eq. 17, the free energy in this phase is found to be

Y1 �
L
2�

�1 �
�2

�2 �
t2

�2�. [20]

The reduced pressure exerted on the sphere is given by the
gradient of the free energy with respect to the volume

P1 � �
Y
V

�
L

4
��3 ��2

�2 �
t2

�2�, [21]

and it has a strong dependence on the radius �. The reduced force
needed to inject more of the chain into the system is given by the
gradient of the free energy with respect to the length of the rod L

F1 �
Y
L

�
1

2�
�1 �

�2

�2 � 2
t2

�2�. [22]
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Fig. 1. The effective free energy Y (normalized by the rod length L and the
persistence length �) as a function of the sphere radius � (in units of the critical
radius t). The reduced persistence length is taken as ��t � 0.3. (Inset) A close
up near the transition point. The dashed lines correspond to the case such that
the system would remain disordered.
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Fig. 2. The pressure P (normalized by the persistence length �, the critical
sphere radius t and the rod length L) as a function of the reduced sphere radius
��t. The reduced persistence length is taken as ��t � 0.3. (Inset) A close up
near the transition point. The dashed lines correspond to the case such that the
system would remain disordered.
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Note that it has a linear dependence on L (through t2 � L).
When the sphere is small, i.e., when its radius is smaller than

the critical radius � � t, the ordered nematic phase is preferred.
The local orientation tensor is anisotropic with two different
eigenvalues

�1,2 �
L

8
�2 �1 � 1 �
�

t�, [23]

and so using Eq. 17, the free energy in this phase is found to be

Y2 �
L
2�

��2

�2 � 2
t
�
�. [24]

The pressure

P2 �
L

4
�3�
��2

�2 �
t
�
�, [25]

is lower than that of the disordered phase, whereas the injection
force

F2 �
1

2�
��2

�2 � 3
t
�
�, [26]

has only a square-root dependence on the length of the rod (t �
�L).

These results are presented graphically in Figs. 1–3. The

transition to an ordered nematic phase appears to be continuous
and allows for the reduction of the free energy as well as for a
lower pressure and a smaller injection force compared to the case
such that the system would remain isotropic.

Discussion
We have shown that a rod packed on a sphere undergoes a

continuous phase transition from an isotropic phase to a nematic
phase as the radius of the sphere is decreased below some critical
length t, which depends on the persistence length, on the rod
length L, and on the cost of self-intersections u. This transition
allows for a reduction in the pressure applied on the sphere as
well as in the force needed to inject the rod inside. We stress that
this transition is different from a bulk nematic transition because
it is controlled by macroscopic length scales, i.e., the size of the
container and the total length of the rod. However, the present
calculation has two main limitations. The rod must be long
enough, but its density on the sphere must be small enough so
that it does not jump out of the surface and into the ball. These
two conditions read (Lh2)1/3 �� � �� L, h being the radius of
a cross-section of the rod.

We now turn to the estimate of the relevant quantities for
DNA packaging in viral capsids. Our approach yields a good
description of the first steps of packaging when there is one layer
of DNA in contact with the capsid. We expect it to roughly hold
at high density if we take half the radius of the capsid as an
effective radius. We specialize to the bacteriophage �29, for
which the radius is � � 25 nm and the length of DNA is L � 7
�m (10). Taking � � 50 nm as the persistence length of free DNA
(13, 15) and u � 1 because it is dimensionless, we find t � 100
nm � �. This implies that the transition to nematic order occurs
as soon as a few percents of the phage DNA are injected in the
capsid. Using the thermal energy scale kBT we find a pressure of
the order of 1 atm and an injection force of the order of 1 pN.
This force compares well with the measurements for the begin-
ning of injection (see figure 3d in ref. 10). Two effects would
increase these estimations: electrostatic forces and the effective
radius of the capsid, which decreases at high packing density. The
main limitation of this estimate is that it is not clear that the
persistence length of DNA would not be changed in such
compact configurations.

The present results establish the hypothesis of ordered con-
figurations used in previous calculation regarding DNA packed
in viral capsids (13, 15–17, 19). In addition, because we obtain a
local nematic order on the sphere, we are led to propose three
possible types of configurations for the rod, in the light of
previous results on nematics living on a sphere (24, 25). In the
first configuration (Fig. 4a), the rod spirals on the sphere from
one pole to another, the nematic order having two singularities
(�1 disclinations) at each pole; this is the so-called spool
configuration observed in molecular dynamics simulations (13,
14). In the second one (Fig. 4b), the rod winds along meridians,
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Fig. 3. The injection force F (normalized with the persistence length �) as a
function of the sphere radius � (normalized by the critical radius t). The
reduced persistence length is taken as ��t � 0.3. (Inset) The force as function
of the reduced rod length L�Lc, where the critical length Lc is related to the
strength u of self-intersections by Lc � 8
�2��u and the persistence length is
taken as � � �. The dashed lines correspond to the case such that the system
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a b c

Fig. 4. Sketch of the possible configurations of the ordered phase. (a) Spool-like. (b) Striped. (c) Tennis ball-like.
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still with two singularities (�1 disclinations) at the poles; we
expect this striped configuration not to be observed because of
the high cost of self-intersections at the poles. In the third one
(Fig. 4c), the nematic field has four �1�2 disclinations at the
vertices of a regular tetrahedron, and the rod winds around
them; this tennis-ball-like configuration has not been observed
so far; its existence should depend on the relative cost of the core
of disclinations and the nematic energy of the disclinations
themselves. A firm answer would require the computation of the
elastic (Frank) constants of the nematic order. Moreover, it
would not be too surprising to get many metastable states that
would resemble those three pure configurations, just like in
systems of polymeric glasses. Besides, the selection of the final
configuration might be history-dependent.

Although this model is minimal with respect to the DNA
packing problem, because it does not take into account other

possible effects such as electric interactions or twist�torsion of
the rod, it suggests that the transition from a disordered to an
ordered structure is an intrinsic property of systems subjected to
confining constraints. It also reproduces qualitatively the behav-
iors of the confining pressure and the injection force. A natural
extension of the present study would be to include other relevant
physical interactions. Finally, this theoretical study can be put in
a larger perspective in the context of conformations and me-
chanical properties of confined low dimensional objects.
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