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Using an interference paradigm, we show across three experi-
ments that adults’ order judgments of numbers, sizes, or combined
area of dots in pairs of arrays occur spontaneously and automat-
ically, but at different speeds and levels of accuracy. Experiment 1
used circles whose sizes varied between but not within arrays.
Variation in circle size interfered with judgments of which array
had more circles. Experiment 2 used displays in which circle size
varied within and between arrays. Between-array differences in
the amount of ‘‘circle stuff’’ (area occupied by circles) interfered
with judgments of number. Experiment 3 examined whether
variation in number also interferes with judgments of area. Inter-
ference between discrete and continuous stimulus dimensions
occurred in both directions, although it was stronger from the
continuous to the discrete than vice versa. These results bear on
interpretations of studies with infants and preschoolers wherein
subjects respond on the basis of continuous quantity rather than
discrete quantity. In light of our results with adults, these findings
do not license the conclusion that young children cannot represent
discrete quantity. Absent data on attentional hierarchies and speed
of processing, it is premature to conclude that infant and child
quantity processes are fundamentally different from that of adults.

attention � child development � estimation � interference � quantity

The capacity to represent both discrete and continuous quan-
tity is found in both humans and nonhuman animals (1–3).

Discrimination functions in animals and humans yield similar
variability signatures for different dimensions of quantification
(time, number, distance, and size), suggesting the use of a
common representational format across species (4–7) and do-
mains (discrete vs. continuous quantity).

Questions of when in development different quantitative
dimensions are represented and how these representations in-
teract have become important issues in research on the devel-
opment of numerical cognition in humans. On one view, pre-
verbal numerical representations like those found in nonhuman
animals are present at a very early age and form the basis for
children’s later numerical accomplishments, such as counting
and the understanding of arithmetic operations (ordination,
addition, and subtraction). Consistent with this view are reports
that infants discriminate numerically small sets of one to three
items (8-10), and larger pairs, like 8 vs. 16 (11). They also respond
appropriately to the effects of addition and subtraction (12) and
show intermodal numerical matching (13) and intermodal ad-
dition (14).

The alternative view is that the ability to represent number
(discrete quantity) appears late in development. On this view,
infants’ behavior in ostensibly numerical experiments is con-
trolled by variation along covarying nonnumerical continuous
dimensions of the stimuli (15). Discrete displays span various
lengths, and the items cover varying amounts of surface or
occupy varying volumes. Studies designed to investigate the idea
that infants respond to one or more of these continuous quan-
tities, but not to number, yield conflicting results (12, 15–17).

The shifting results across experiments suggest that we are
dealing with an attention hierarchy, one that is altered by
experimental conditions that make number more or less salient
to the infant. In this regard, it is of interest to know how adults
respond to the sort of simple dot displays that have been used in

infant experiments. It may be that both infants and adults
automatically represent discrete and continuous dimensions of
the stimulus and that these representations compete for control
of their behavior.

We use an interference paradigm to test for competition
between task-relevant and task-irrelevant dimensions of the
stimulus display. When, in defiance of task instructions, esti-
mates of the difference along a competing stimulus dimension
are involuntarily extracted, they shorten reaction times when the
irrelevant difference is congruent with the relevant difference
and lengthen them when it is incongruent. The classic numerical
Stroop paradigm is one example of an interference task: It asks
subjects to compare either the font size or the numerical
magnitude of two Arabic numerals, where these are either

congruent (3 or 5)

or

incongruent (3 or 5).

When adults are asked to indicate which digit is written in the
larger font, they are not able to ignore the numeric value of the
digit (refs. 18 and 19, but see ref. 20). They are slower to judge
3 larger than 5 than they are to judge that 5 is larger than 3. The
reverse effect also is found: Judgments as to which digit sym-
bolizes the larger number are delayed in the incongruent con-
dition and facilitated in the congruent condition.

The interaction between symbolic representations of number
and size or other quanity dimensions have been studied exten-
sively; they are robust in a variety of circumstances (21–23) and
even appear in symbol-trained primates (24). However, few
human studies pit variation in nonsymbolic discrete quantity
(that is, variation in actual numerosity) against variation along
continuous dimensions (e.g., size of the stimulus items and total
area occupied by them). Studies of this kind are directly relevant
to an assessment of the seemingly conflicting results in the infant
literature in that an adult attentional preference for discrete over
continuous quantities frequently has been asserted but not
empirically tested.

We report three experiments on interference effects across
quantity dimensions. Experiment 1 used circles whose size varies
between but not within arrays. It tested the hypothesis that in a
nonverbal numerical comparison task, size estimates interfere
with numerical comparisons. Participants were shown pairs of
arrays with varying circle sizes (Fig. 1) and asked to make
speeded numerosity judgments.

Experiment 2 investigated whether incongruency in total
circle area (number of white pixels) interfered with judgments of
which array had numerically more circles. Circles within each
array varied in size, so there were both large and small circles in
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each of the arrays (Fig. 1). To avoid a confound with absolute
circle size (i.e., interference from the largest circle), displays
were designed such that the largest circle in one array was
identical to the largest circle on the other.

Experiment 3 examined whether variations in numerosity
interfere with judgments of combined area. Traditional number
Stroop experiments show bidirectional interference: Differences
in font size interfere with judgments of the numerical magni-
tudes represented by Arabic numerals, and, conversely, the
values represented interfere with judgments of font size (18, 23).
Experiment 3 tests whether the continuous/discrete quantity
interference effects are similarly bidirectional. Using the same
displays as Experiment 2, adults were asked to judge differences
in combined circle area, with numerosity as the irrelevant
dimension. This design feature allows us to ask whether indi-
viduals attend exclusively to continuous extent, a hypothesis that
is consistent with Clearfield and Mix’s proposals regarding
infants (25). The experiment also allows for further exploration
on the time course of magnitude judgments and magnitude
interference.

Results
In Experiment 1, congruency/incongruency between the numer-
ical and size dimensions affected both the mean time to correctly
judge which array had more circles [F(2, 36) � 16.26, P � 0.001]§

and the error rate in making this judgment [F(2, 36) � 22.5, P �
0.001] (see Fig. 1). The mean reaction time on correct trials was
faster when the more numerous array (the correct response) was
on the left [F(1, 18) � 7.00, P � 0.05],¶ but side-of-correct response
did not affect the error rate (F � 1).

The effect of congruency on mean reaction time (RT) and
error rate for Experiment 1 was analyzed separately for numer-
ical comparisons in the subitizing range of 1–3 (27). Statistical
analysis of the RTs for pairs within this range, [1,2], [1,3], and
[2,3], yielded a main effect of congruency [F(2, 36) � 7.5, P �
0.005]. The overall error rate was 4.1%, and the effect of
congruency on this measure was significant ([F(2, 36) � 18.7, P �
0.0001]. As illustrated in Fig. 2, the effect of a numerical
difference on RT and error rate depended of the ratio of the two
numbers: The farther the numerical ratio was from 1, the shorter
the time to judge the numerical difference and the lower the

error rate. Curiously, a similar dependence on the ratio of circle
diameters was not seen.

It is of interest that the ratio between pairs of numbers (N) is
reliably related to performance, especially given that congruen-
cy/incongruency in circle size did not vary systematically with the
ratio of the circle sizes. Although we demonstrated an interfer-
ence effect of circle size on numerical magnitude judgments, the
ratio of the diameters does not appear to be the locus of this
effect. There are two other possible sources of interference: (i)
the sides were categorized as having, on average, ‘‘smaller’’ or
‘‘larger’’ circles, and (ii) the combined area or luminance of each
side produced the interference effect.

Experiment 2 followed up on Experiment 1 by measuring
whether the summated areas for the circles in each display
interfered with numerical comparisons, even when the size of the
largest circle was controlled. Analysis revealed a strong effect of
congruency between combined area and number on mean RT
[F

(2, 56)
� 15.06, P � 0.0001] and on error rate [F(2, 56) � 21.7, P �

0.0001]. As before, responses tended to be faster when the larger
number was on the left side.

To examine the effect of numerical distance, ratios were
binned into three groups: (i) far (a 2:1 or greater ratio), medium
(a ratio between 2:1 and 3:2), or close (a ratio � 3:2). As may be
seen in Fig. 3A, the closer the numerical ratio was to one (that
is, the closer the two set sizes), the longer was the mean reaction
time [F(2, 56) � 16.13, P � 0.001]. Fig. 3B shows the same effect
for the error data [F(2, 56) � 91.2, P � 0.0001]. In both the RT
data and the error data, the effect of congruency is greater when
the numerical distance is small, although this interaction be-
tween congruence/incongruence and numerical distance is sta-

§A mixed ANOVA design with target side (2) � gender (2) � congruency (3) was used here
and elsewhere, unless otherwise noted.

¶This finding, and a similar result in Experiment 2, is not an instance of the Spatial-
Numerical Association of Response Codes effect. Dehaene et al. (26) found that subjects
from Western countries (with left to right writing systems) were faster to respond to
smaller numbers with the left hand, and larger numbers with the right hand, suggesting
that subjects mentally order numbers on an imaginary left-to-right number line. We find
the opposite effect, perhaps reflecting a left-to-right-scanning preference.

Fig. 1. All experiments had Congruent, Incongruent, and Neutral displays. In
Experiments 1 and 2, the task was to indicate the array with more circles. In
Experiment 3, the task was to indicate the array with more combined circle
area. The displays in Experiment 2 and 3 were identical except in the Neutral
condition.

Fig. 2. Experiment 1. (A and B) Mean reaction times (A) and mean error rates
(B) � SE as functions of the ratio of the number of circles in the two arrays, in
three different conditions: (i) difference in circle size congruent with (in the
same direction as) numerical difference, (ii) difference in circle size incongru-
ent with (opposite to) numerical difference, and (iii) no difference in circle size
(Neutral). (C) Mean reaction time as function of circle diameter ratio � SE.
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tistically significant only in the error data [F(4, 112) � 17.62, P �
0.001].

Experiment 3 tested the hypothesis that number acts as an
interfering quantity dimension when responding on the basis of
summated area (see Fig. 1). Here, congruency was not significant
for RT or error rate. Fig. 4 shows that for both mean RT and error
rate, the interfering effect of an irrelevant numerical difference on
area judgments depends on the numerical distance between arrays.
Greater numerical distances were more salient, thereby increasing
the tendency for interference to affect the mean RT and error rate
[the respective interactions are F(2, 58) � 4.07, P � 0.05 and
F(2, 60) � 3.03, P � 0.056].

Discussion
Judgments of size, area, and number occur automatically and
spontaneously in adult humans. Variation of stimuli along a
continuous quantity dimension substantially affects perfor-
mance on tasks requiring discrete numerical comparisons, and
vice versa.

Adults were unable to ignore the relative size of the circles
when judging which array had more circles in Experiment 1. This
was true even in the ‘‘subitizing’’ numerical range. Some models
suggest subitizable numbers are represented by discrete, noise-
free symbols, like written digits or sets of hash marks, instead of
by noisy mental magnitudes (28). On such models, one might not
expect interference with numerical comparisons within the small
number range. However, incongruence on the size dimension
increased mean reaction time and error rates on the numerical
ordering task even when both contained three or fewer circles.
The results bolster the finding of Cordes et al. (5) that discrete
displays with all tested values of N, including the smallest, are
represented by noisy mental magnitudes.

When we controlled for the absolute size of the largest circle
in the display, interference effects still occurred. Our partici-
pants were sensitive to differences in the combined areas of the
circles in the two displays and this sensitivity affected their mean
RT when judging differences in the number of circles. This
implies that when individuals see an array of circles, they
(unconsciously) estimate the combined area of the circles. How
they do this remains to be determined. Adults are sensitive to
subtle statistical properties of arrays of 2D objects, including, for

example, their averages. Chong and Treisman (29) had adults
compare arrays of homogenous-sized or heterogeneous-sized
circles and report which side had the larger mean circle size. The
numbers of circles on the two displays were always the same, so
number and area (or average size) never were incongruent.
Their subjects excelled at estimating the mean circle size for both
homogenous-size and heterogeneous-sized displays and were
able to do the task across displays with different distributions of
sizes. Apparently adults can extract the average area for a
collection of simple shapes in a relatively effortless way.

The interference effect in this experiment may reflect an
averaging process. Individuals may have averaged the areas of
the circles on each side of the display, in which case the
contrasting averaged values may have been the source of inter-
ference. Chong and Triesman’s results also could reflect the
computation of combined area, as their study (by necessity)
confounded combined area and average circle size. Neither the
present experiment nor the Chong and Treisman experiment can
distinguish between these two possibilities (ref. 29, also see ref.
30). Regardless of which account holds in the present case, we
can conclude that our participants involuntarily computed a
continuous quantity dimension that was irrelevant to the task at
hand and that competed for behavioral control with the task-
relevant dimension.

We find that adults readily judge which of two arrays of circles
has the greater combined area, but while they are making this
comparison, they also involuntarily compare the number of
circles in the two arrays. The likelihood of the number compar-
ison interfering with the combined-area comparison depends on
the numerical distance between the numbers: the greater this
distance, the greater the interference. This effect of numerical
distance is consistent with many results from nonverbal number
experiments in animals and humans, which show faster response
times and fewer errors for numerically distant comparisons (5,
31, 32). Thus, the interactions reported for Experiment 3 are as
one might expect: When the distance between the values of the

Fig. 4. Experiment 3. Mean reaction times (A) and mean error rates (B) � SE
as functions of the numerical distance between the ratios of the number of
circles in the two arrays, in two different conditions: (i) difference in numbers
of circles congruent with (in same direction as) difference in the combined
circle areas, and (ii) difference in numbers of circles incongruent with (oppo-
site to) difference in combined circle area. Neutral RT (768 � 44 ms) and error
rate (3.9 � 1%) were not included in graph, because numerical distance would
consistently have a ratio of 1.

Fig. 3. Experiment 2. Mean reaction times (A) and mean error rates (B) � SE
as functions of the numerical distance based on the ratio between the num-
bers of circles in the two arrays, in three different conditions: (i) difference in
combined circle areas congruent with (in same direction as) numerical differ-
ence, (ii) no difference in combined circle area (Neutral), and (iii) difference in
combined circle area incongruent with (opposite to) numerical difference.
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irrelevant number dimension is great, the numerical comparison
proceeds rapidly enough to interfere with the area comparison.
The comparison of numerically close values proceeds too slowly
to interfere with a speeded area judgment. This could mean that
in those cases, the numerical comparison is incomplete by the
time one responds on the basis of area.

The discovery that an irrelevant area dimension affects the
ability to respond on the basis of number bears on the interpre-
tation of the conflicting results regarding infants’ responses to
discrete quantities (number) (15–16). Recall in the incongruent
condition of Experiment 2, when the numerical difference was
small, the error rate was � 30%. Adults who are fully capable of
counting still find it difficult to make numerical estimations while
ignoring size/area information. That infants favor continuous
quantities over discrete numbers in some experimental para-
digms does not indicate an inability to represent discrete quantity
any more than a high level of interference from continuous
dimensions indicates an inability of 5- to 7-year-old children (33)
or our adult subjects to represent numbers per se. Indeed neural
evidence suggests facilitation and interference from overlapping
tasks may derive in part from the ability to maintain the correct
goal (see ref. 34). Given that infants can be presented only with
an implicit goal, their susceptibility to interfering dimensions
may be substantial. Thus, it is premature to conclude that infant
and child quantity processes are fundamentally different from
that of adults.

The prominence of one quantity dimension over another may
be task- or object-specific and may vary along an attentional
hierarchy. Operant studies in animals demonstrate a relationship
between continuous and discrete magnitude representations.
Timing and numerical magnitude discrimination functions re-
f lect scalar variability (increase in variance of estimate as the
magnitude increases) (35). These magnitude values also are
frequently correlated in real-life situations. The extent to which
various magnitude representations are processed in parallel has
been explored in the domain of animal learning. Animals trained
to respond on a contingency basis to confounded continuous and
numerical cues encode both types of information simultaneously
(35–38). However, the experimental paradigm may affect what
information is being tracked, with the locus of control depending
on the nature of the training (38). When one dimension is
uniformly rewarded (e.g., number), animals can learn to ignore
confounding factors such as length (39) or duration or timing of
light flashes (40).

Cue salience may be highly specific to the situation at hand; the
literature suggests there is not one stable preference for volume,
number, or size that transcends situational factors (35–41). For
example, Boysen et al. (41) tested chimpanzees in an interference
task that required them to choose one of two trays of candy. The
animals were rewarded with the contents of the nonchosen tray;
hence the optimal choice was to choose the tray that contained
a smaller number of objects to receive the greatest food reward.
When the trays contained candies of the same size, the chimps
tended to choose the side that had more candies. That is, the
chimps went with a nonoptimal strategy because they were
unable to overcome a tendency to indicate the side with more
candy. However, when experimenters changed the paradigm to
one where candies were of different sizes, the chimps tended to
go with the side with larger candies, regardless of which side
would produce the larger volume of food or which side has the
larger number of candies. So here the size of the items took
precedence over volume and number.

Developmental human studies tend to show that children have
more trouble overcoming interference from conflicting quantity
dimensions than adults. Children may be less able to consciously
select among competing quantity dimensions than adults, be-
cause children find it difficult to tune out irrelevant information
when performing simple tasks. For example, 3-year-old children

who can perform a simple card-sorting task are challenged by the
same task when an irrelevant stimulus dimension is added (in this
case, objects on cards came in two color) (42). This has been
explained as ‘‘attentional inertia’’: Preschoolers have difficulty in
disengaging from one way of thinking regarding a stimulus to
attend to another dimension (43).

Experiments that examine counting abilities in preschool
children often are designed with the expectation that true
‘‘counters’’ can overcome completely the interference from
other quantity dimensions (16, 42). Yet, in experiments that
systematically vary size, contour, or area as well as number,
preschoolers may find it difficult to filter out the irrelevant
dimensions necessary to display their competency in counting.
Findings that children select area or volume over number do not
necessarily reflect a lack numerical competence but rather may
reflect limits in inhibitory processing (16, 42–44).

Performance on controlled perceptual versus number tasks
possibly would yield improved number awareness if paradigms
promoted attention towards number and away from other stim-
ulus dimensions that often converge with number. When tasks
are designed with this in mind, results tend to lean toward
numerical competency. For example, objects differentiated by
movement patterns may sway quantity attention toward discrete
number. Several infant habituation/dishabituation studies that
employ stimulus movement during the habituation phase find
infants have an awareness of discrete number despite controls for
overall area (45–46).

Many other factors potentially could influence how much
attention is assigned to competing quantity dimensions. For
example, it may be that simultaneous versus sequential presen-
tation of stimuli affect this process. Further experiments are
required to tease apart the factors that affect how attention is
deployed to various magnitude representations. It would be of
interest to determine whether young children start out with the
same attentional preferences to quantity dimensions as adults or
whether the relevance of different quantity dimensions shift as
the child develops.

Although we demonstrated that the interference between
comparisons along discrete and continuous stimulus dimensions
runs both ways, at least in dot displays, the interference runs
more strongly from the continuous to the discrete than vice
versa. This is surprising given the frequency with which numer-
ical comparisons are called for in ordinary adult life. It implies
that the extraction of a representation of this continuous quan-
tity proceeds more rapidly than the extraction of a representa-
tion of discrete quantity, even in adults. Future studies are
required to more precisely delineate the factors controlling the
salience of different quantities dimensions, as array size, the
heterogeneity of stimuli, and task demands potentially may exert
an influence on this attentional hierarchy.

Methods
Experitment 1. Participants. Twenty Rutgers University undergrad-
uates were in this experiment. Their participation partially
fulfilled a psychology course requirement. The human subjects
review board at Rutgers University approved this research. All
participants provided informed consent.
Stimuli and apparatus. Test displays were shown on a Macintosh G4
(Apple, Cupertino, CA) computer with display set at 1,024 � 768
resolution, a 35 � 23 cm viewable area, and a viewing distance
of �60 cm resulting in 32 pixels per degree of visual angle. A
Matlab program was used with PsychToolbox functions (47). The
psychophysics toolbox controlled the selection of displays, the
experimental procedure, and the recording of reaction times. At
the start of each trial, there was a white cross in the center of a
black screen. Subjects were told to fixate on the cross. After 1
second, a short warning beep sounded. One second later, a
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two-array test stimulus appeared; it stayed on until the subject’s
button press registered.

The two arrays of white circles appeared inside two side-by-
side symmetric gray rectangles drawn on a blue screen. Circle
positions were randomly selected for each set on each trial, with
the center of each circle placed in the ‘‘center’’ of an imaginary
4 � 3 grid.

The numbers of circles in the two arrays, NL and NR were
randomly chosen from a list of all combinations from 1 to 7, with
the constraint that NL � NR. Mirror image displays, [NL, NR] and
[NRNL], were treated as distinct displays. Circle radii were
randomly chose from the set of radii of 10, 20, 30, 40, 50, 60, or
70 pixels. (10 pixels � 19-min arc) Thus, both the relevant
(circle-number) and irrelevant (circle-size) dimensions had an
equal number of possible values. Previous researchers have
noted that a more restricted number of values for either the
relevant or irrelevant dimension can skew results (20, 48). Also,
the ratio of the comparable radii equaled the ratio of the
numerical sets (i.e., largest to smallest radius 70:10; largest to
smallest numerical set 7:1). The combined area of the circles was
congruent with size when size and number were incongruent and
with number when sizes were equal.

Images in Fig. 1 show examples of the different display condi-
tions. There were three congruency conditions, Congruent: NA
� NB, sizeA � sizeB, areaA � areaB; Incongruent: NA � NB, sizeA
� sizeB, areaA � areaB; and Neutral: NA � NB, sizeA � sizeB,
areaA � areaB, where Ni is the number of circles in a given array,
sizei is the size of every circle in a given array, and areai is the
combined area of all circles in a given array. The trial order was
randomized.

Participants were tested individually. Instructions indicated
that the display would contain two arrays of circles, one on the
left side of the screen and one on the right. Participants indicated
the side that had the greater number of circles by pressing the
button under the corresponding side as quickly and accurately as
possible.

Initially, there was a 20-trial training session, which contained
a randomly selected sample of the full list of 42 possible neutral
trials. The experimental session consisted of 126 trials, compris-
ing the combination of 42 distinct stimulus combinations and the
three conditions. A break occurred halfway through testing.

To remove outliers, the response times were trimmed at 2.5
standard deviations above their mean. RTs � 150 ms were
considered accidental button presses and were also removed.

Experiment 2. Participants. Thirty Rutgers undergraduates
participated.
Stimulus generation. Display features and design were identical to
Experimental 1, except as follows: Set sizes for pairs of arrays
were randomly chosen from a list of all combinations of 3 to 9,

with ties excluded. In pilot work, we found that individuals
tended to focus on the difference between the two largest circles
in each display. Therefore, we set the largest circle size per array
to be equivalent across array pairs, while still varying summated
area. Given that the largest circle size on any given trial had to
appear in both arrays, the smallest N we could use was 3; hence,
the change in array size values and range. Circle sizes were
randomly chosen from values of 10–70 pixels. After the gener-
ation of each stimulus set, a randomly chosen circle in one of the
arrays (excluding the largest circle) had its size modified so that
the difference between the combined total areas of the circles in
the two arrays was 5,000 pix2 (4.88 deg2), henceforth denoted as
Aconst. Pilot work revealed that smaller differences in total area
were not discriminated reliably.

There were three conditions used in this experiment: Con-
gruent, NA � NB, and max (circlesizesA) � max (circlesizesB),
and areaA � �areaB 	 Aconst ; Incongruent, NA � NB, and max
(circlesizesA) � max (circlesizesB), and areaA � areaB 	 Aconst;
and Neutral, NA � NB, and max (circlesizesA) � max (circlesiz-
esB), and areaA � �areaB, where Ni is the number of circles in
array i, max (circlesizesi) is the largest circle in an array i, and
areai is the combined area of the circles in array i. The sizes of
the other circles in an array were not constrained, save by the
difference-in-total area requirement. In the Congruent condi-
tion, the array containing more circles had a greater combined
area than the second array, whereas in the Incongruent condi-
tion, the array containing more circles had a smaller combined
area. In the Neutral condition, the combined areas were equal.
In all, there were 126 randomized test trials, presented with a
break halfway. Reaction times on correct trials were trimmed as
in Experiment 1.

Experiment 3. Participants. Thirty-one Rutgers University under-
graduate students participated.
Procedure. All procedures were identical to those described in
Experiment 2, with the following exception: In the Neutral
condition NA � NB, the size of the largest circle in A equaled the
size of the largest circle in B, whereas the difference between the
combined areas of the circles on the two sides was equal to Aconst.
In compiling the training block, the 20 training displays were
sampled from the complete list of 42 possible neutral trials by
following the guidelines described above. Neutral displays con-
tained an equal number of dots and differed in area (see Fig. 1).
Note that the Congruent and Incongruent displays were iden-
tical to those used in Experiment 2. Only the task differed; in this
experiment, subjects indicated by pressing a button which side of
the screen had the greatest combined area.

This material is based on work supported by a training grant to the Rutgers
Center for Cognitive Science, National Institute of Mental Health Grant 32
MH019975, and a Spencer Postdoctoral Fellowship (to F.H.).
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22. Pavese A, Umiltà C (1999) J Exp Psychol Human Percept Perform 24:1535–1545.
23. Girelli L, Lucangeli D, Butterworth B (2000) J Exp Child Psychol 76:104–122.
24. Washburn DA (1994) Psychol Sci 5:375–379.
25. Clearfield MW, Mix KS (2001) J Cognit Dev 2:243–260.
26. Dehaene S, Bossini S, Giraux P (1993) J Exp Psychol Gen 122:371–396.
27. Klahr D, Wallace JG (1973) Cognit Psychol 4:301–327.
28. Trick L, Pylyshyn Z (1994) Psychol Rev 101:80–102.
29. Chong SC, Treisman A (2002) Vision Res 43:393–404.
30. Ariely D (2001) Psychol Sci 12:157–162.
31. Moyer RS, Landauer TK (1967) Nature 215:1519–1520.
32. Dehaene S (1992) Cognition 44:1–42.
33. Gelman R (1972) in Advances in Child Development and Behavior, ed Reese

HW (Academic, New York), Vol 7, pp 115–168.

Hurewitz et al. PNAS � December 19, 2006 � vol. 103 � no. 51 � 19603

PS
YC

H
O

LO
G

Y



34. MacLeod CM, MacDonald PA (2000) Trends Cognit Sci 4:383–391.
35. Meck WH, Church RM (1983) J Exp Psychol Anim Behav Proc 9:320–334.
36. Fetterman JG (1993) J Exp Psychol Anim Behav Proc 19:149–164.
37. Boysen ST, Capaldi EJ, eds (1993) The Development of Numerical Competence:

Animal and Human Models (Lawrence Erlbaum, Hillsdale NJ).
38. Roberts WA, Mitchell S (1994) J Exp Psychol Anim Behav Proc 20:66–78.
39. Suzuki K, Kobayashi T (2000) J Comp Psychol 114:73–85.
40. Roberts WA, Roberts S, Kit KA (2002) J Exp Psychol Anim Behav Proc

28:137–150.

41. Boysen ST, Berntson G, Mukobi K (2001) J Comp Psychol 115:106–110.
42. Huttenlocher J, Jordan N, Levine SC (1994) J Exp Psychol Gen 123:284–296.
43. Brooks PJ, Hanauer JB, Padowska B, Rosman H (2003) Cognit Dev 117:

1–21.
44. Kirkham NZ, Cruess LM, Diamond A (2003) Dev Sci 6:449–467.
45. Wynn K, Bloom P, Chiang W (2002) Cognition 83:55–62.
46. Van Loosbroek E, Smitsman AW (1990) Dev Psychol 26:916–922.
47. Brainard DH (1997) Spat Vis 10:433–436.
48. Schwarz W, Heinze HJ (1998) Neuropsychologia 36:1167–1179.

19604 � www.pnas.org�cgi�doi�10.1073�pnas.0609485103 Hurewitz et al.


