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We present a mathematical link between Schelling‘s socio-economic
model of segregation and the physics of clustering. We replace the
economic concept of ‘‘utility’’ by the physics concept of a particle’s
internal energy. As a result cluster dynamics is driven by the
‘‘surface tension’’ force. The resultant segregated areas can be very
large and can behave like spherical ‘‘liquid’’ droplets or as a
collection of static clusters in ‘‘frozen’’ form. This model will
hopefully provide a useful framework for studying many spatial
economic phenomena that involve individuals making location
choices as a function of the characteristics and choices of their
neighbors.

segregation � socioeconomy � surface tension

A t the end of the 1960s Tom Schelling (for a summary see
refs. 1 and 2) introduced a model of segregation in which

individuals, living on a lattice, chose where to live on the basis
of the color of their neighbors. He showed that even if people
only have a very mild preference for living with neighbors of their
own color, as they move to satisfy these preferences, complete
segregation will occur. This result is considered surprising and
has generated a large literature. The structure of the segregated
areas is known to be related to the free space available and the
exact specification of the rules that govern how individuals move.
However, no general analytical framework that encompasses all
of the variants of the model has yet been proposed.

The original model was very simple. Take a large chess board,
and place a certain number of black and white counters on the
board, leaving some free places. A counter prefers to be on a
square where half or more of the counters in his Moore
neighborhood (his eight nearest neighbors) are of its own color
(utility 1) to the opposite situation (utility 0). From the counters
with utility 0, one is chosen at random and moves to a preferred
location. This model, when simulated, yields complete segrega-
tion even though people’s preferences for being with their own
color are not strong.

We show that some simple physical theory can explain the
segregation phenomena, which have been observed in the nu-
merous variants on Schelling’s original model. The variants
involve modifying the form of the utility function used by
Schelling, the size of neighborhoods, the rules for moving, and
the amount of unoccupied space (see ref. 3 for a survey). One
attempt to provide a formal structure has been made by Pollicott
and Weiss (4). They, however, examine the limit of a Laplacian
process in which individuals’ preferences are strictly increasing
in the number of like neighbors. In this situation it is intuitively
clear that there is a strong tendency to segregation. Yet, Schell-
ing’s result has become famous precisely because the preferences
of individuals for segregation were not particularly strong.
Another related approach is that of Wolfram (5), who studies the
evolution of clusters and strips in a 2D cellular automaton.

The Schelling result is of interest to economists because it
illustrates the emergence of an aggregate phenomenon that is
not directly foreseen from the individual behavior and because
it concerns an important economic problem, that of segregation.
Our analysis exhibits three features of the resultant segregation.
The first is the organization of the system into ‘‘regions’’ or
clusters, each containing individuals of only one color and the
nature of these clusters. We explain the shape of the frontier

between the regions. The second feature is the importance of the
number of empty spaces in determining the final cluster con-
figuration. We explain the role of the free space and how it winds
up as a ‘‘no-man’s land’’ between clusters. The third aspect
concerns the rules that govern the movement of individuals. For
example, we can decide to move agents only to empty spaces,
allow agents to swap places, or allow only local movement as
opposed to movement over any distance. We explain how and
why these rules matter.

The Schelling model is based on the standard idea in eco-
nomics that an individual agent makes decisions based on his
preferences or utility function. This idea can be interpreted in
physical terms as saying that decisions are driven by changes
in the internal energy. Indeed there has been a long debate in
economics over the use of this analogy (6). In our interpretation,
the agent’s satisfaction is equivalent to the energy stored in him.
An increase in happiness is a decrease in internal energy. An
agent, therefore, wants to minimize his energy, which is gener-
ated either by taking some action or through the interaction with
his environment. The Schelling model assumes that the agent’s
utility depends on his local environment and that he moves if the
utility falls below a certain threshold.

A Physical Model
Given this interpretation we can now switch completely to the
physics analogy by treating agents as physical particles. In the
Schelling model, utility depends on the number of like and unlike
neighbors. In the particle analogue the internal energy depends
on the local concentration (number density) of like or unlike
particles. This analogue is a typical model description of micro-
physical interactions in dynamical physical systems of gases,
liquids, solids, colloids, solutions, etc. Interactions between
particles are governed by potential energies, which result in
interparticle forces driving particles’ dynamics.

The goal of such models is to study the collective behavior of
a large number of particles. In the Schelling model the number
of particles is conserved and the total volume in which they move
is constant (that is, the underlying grid is fixed). Because
particles do not gain or lose energy due to the movement itself,
the pressure can be considered as constant. The system is not
closed, however, because the energy lost by a particle is not
transferred to other particles, but transmitted out of the system.
Similarly, a particle can gain energy from outside the system
when an unlike particle moves into the neighborhood and lowers
the particle’s utility. Hence, the system changes its energy only
by emitting or absorbing radiation and not by changing its
volume or pressure or number of particles.

The basic tendency of such a physical system is to minimize its
total energy. Here, it can only achieve this goal by arranging
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particles into structures (clusters) that reduce the individual
internal energy of as many particles as possible. In other words,
interparticle forces induce particles to cluster and the formation
and stability of a cluster is determined by these forces. Clearly,
the only particles whose energy may change are those on the
surface of a cluster. Hence, all we need to do is to look at the
behavior of this force on the surface of a cluster to see whether
the surface will be stable or if it will undergo deformations and
ripping.

A preparatory step for the analysis of interparticle forces is to
transform the discretized lattice of the Schelling model into a
continuous medium. We replace the area �A of a lattice cell with
a differential area dA. In the discrete case, this area is populated
with only one agent or it is empty, but in general terms it is �N
number of agents. In the continuous model this translates into
dN, which then gives the number density of particles n(r�) �
dN/dA at a point r�. The Schelling model does not allow for more
than one particle at a lattice cell, hence n is constant across a
cluster.

Next, we transform the utility function from counting the
individuals in a neighborhood around an agent into the mea-
surement of the total solid angle � covered by different particles
around a differential area dA (Fig. 1). Utility is replaced with
energy �(�), with high utility corresponding to low energy and
vice versa. We thus have the total energy dE � n�(�)dA stored
in dA or energy per unit area dE/dA � n�(�). Because we are
interested in the cluster surface, we take a differential length dL
of the surface and write its energy per unit length as d� �
n�(�)dL. The total surface energy of a cluster is an integral of
d� over the whole cluster surface. A cluster’s dynamics is driven
by its trying to minimize this surface energy. In physics, � is
usually called surface tension. Notice that d� depends on the
local surface curvature because we choose dL small enough to
be a contact point of only two clusters (Fig. 1d).

If we take a local gradient along dL then we end up with the
tension force

F� �r�� � �L̂ ��� r� � �r�, � �n����r��� L̂ , [1]

where L̂ is a unit vector along dL. The same force, but in the
opposite direction can be derived for �L̂. Eq. 1 shows that
specifying the utility function amounts to specifying the surface
tension force of a cluster, where the force is a function of the
local curvature �(r�). We can then predict the behavior of a
cluster, and, as a result, that of the whole system, for a given

utility function. Schelling’s model is, therefore, a finite differ-
ence version of a differential equation describing interparticle
forces.

Cluster Formation
The basic utility function in the Schelling model is the step
function shown in Fig. 1. The energy is either a constant �0 for
� � 180° or zero for � � 180°. From Eq. 1 it follows that any
convex cluster surface experiences the tangential force F � n�0,
which tends to flatten the surface (Fig. 2). Because the utility
function depends only on neighbors and ignores empty spaces
(empty space yields � � 0, hence �F � 0), a boundary layer of
empty space stabilizes a cluster by preventing it from having
direct contact with other clusters. The outcome of this surface
reshaping is clusters with flat surfaces, except for parts adjacent
to a boundary layer of empty space.

The cluster dynamics resulting from Eq. 1 have been exten-
sively explored in theoretical and experimental physics (see
Related Physical Phenomena). A detailed quantitative descrip-
tion (cluster size distribution, timescale of cluster growth, etc.)
is beyond the scope of this article, although the qualitative
description goes as follows.

Fig. 1. Transition from a finite difference model into a continuous model.
The Schelling model (Left) can be considered as a finite difference version of
a more general continuous model (Right). Instead of counting neighboring
individual grid cells, we can use angular coverage around a point where one
neighboring grid cell on a rectangular grid corresponds to 45° angular cov-
erage. In this way the cell configuration (a) is transformed into c and b into d.
White represents empty space. Utility is the mirror of energy: high utility
means low energy and vice versa. Energy is a function of the angle covered by
unlike neighbors, and utility depends on the number, or proportion, of unlike
neighboring cells. Now we have a complete description of the transformation
from the Schelling model into its physics analogue.

Fig. 2. Forces in a continuous version of the Schelling model. The evolution
of clusters can be analyzed by considering the forces on the surface of a cluster,
where the utility function defines the surface tension force (Eq. 1). (a) Shown
are forces on infinitesimally small sections dL of the surface when x � 0.5 in the
utility function from Eq. 2. Vector colors correspond to the color of the cluster
experiencing these forces. (b–d) A sequence in surface evolution. The forces
have a tendency to flatten the surface (b3d), but this process will go through
an intermediate phase (solid arrows), where the surface flattens first locally
(b 3 c 3 d), if agents are allowed to move only to the closest available
location. The evolution is faster (hollow arrow) if agents can move any
distance because then they can immediately participate in flattening of the
whole cluster. Empty space (white regions) can form a boundary layer where
the surface can maintain its irregular shape.
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When clusters start to grow they compete for particles.
Initially, small clusters are kinetically favored because they are
easy to form. If the system does not reach its energy minimum
after this initial clustering then bigger clusters start to grow by
taking particles from, or by merging with, smaller clusters.
Particles on the cluster surface risk having low utility and thus,
are energetically less favored, which means that bigger clusters
now become energetically favored because of their smaller
surface-to-volume ratio. Eventually, one cluster grows bigger
than the others and grows until it collects all available particles.
Smaller clusters can only exist if they ‘‘freeze’’ their particles,
preventing them from ‘‘evaporating’’ and traveling to the big
cluster. Two things can happen with big clusters. Either clusters
touch the system boundaries and the whole system becomes
segregated into two distinct clusters separated by a flat surface,
or a single spherical cluster forms away from the boundaries
because particles have the same probability of reaching the
cluster’s surface from any direction.

Rules Governing Particle Movement
The exact behavior of the system and its clusters depends not only
on the choice of the utility function, but also on the rules governing
particle movement. These rules dictate the rate of evolution,
whereas Eq. 1 dictates the final configuration that the system tends
to reach. In particular, the most important rule is that which
determines whether a particle moves only when the move decreases
its energy or whether it can move even when its energy remains
constant. The former rule leads to the formation of a solid material,
where the whole system freezes after all particles reach their
minimum possible energy or stay stranded at higher energies when
there is no available location that would decrease their energy. The
latter rule corresponds to a liquid system where all particles move
all of the time. In the economic context this rule corresponds to the
case where individuals may change locations for reasons exogenous
to the model provided the new location is not worse in terms of the
simple utility function. In the physics context these rules are
equivalent to the particle mobility, where solids and glasses have
very little or no particle mobility, whereas liquids have a limited
particle mobility.

Another important rule determines how far a particle can
move. One rule could allow a particle to move to the closest
acceptable location. Another could allow particles to randomly
choose between all acceptable locations regardless of their
distance. Economically the distinction between the two would
correspond to the cost of moving. In the physical context the two
rules correspond to slow and fast diffusion rates, respectively.
Similarly, if we allow particles to swap places, that is, move even
to nonempty locations, then there are two cases. If only short
jumps are allowed, then we slow down the evolution of the whole
system because particles will move mostly to their first neighbors.
If jumps to any distance are allowed the opposite happens, the
diffusion rate becomes high, and the whole system will evolve
very quickly.

Boundary Conditions
When the system evolves into a few big clusters then its boundary
conditions become important. In the case of nonperiodic bound-
aries the latter are equivalent to empty space and clusters will
tend to stay in contact with the system’s boundary edges. If the
boundaries are periodic, like the surface of a torus, then the
system is infinite. A cluster can eventually see only its mirror
cluster because of periodicity. If a cluster touches its image it
forms an infinite strip. If it does not touch then a cluster has to
become spherical.

Here, we show some representative cases of the Schelling
model based on the above-mentioned rules. The utility function
is described as a step function:

utility � � 1 if the proportion of unlike neighbors � x ,
0 if the proportion of unlike neighbors � x . [2]

Because the smallest step in the fraction of unlike neighbors on
a rectangular grids is 1/8, we show examples with x � 3/8, 1/2 and
5/8. In addition, we look at the role of empty space by changing
the number of empty cells.

Fig. 3 shows the final results of the Schelling model on a 100 �
100 grid, with the same number of red and blue agents. They are
allowed to move only to the nearest empty space that would
increase their utility. Notice how the final cluster sizes are bigger
for smaller x because a smaller x means also a smaller tolerance
of agents to diversity. Also, the cluster size increases if the
number of empty spaces is reduced, because empty space
provides boundary layers that stabilize clusters.

If we let agents move when their utility remains constant then
the system behaves like a liquid. Initially the system quickly
develops small clusters, but then a slow evolution toward larger
clusters follows. Fig. 4 shows this evolution after millions of steps
on a nonperiodic grid. As we predicted above, the system evolves
toward one big cluster or very few clusters. In the case of x � 1/2
the cluster surface tends to form flat surfaces as predicted by the
surface tension forces in Fig. 2. In x 	 1/2 cases the surface is
bumpy and irregular, with empty space providing a boundary
layer when needed. Fig. 5 shows the evolution of x � 1/2 system
when the grid is periodic. Now the system evolves either into a
sphere or an infinite strip, following the surface dynamics

Fig. 3. The Schelling model forming a solid structure. This figure is a mosaic
of results based on the Schelling model when agents are allowed to move only
if their utility strictly increases (that is, energy decreases). This restriction
brings the whole system to a halt after all agents reach their maximum utility.
In the context of the physical analogue, we can say that the system is frozen
into a solid. The utility is given in Eq. 2, and results are shown for three values
of x: 0.375 � 3/8, 0.5 � 1/2, and 0.625 � 6/8. The grid size is 100 � 100 and the
number of blue and red agents is the same. The number of empty cells is
indicated. Arrows show directions of increased clustering. Because a smaller x
means a stronger preference for neighbors of the same kind, clustering
increases as the value of x decreases. On the other hand, empty space provides
boundary layers that can stabilize clusters. Hence, less empty space means
larger clusters because of their smaller surface-to-volume ratio. Notice, how-
ever, that the model with small x and a small number of empty spaces (x �
0.375, 200 empty cells) does not follow these trends and remains poorly
clustered. This exception occurs because many agents are stranded with low
utility, but without any empty space to which they could move and increase
their utility. Periodic boundaries and distance of movement allowed do not
influence the clustering behavior of these models.
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described in Fig. 2. If agents are allowed to swap with other
agents the behavior of the system is modified as illustrated in Fig.
6. When only local swaps are permitted the system moves very
slowly to large clusters. If agents are allowed to move anywhere,
however, the system segregates very rapidly.

Related Physical Phenomena
Segregation of particles is a common and widely studied natural
phenomenon. The clustering behavior displayed by the Schelling
model has analogues in physics. Here, we list only a few
illustrative examples, because a detailed review of the vast
literature in physics on these subjects is beyond the scope of this
work. A typical initial set up for the Schelling model involves
randomized positions of particles in the system, which is equiv-
alent to, for example, violently shaking a mixture of oil and water
to form an emulsion. After that we let the system evolve and
reach its equilibrium condition. Different types of utility func-
tions will have different equivalent physical systems. These will
have different underlying interparticle forces. These differences
will generate variations in the final cluster shapes attained. These
are, in general, either completely irregular (amorphous) or well

structured. Glass is an example of the former and crystals or
liquid droplets of the latter.

Crystal growth is an example where a big cluster can grow by
taking over individual particles from smaller clusters. This
phenomenon is known as ‘‘Ostwald ripening.’’ Alternatively, a
big cluster can grow by directly incorporating smaller clusters.
This phenomenon is called ‘‘Smoluchowski ripening.’’ Reshap-
ing of the surface caused by surface tension is known as ‘‘surface
(or edge) diffusion.’’ All of these phenomena are well known in
the physics of metal surfaces. There the evolution of fewer but
larger nano-structures out of many smaller nano-structures, a
phenomenon generally known as ‘‘coarsening’’, is actively stud-
ied (e.g., refs. 7–10). The Schelling model is, therefore, just a
discretized model of such physical phenomena. Physical models
simulating atom or cluster aggregation closely resemble the
Schelling model (11). Extensions of the Schelling model to
include more than the first neighbors in the definition of the

Fig. 4. The Schelling model as a liquid on a nonperiodic grid. The Schelling model on a 100 � 100 grid, with the same number of red and blue agents. Agents
move even if their utility remains the same, which makes the model analogous to simulating a liquid. Utility is given by Eq. 2 with the values of x indicated here.
Domain boundaries are nonperiodic. We show the evolution of this model for 200 and 2,000 empty cells. An increase in the volume of empty space results in
more irregular cluster shapes and slower evolution because empty space behaves like a boundary layer (Fig. 2). In cases with x 	 0.5 clusters cannot form a smooth
surface, whereas x � 0.5 leads to flat surfaces as predicted in Fig. 2. Supporting information (SI) Movies 1 and 2 show the evolution of clusters with x � 0.5.

Fig. 5. The Schelling model as a liquid on a periodic grid. The same as x � 0.5
in Fig. 4 with 2,000 empty cells, except that the domain boundaries are
periodic. Now the system can evolve into only two types of clusters: spherical,
when the cluster does not enter into contact with another cluster, or an
infinite strip, when the cluster and its mirror cluster merge. (a) Movements are
limited to the closest appropriate empty location. The cluster evolution fol-
lows closely the prediction from Fig. 2. (b and c) Examples where agents can
move any distance to form either a wobbling droplet (b) or a strip (c). SI Movies
3 and 4 show the evolution of these clusters. mil., million.

Fig. 6. The Schelling model when swapping of agents is allowed. We explore
what happens when agents can swap places, that is, when empty space is not
required for moving. The grid size is 100 � 100 and nonperiodic. The number
of blue and red agents is 4,000, with x � 0.5 for the utility from Eq. 2. We allow
any movement that does not incur a loss in utility (a physical model of liquid).
(a) A model when only jumps to the nearest acceptable location are allowed.
Because swapping is allowed, most movements are now to the first neigh-
boring cells. Hence, agents diffuse very slowly from one part of the domain
into another and the evolution of the whole system is very slow. (b) The
opposite happens when agents can jump to any location. The diffusion of
agents is greatly increased because empty locations are not required for
movement any more. Agents have a large number of locations to choose from
and, therefore, the whole system evolves very quickly. mil., million.
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utility function (12) correspond to medium- or long-range
interactions between particles, which can result in gas-like
equilibrium lacking segregation patterns. The physics of colloids
is another physical analogue, which closely resembles the Schell-
ing model, with theoretical models and direct observations
showing cluster formation (13–15). Notice, however, that despite
some similarities in clustering, the Schelling model is different
from the Ising model (16) because it does not change the color
of particles. We are interested in the clustering of particles by
their type and not by their internal energy, which is the property
of the Ising model.

Conclusion
We propose a simple physical analogy to the Schelling model of
segregation. This analogy allows us to show how the various
ingredients of the model such as the rules for moving, the utility
functions of individuals, and the amount of vacant space can

influence the spatial segregation patterns that can occur. The
basic model, which is well known in the physics literature,
provides a good analytical framework for studying the basic
Schelling model and all of its variants. It shows clearly how the
energy of individuals who are on the frontier of their own group
drives the tendency to cluster, while the rules governing mobility
determine the precise form that the segregated clusters will take.
The model could be used to study more general situations in
which segregation occurs. For example, it would be interesting to
analyze cases in which income also plays a part in segregation
(17) and to examine empirical regularities such as those found by
Möbius and Rosenblat (18) for the evolution of segregation in
Chicago.
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