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ABSTRACT Synchronous oscillations in neural activity are found over wide areas of the cortex. Specific populations of
interneurons are believed to play a significant role in generating these synchronized oscillations through mutual synaptic and
gap-junctional interactions. Little is known, though, about the mechanism of how oscillations are maintained stably by particular
types of interneurons and by their local networks. To obtain more insight into this, we measured membrane-potential responses
to small current-pulse perturbations during regular firing, to construct phase resetting curves (PRCs) for three types of inter-
neurons: nonpyramidal regular-spiking (NPRS), low-threshold spiking (LTS), and fast-spiking (FS) cells. Within each cell type,
both monophasic and biphasic PRCs were observed, but the proportions and sensitivities to perturbation amplitude were clearly
correlated to cell type. We then analyzed the experimentally measured PRCs to predict oscillation stability, or firing reliability, of
cells for a complex stochastic input, as occurs in vivo. To do this, we used a method from random dynamical system theory to
estimate Lyapunov exponents of the simplified phase model on the circle. The results indicated that LTS and NPRS cells have
greater oscillatory stability (are more reliably entrained) in small noisy inputs than FS cells, which is consistent with their distinct
types of threshold dynamics.

INTRODUCTION

Neural oscillations and rhythmic activity are observed in a

variety of brain functions, including central pattern gener-

ation (1), locomotion (2,3), breathing (4,5), physiological/

Parkinsonian-resting tremor (6,7,8), sleep spindles (9,10),

slow sleep rhythms (10,11), and gamma, theta and epileptic

rhythms in the cortex and hippocampus (12,13). However,

little is understood of the complex mechanism of neural

population oscillations, of how and why they initiate and

break up—what determines their stability. Although the char-

acteristics of synchrony induced by common input and by

various types of coupling are quite different, the coherence

of oscillations in neuronal populations must depend on the

oscillatory stability of the individual participating cells. As a

first step in understanding the dynamics of cortical oscilla-

tions, therefore, it is necessary to understand quantitatively

how individual cell types preserve firing regularity in the

face of intrinsic and synaptic noise.

Independent of the precise mechanism of oscillations, cer-

tain mathematical concepts are generally applicable to ana-

lyzing the mechanism of synchrony (14,15). Phase resetting

is a quantity that can be directly measured experimentally by

delivering a perturbing stimulus to an oscillating system and

monitoring the resulting change in the phase of its dynamics

((14,16); for review (17)). In a reduced phase model of the

oscillator’s dynamics, the phase resetting curve (PRC) pro-

vides a complete description of the dynamics and can be

analyzed to predict the stability of entrainment or synchrony,

even in the presence of noisy fluctuations. This strategy of

determining the response of biological oscillators to pertur-

bation administered at different timings of the cycle has

yielded important insights into oscillators such as Aplysia

bursting cells (18), cardiac cells (19–22), pacemaker neurons

and their networks (23–26), central nervous systems (27,28),

and respiratory rhythm (29–32).

Details of the neuronal microcircuits in the mammalian

cortex that underlie oscillatory firing are becoming more

apparent (33,34), although the mechanism of stable oscilla-

tions in the gamma and beta frequency ranges is still far from

clear (35). It is believed that inhibitory interneurons such as

fast-spiking (FS) and low-threshold spiking (LTS) cells, two

major classes of GABAergic interneurons, play a significant

role in promoting stable synchronous oscillations in the local

cortical circuit (36). Recent studies also show that adjacent

pairs of interneurons of the same class in the layer 4 of somato-

sensory cortex are often interconnected simultaneously by gap

junctions and GABAergic synapses (37,38). Nonpyramidal

regular spiking (NPRS) cells are another major class of inter-

neurons, which are excitatory (39).

Here we have examined some of the important compo-

nents of synchronization in the cortical circuit, by measuring

PRCs of these three types of interneuron, in response to

small current perturbations. We found that in each cell type,

PRCs could be classified as monophasic or biphasic, with FS

cells in particular showing a preponderance of biphasic

PRCs. To gain insight into the biophysical basis of the PRCs,

we compared them with results from conductance-based

neural models. Finally, we introduce the concept of a stabil-

ity index, a measure derived directly from the PRC using the

theory of random dynamical systems, which expresses the
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rate of divergence of the phase during oscillation due to

noise. We found that LTS and NPRS cells have a rather

higher oscillatory stability than FS cells, and we discuss the

potential meaning of these results in terms of the roles of

interneurons in cortical networks.

MATERIALS AND METHODS

Slice preparation and recording

Transverse slices were prepared from somatosensory cortex of 18- to 24-

day-old Wister rats using standard techniques (40). During slicing, tissue

was kept in sodium-free solution that had the following composition (in

mM): 254 sucrose, 2.5 KCl, 26 NaHCO2, 10 glucose, 1.25 NaH2PO4,

2 CaCl2, and 1 MgCl2. Slices of 300-mm thickness were cut on a vibrating

slicer (Microslicer DTK-3000, D.S.K., Kyoto, Japan) and kept in Ringer’s

solution at room temperature for at least 2 h before recording. The Ringer’s

solution contained (in mM): 125 NaCl, 2.5 KCl, 25 NaHCO2, 25 glucose,

1.25 NaH2PO4, 2 CaCl2, and 1 MgCl2. Both slicing and recording solutions

were equilibrated with 95% O2, 5% CO2 gas to a final pH of 7.4. Slices were

viewed with an upright microscope (Olympus BW50WI, Olympus UK,

London, UK) using infrared differential interference contrast optics. All

experiments were performed at 34 6 1�C. Whole-cell patch-clamp record-

ings were made from the somas of neurons in layers 3 and 4, targeting cells

of nonpyramidal morphology with multipolar dendrites. Among these,

NPRS, LTS, and FS cells were distinguished on the basis of their action

potential shape and firing patterns (41,42). NPRS cells had typical regular-

spiking features, and we selected those with only slight firing-frequency

adaptation. FS cells were distinguished as described previously (43). LTS

cells distinctively exhibited prominent low-threshold action potentials after

hyperpolarizing current steps (‘‘anode-break’’ firing). During recording, the

slices were perfused continuously with Ringer’s solution in which 10 mM

bicuculline or gabazine (Sigma, St. Louis, MO), 10 mM CNQX, and 10 mM

AP5 (Tocris Cookson, Bristol, UK) were included to block most intrinsic

synaptic conductances. Somatic patch-pipette recordings were made with a

Multiclamp 700A amplifier (Axon Instruments, Foster City, CA) in current-

clamp mode, correcting for prenulled liquid junction potential. Whole-cell

recording pipettes (Clark GC150T-7.5) of 3.9–4.3 MV resistance were filled

with the standard intracellular solution: 105 mM K gluconate, 30 mM KCl,

10 mM HEPES, 10 mM phosphocreatine Na2, 4 mM ATP-Mg, and 0.3 mM

Na-GTP, balanced to pH 7.3 with NaOH. Series resistance compensation

was used. Signals were filtered at 5 kHz and sampled with 12-bit resolution

at 20 kHz.

Spike statistics

Spike times were measured as the times of upwards zero crossing of the

membrane potential. Instantaneous frequency (reciprocal of each interspike

interval) was computed from trains of action potentials evoked by 600-ms

duration pulses for the 1st, 2nd, 4th, and last interspike intervals. Steady-

state (SS) firing frequency was computed as the average of instantaneous

frequency for the last three intervals of a train. Current strength was usually

progressively increased or decreased in small (10- or 20-pA) steps. Initial

instantaneous frequency and steady-state firing rate were plotted as a func-

tion of the injected current strength, to construct frequency-current (f-I)
relationships. The maximum firing rate of a neuron was computed from the

number of spikes per trial at the highest current strength before depolar-

ization block. The frequency adaptation properties of neurons were charac-

terized by calculating the instantaneous firing rate as a function of time since

the beginning of the 600-ms pulse. For each current intensity, the decay of

firing rate was fitted to a single exponential function:

f ¼ CA expð�t=tAÞ1 FA; (1)

where f and t, respectively, represent the firing rate and time after the stimulus

onset and CA, tA, and FA are positive constant parameters. FA represents the

adapted firing rate. The strength of adaptation (adaptation index, A) was

quantified as 100 3 (1�FA/F1), where F1 corresponds to the firing rate of the

first interspike interval. Because adaptation depended on the current intensity

for any given neuron, we used the highest current level not producing

depolarization block of spiking, to allow comparison among cells. For some

cells, no adequate exponential fit could be obtained, and in these cases, FA was

calculated as the mean firing rate for the last 50 ms of the 600-ms current pulse

and used to calculate the adaptation index. Results are reported as means 6

SD. Membrane time constants were obtained by fitting a single exponential

function to the initial part of .10 time-averaged voltage responses to small

(�20 or �10 pA), 600-ms-long hyperpolarizing current pulses. Input

resistance was calculated from Ohm’s law by dividing the maximal average

voltage deflection by the amplitude of the applied current pulses.

Phase resetting plot

To determine how spike timing during periodic firing is shifted by pertur-

bations, we applied positive or negative 2-ms-width current pulses at 300–

400 ms after the onset of regular firing evoked by a 1-s depolarizing current

step (Fig. 3 A). The depolarizing current intensity (Id) ranged from 50 to 800

pA and the additive perturbation step-current intensity (Ip) 5–200 pA (see

also Table 2). The state of the neuron was characterized by a single quantity,

the phase (f), which without perturbation increases linearly with time,

modulo 2p, with a spike occurring whenever f¼ 0. Perturbation can change

the phase, and hence the timing of the following spikes (Fig. 3, A and B). The

spike-time response plot (STRP) is defined as the time difference between

the first control spike and the first perturbed spike after the time of pertur-

bation. Similarly, the phase resetting plot (PRP) is defined as the difference

between the phase immediately after the stimulus, and that immediately

before: Df ¼ fnew � fold. Hence, a PRP is obtained by normalizing a STRP

by the average firing period. Positive (negative) values of the PRP corre-

spond to phase advances (delays), with the timing of the next spike advanced

compared to the unperturbed case. The spike-time response curve (STRC) or

phase resetting curve is obtained by fitting the STSP and PRP with smooth

curves, as explained below. The amount of the phase shift (Df) of the spike

train depends on: i), the exact timing of the perturbation relative to the phase

or the state of membrane-voltage oscillation; ii), the polarity of perturbation

(positive or negative Ip), and iii), the magnitude of the perturbing current.

STRCs or PRCs were constructed from 80 to 120 successive trials of per-

turbation. Each set of trials was termed a ‘‘session’’. Before each session, a

depolarizing current step was applied at several levels to determine an

appropriate current level for producing stable ‘‘periodic firing’’ with only a

brief initial adaptation period (,150 ms) (Fig. 1 C). To this end, interspike

intervals during the period from 200 to 600 ms before the perturbation were

calculated to evaluate the ‘‘periodic firing’’. If the standard deviation of

intervals was ,5% of the average, the firing was considered periodic. For

the ith trial in a session, similarly, interspike intervals during the period from

200 ms to the time of perturbation and its average (Ti) were calculated. If

without perturbation the standard deviation of the average intervals (Ti) for

the trials was ,5% of the overall average, the firing was considered stationary.

Curve fitting

To create PRCs, the average values of PRPs were fitted using a polynomial

function of phase (28). The polynomial function we used was of the form:

Df ¼ fð2p � fÞ+2n11

j¼0
pjf

j , where pi (i ¼ 0,. . .,2n 1 1) are free param-

eters. The parameters were determined to minimize the mean square

error between data points and the average function. We determined the order

(2n 1 1) by using the Akaike information criterion (AIC) to maximize the

likelihood of the model, assuming that the residual is normally distributed.

This usually resulted in a 5th- or 7th-order polynomial. This fitting function

ensured that the curve is continuous and had zeroes at its left and right

extremes. However, this restriction was occasionally not suitable for
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describing the distribution of original data points. In this case, following

Netoff et al. (28), we used the function Df ¼ f +2n11

j¼0
pjf

j , which was not

constrained to zero at f ¼ 2p. Each PRC was classified as monophasic or

biphasic. Local extrema in both early and late phases, respectively, denoted

by me and ml, were evaluated as shown in Fig. 7, Aa and Ac. If the ratio (r-

index) between the absolute values (i.e., jme/ml j for jmej# jml j or jml /me j
for j mej .jml j) was ,0.175, we regarded its PRC as monophasic;

otherwise, it was biphasic. Note that if there is only one extremum in a PRC,

it was classified as monophasic (c.f., Fig. 5 C). The value of 0.175 was

obtained through a numerical simulation of the fast-spiking cell model

proposed by Erisir et al. (44) (see Fig. 7 Bd and Results). The original leak-

conductance parameter gL ¼ 10 (nS) in the model was modified to gL ¼ 4.1

(nS) to produce an f-I curve resembling our previous results on FS cells (43).

Note that using a different value of the r-index would result in a different

proportion of mono- and biphasic PRCs.

Stability index

We calculated a stochastic version of a Lyapunov exponent as a quantitative

index of the stability of periodic firing under noisy perturbation. The method

we used is based on random dynamical system theory (45). To calculate the

stability index, we first assume that the periodic firing can be expressed as

the simple reduced phase model

dut ¼ 1 � dt 1
ffiffiffiffiffiffi
2D
p

STRðutÞ � dWt ðmod TÞ; (2)

where ut is phase on the circle, STR is a spike-time response curve,
ffiffiffiffiffiffi
2D
p

is

the noise intensity, T is the period of the oscillation, and Wt is the standard

Wiener process (46). With an appropriate initial condition, Eq. 2 is an Ito

stochastic differential equation and its linearized or variational equation is

expressed by

dvt ¼ �DðSTR9ðutÞÞvtdt 1
ffiffiffiffiffiffi
2D
p

STRðutÞvt � dWt; (3)

where STR9(u) ¼ dSTR/du and v0 6¼ 0. Because we can obtain an explicit

solution of Eq. 3, the Lyapunov exponent is directly defined as the expo-

nential growth rate

l � �D

T

Z T

0

ðSTR9ðuÞÞ2du; (4)

for a small level of the noise. Because, from Eq. 4, the Lyapunov exponent

l is a linear function of D, we define the stability index (SI) as l/D, that is,

SI ¼ �1

T

Z T

0

ðSTR9ðuÞÞ2du: (5)

By this definition, SI is always negative, and the more negative the value

of SI, the greater the degree of oscillatory stability. Using Eq. 5, once we

FIGURE 1 Firing properties of three classes of neurons in layer 3/4 somatosensory cortex. (A) Repetitive firing for three different current steps of increasing

amplitude: (a) LTS cell (20–250 pA); (b) NPRS cell (90–450 pA); and (c) FS cell (50–300 pA). (B) Expanded view of single spikes and afterhyperpolarizations for

an LTS (a), an NPRS (b), and an FS (c) cell. FS cells had larger AHPs than LTS and NPRS cells. (C) Instantaneous firing frequency (1/interspike interval) versus

time after the onset of current pulse for LTS, NPRS, and FS cells. Depolarizing current steps were, respectively, 120 pA, 200 pA, and 160 pA for LTS, NPRS, and

FS cells. For each case, firing frequency was stable after 150 ms from the stimulus onset and the adaptation effect was small at these levels of current input.
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obtain the STR curve of a system from an experiment, we can directly

calculate its SI value, even if we do not know an explicit expression for the

underlying dynamics of the system. Thus, despite the simplicity of Eq. 5, it is

a very useful relationship for gaining insight into the stability of an oscillator

experiencing noisy perturbation (for more details, see Pakdaman and

Mestivier (46)). To calculate SI, we used STRCs obtained for the smallest

practical perturbation size, which are assumed to be proportional to the

infinitesimal STRC, normalized by the magnitude of the perturbing current.

Numerical simulation methods of neural models

All numerical simulation of noiseless neural models was performed by the

4th-order Runge-Kutta method with a fixed time step of 0.1 ms. For noisy

neural models, trajectories of state variables were numerically calculated

by the forward improved Euler or the Heun method with a fixed time step of

0.1 ms. A more detailed description can be found in Tateno and Pakdaman

(47).

RESULTS

Cell types in the layer 3/4 of rat
somatosensory cortex

On the basis of responses to injected step currents, nonpyra-

midal cells with a multipolar dendritic morphology, recorded

in layer 3 or 4 of somatosensory cortex, were classified into

three groups: low-threshold spiking, nonpyramidal regular-

spiking, and fast-spiking cells (36,39,42,48), as shown in

Fig. 1 A. This study is based on recordings from 18 LTS,

23 NPRS, and 28 FS neurons. See Table 1 for basic firing

statistics of the three types.

As shown in Fig. 2 A, LTS cells were easily distinguished

from the other two cell classes by low-threshold action

potentials produced when stimulated from hyperpolariza-

tions (36). LTS cells show strong spike-frequency adaptation

at larger levels of injected current, but little adaptation at

lower levels (Figs. 1 Aa and 2, Ab and Ba). They also support

lower regular firing frequencies than FS cells (Fig. 2, Ab and

Bb) and at low frequencies, show a biphasic afterhyperpola-

rization (AHP), as shown in Fig. 1, Aa, Ba, and Ab.

As described previously (43), Fig. 1, Ab and Ac,

respectively, shows typical action potential waveforms for

an NPRS cell and an FS cell at three levels of injected step-

current. NPRS cells and FS cells showed monophasic and

biphasic AHPs, respectively, as seen in Fig. 1, Bb and Bc.

NPRS cells and FS cells differed in their basic electrical

parameters, particular in resting potential, maximum firing

rate, and adaptation index (see Table 1). We also used

TABLE 1 Summary of basic statistics on LTS, NPRS,

and FS cells

LTS NPRS FS

No. of cells 18 23 28

Resting potential, mV �73.4 6 5.3 �74.3 6 3.2 �68.5 6 5.1

Input resistance, MV 558 6 142 333 6 120 344 6 87

Maximum firing rate,

spikes/s

49.2 6 16.4 43.5 6 7.7 92.5 6 16.4

Time constant, ms 25.1 6 10.1 72.1 6 14.9 41.0 6 9.5

Adaptation index, % 50.1 6 11.6 77.2 6 8.5 46.0 6 8.5

Adaptation decay time

constant, ms

173 6 63.6 192 6 102 208 6 92

LTS, low threshold spiking; NPRS, nonpyramidal regular spiking; FS, fast

spiking.

FIGURE 2 (A) Firing properties of

LTS cells. (a) Membrane responses for

five increasingly negative current steps

(from �10 to �50 pA). Hyperpolariz-

ing current injection (�50 pA) leads to

a rebound spike. (b) Repetitive firing

for four different current steps of

increasing amplitude (20–260 pA).

LTS cells support low firing frequency.

(B) (a) Instantaneous firing frequency

(1/interspike interval) versus time after

the onset of current pulse at four

selected current strengths (100, 140,

200, and 300 pA). LTS cells show

strong adaptation at higher current

strength (i.e., 300 pA), but little adap-

tation at lower current strength (i.e., 100

pA). (b) LTS neuron firing frequency

versus injected current (f-I) relation-

ship. Frequencies corresponding to the

1st, 2nd, 4th, and last spike intervals

increased monotonically with the cur-

rent strength, starting from 2 to 4

spikes/s, as low as could be assessed

with this stimulus duration. This result

indicates that LTS cells effectively have

‘‘type 1’’ threshold dynamics.
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several other measures to distinguish NPRS and FS cells, as

reported in Ref. (43). At intermediate current intensities,

LTS, NPRS, and FS cells show periodic firing after 150 ms

from the onset during a current step injection, as shown in

Fig. 1 C, although the current intensities required to produce

such regular firing differed between cells and cell types (see

the next subsection and Table 2).

Phase resetting curves

We next examined how perturbing current inputs affect spike

timing and shift the phase of spiking, using short (2-ms-

width) current pulses of varying magnitude (Ip) and polarity

(see Materials and Methods). Before each test condition, we

first checked the periodicity of regular firing during the

control application of a depolarizing step current (e.g., see

Fig. 1 C). Table 2 summarizes the perturbation test condi-

tions used, and control periodicity, for each cell type.

Fig. 3 A shows superimposed waveforms of action po-

tentials in the control and with a perturbation, in an LTS cell.

Compared with the control, the spike time was changed after

short and small current-step perturbations, indicated by the

arrow, although there was small spike-time jitter (,2 ms)

before the perturbation and the final period (.800 ms) of the

stimulus (see Table 2). The amount of spike time or phase

shift depended on both individual cells and the timing or

phase of perturbation during one cycle of firing. As seen in

Fig. 3 B, compared with the control condition, a perturbation

at a late phase (stimulus 1) advanced the next spike time

(response 1), whereas a perturbation at a very early phase

(stimulus 2) delayed the next spike time (response 2). By

successively changing the perturbation time relative to that

of the preperturbed spike, a spike-time response plot is ob-

tained, as shown in Fig. 3 C. Normalizing by the average of

the firing intervals (firing period, T) produces a phase reset-

ting plot, as shown in Fig. 3 D. We obtained the corre-

sponding phase resetting curve by polynomial fitting (Fig. 3 D),

as described in Materials and Methods. The effect of per-

turbation on following spikes can be systematically evalu-

ated by calculating the phase of nth-order interspike intervals

(modulo T), which are phase-independently distributed

around zero, in the absence of a perturbation. For the case

of Fig. 3 C, the average perturbation effect on the succeeding

(2nd order) interspike intervals is plotted by a dotted curve in

Fig. 3 D, showing only a slight phase delay. Thus, the major

effect of the perturbation is confined to the spike interval in

which it occurs (1st order).

Fig. 4, Aa-c and Ba-c, shows examples of PRCs and the

effects of perturbation intensity on the shape of the PRCs, for

LTS and NPRS cells, respectively. In these cases, the aver-

age PRCs are biphasic; the postperturbed phase is delayed by

perturbations early in the period, whereas it was advanced by

late perturbations. In addition, with respect to the perturbation

TABLE 2 Summary of perturbation conditions for

obtaining PRCs

LTS NPRS FS

No. of cells 18 23 28

No. of total sessions 31 36 41

Depolarizing current (Id), pA 169 6 49 377 6 277 184 6 68

Perturbation magnitude

(jIpj), pA

45.0 6 28.2 77.5 6 72.0 48.9 6 37.9

Firing period (Ti), ms 37.1 6 9.7 24.5 6 9.9 31.4 6 9.0

Mean 6 SD of Ti, ms 1.58 6 0.50 1.47 6 0.43 1.20 6 0.44

LTS, low threshold spiking; NPRS, nonpyramidal regular spiking; FS, fast

spiking.

FIGURE 3 Spike time response plot

and phase response curve for an LTS cell.

(A) Spikes (top, dotted line) evoked by a

1000-ms duration, 80-pA depolarizing

current step (bottom) are perturbed by a

2-ms duration, 30-pA additional current

step, indicated by the arrow. Action

potentials in the unperturbed control are

plotted as a solid line. (B) Phase shift of the

postperturbed spikes depending on the

perturbed phase. Stimulus 1 (perturbation

at a late phase) induced phase advance

(response 1), whereas stimulus 2 (at an

early phase) produced phase delay (re-

sponse 2). (C) Spike time response plot.

The timing of perturbation is plotted by

short bars. (D) A PRC is plotted using the

same data shown in C. The average curve

was fitted by a 7th-order polynomial curve

(see Materials and Methods). The dotted

curve shows the phase shift of the 2nd

postperturbed spike with respect to the 1st

spike after perturbation, and indicates a

small 2nd-order effect on the interspike

intervals immediately after perturbation.
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amplitude, phase resetting curves were almost linearly scaled

for smaller levels of the perturbation (e.g., Ip¼ 5–50 pA). At

large perturbation magnitudes (.50 pA), a clear disconti-

nuity in the PRCs becomes apparent, which is not well fitted

by low-order polynomials. Another typical finding was that

the zero crossing points in PRCs were shifted leftward as the

perturbation magnitude increased. PRCs are also shown for

two other LTS cells (Fig. 4, Ad and Ae) and two NPRS cells

(Fig. 4, Bd and Be) perturbed by small positive (Ip ¼ 20 pA)

or negative (Ip ¼ �20 pA) current steps. Fig. 4, Ad,e and

Bd, shows examples of monophasic PRCs, whereas the

NPRS cell in Fig. 4 Be had a biphasic PRC. Overall, for

smaller perturbing current-steps (jIpj ¼ 24.2 6 13.1 pA) in

18 LTS neurons, 72.2% of the cells showed monophasic

PRCs and the remaining 27.8% were biphasic, using an r-

index of 0.175, which means the ratio between the local

extrema at early and late phases (see Materials and Methods).

Similarly, for relatively smaller perturbations (jIpj ¼ 26.9 6

11.1 pA) in 22 NPRS cells, 54.5% of cells were classified as

monophasic and 45.5% as biphasic with the same r-index. For

statistics of the points of local extrema and of zero crossing in

the PRCs, see Table 3.

Several examples of PRC curves for FS cells are shown in

Fig. 5. Fig. 5 A shows the almost linear scaling of PRCs in

one cell as the magnitude of a small perturbation is increased

(Ip ¼ 5–50 pA), although the zero crossing points shifted

leftward slightly. There was a less pronounced discontinuity

in the PRCs at high intensities of perturbation (Fig. 5 Aa)

than for the other cell types. Two other FS cells showed bi-

phasic and monophasic PRCs in Fig. 5, B and C, respectively,

FIGURE 4 Phase resetting curves for

three of LTS and NPRS cells. (A) LTS

cells. For an LTS cell, dependency of

biphasic PRCs on perturbation magni-

tude is shown in a, b, and c. The

depolarizing current-step (Id) was 200

pA and the magnitude of perturbation

(Ip) was 80, 50, and 10 pA (top to

bottom). (d and e) For two other LTS

cells, monophasic PRCs for positive

perturbations (d, Ip ¼ 15 pA) and

negative perturbation (e, Ip ¼ �40

pA). (B) NPRS cells, biphasic PRCs at

three perturbation magnitudes. The per-

turbation magnitude Ip was, respec-

tively, 80, 50, and 20 pA in a, b, and

c. (d and e) For two other NPRS cells,

monophasic and biphasic PRCs are

shown, for positive (d, Ip ¼ 10 pA)

and negative (e, Ip ¼ �30 pA) pertur-

bations, respectively.
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in response to negative current perturbation. Asymmetrical

PRCs were obtained for larger levels (Ip . 80 pA) of positive

and negative perturbation (cf. Fig. 5, Aa and Ba), although

the exact shape of PRCs greatly depended on individual FS

cells. In total, for smaller current steps (jIpj ¼ 30.0 6 12.1 pA)

in 23 NPRS cells, 30.4% of the cells were monophasic and

69.6% were biphasic with the r-index value 0.175. For other

statistics of the PRCs, see Table 3.

Firing stability under noisy perturbation

To characterize the oscillatory stability of periodic firing

under noisy perturbation, we analyzed the stability index

for all the cells of the three cell types (see Materials and

Methods). This index uses random dynamical system theory

to quantify the stability of stochastic systems, in a way that is

analogous to the analysis of stability of a deterministic sys-

tem. It gives a measure of the duration of the transient period

or relaxation to a stochastic equilibrium, under stationary

conditions of the stochastic components. The stability index

(see Materials and Methods) was calculated from normalized

PRCs obtained at low (Ip , 40 pA) perturbation magnitudes

(see Table 3). For LTS, RS, and LTS cells, the index values

were, respectively, �2.72 6 2.33, �3.16 6 3.44, and

�1.54 6 2.19. As also shown in the box plot of Fig. 6, LTS

and RS cells have more negative index values on average

than FS cells (P , 0.05, see Table 4). This result implies that

LTS and RS cell firing can be more easily stabilized under

TABLE 3 Summary of PRCs for small current-step perturbation

LTS NPRS FS

No. of cells 18 22 23

Depolarizing current (Id), pA 148 6 50 237 6 105 168 6 68

Perturbation magnitude (jIpj), pA 24.2 6 13.1 26.9 6 11.1 30.0 6 12.1

Firing period, ms 38.4 6 9.7 46.4 6 9.2 27.1 6 6.8

Monophasic PRCs, % (cells) 72.2 (13) 54.5 (12) 30.4 (7)

Absolute local extremum, 32p rad. 0.14 6 0.11 0.12 6 0.09 0.16 6 0.10

Biphasic PRCs, % (cells) 27.8 (5) 45.5 (10) 69.6 (16)

*Maximum advanced phase, 32p rad. 0.091 6 0.021 0.17 6 0.08 0.17 6 0.11

*Minimum delayed phase, 32p rad. �0.048 6 0.026 �0.084 6 0.061 �0.098 6 0.111

*Zero crossing phase, 32p rad. 0.37 6 0.08 0.45 6 0.09 0.35 6 0.08

LTS, low threshold spiking; NPRS, nonpyramidal regular spiking; FS, fast spiking. The perturbation magnitude Ip was ,40 pA in all cases, and the r-index

used was 0.175.

*Indicates that each of the values is calculated only by positive current-pulse perturbations.

FIGURE 5 Phase resetting curves for three FS cells. (A) Biphasic-PRC cell; a, b, and c show dependence of PRC on perturbation magnitude. The

depolarizing current-step (Id) was 200 pA and the magnitude of perturbation (Ip) was 80, 50, and 10 pA (top to bottom). (B) For one FS cell, biphasic PRCs are

shown for negative perturbations of Ip¼�20 pA (a) and Ip¼�40 pA (b). (C) For one cell, monophasic PRCs are shown for negative perturbation of Ip¼�10

pA (a) and Ip ¼ �30 pA (b).
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fast noisy inputs than can FS cells. Moreover, if they have

stochastic equilibria (see Fig. 8), FS cells would approach

them more slowly than LTS and RS cells on average.

Numerical simulation of neural models

For some low-dimensional Hodgkin-Huxley type conduc-

tance-based neural models, numerical simulations indicate a

close link between threshold dynamics and the shape of

PRCs: PRCs are mostly positive in a type-1 parameter

regime, whereas they become markedly biphasic in a type-2

regime (49). Type-1 neurons show continuous frequency ver-

sus steady current intensity (f-I) relationship, whereas type-2

neurons show a discontinuous relationship at lower fre-

quency. For example, typical PRCs of the Morris-Lecar

model (50) in type-1 and type-2 regimes are shown in Fig. 7

A; r-values (j me/ml j) were 0.00886 in Fig. 7 Aa and 0.864 in

Fig. 7 Ac because j mej # jml j. However, actual cortical

interneurons are likely to have more complexity and vari-

ability, requiring more realistic neural models. For instance,

Fig. 7 B shows some characteristics of an FS-cell model with

Kv3.1-channel-like current proposed by Erisir et al. (44),

with a model parameter (leak conductance) modified to fit an

experimentally obtained f-I curve (c.f., Fig. 7 Ba and Tateno

et al. (43)). As shown in Fig. 7 Ba, the model has type-2

membrane excitability and shows an abrupt onset of regular

firing at ;20 spikes/s beyond a subcritical Hopf bifurcation

point in response to steady injected current of 76.4 pA. Fig. 7

Bb shows the dependence of biphasic PRC shape on depo-

larizing current intensity (Id). At small perturbation magni-

tude (Ip ¼ 20 pA) and larger depolarizing current intensity

(e.g., Id ¼ 600 pA), the PRC seems to be monophasic, but is

in fact biphasic. Although the theory of phase models and

weakly coupled networks (51) considers infinitesimal per-

turbations, in an experiment, of course, one must use a finite

nonzero perturbation magnitude. The shape dependence of

PRCs on perturbation magnitude introduces additional vari-

ability in the shape of experimentally recorded PRCs, for

example, as illustrated in Fig. 7 Bc. However, one may mini-

mize this problem by using small (e.g., 5–30 pA) perturba-

tions because, with respect to the perturbation amplitude, the

PRC essentially scales linearly in this range (c.f., Fig. 4, A
and B). Therefore, we take the normalized, small-perturba-

tion PRC to represent the infinitesimal PRC, as a character-

istic function describing how a particular neuron reacts to

small perturbations. We classified the shape of PRCs using

the r-value, the ratio of minimum phase delay (advance) to

maximum phase advance (delay) (c.f., Fig. 7, Aa and c). For

the Erisir et al. model (44), the relationship between r-value

and injected current intensity is shown in Fig. 7 Bd. This

shows that the r-value of this type-2, biphasic-PRC model

reaches a minimum value of 0.175, which we designate as

the r-index for discriminating between monophasic (r ,

0.175) and biphasic (r $ 0.175) PRCs experimentally.

DISCUSSION

Cell types, threshold dynamics, and PRC shape

In a study of the responses of axons isolated from Carcinus
maenas to various intensities of rectangular current stimuli,

Hodgkin found that some axons could show a continuous

transition from zero frequency to arbitrarily low frequencies

of firing, whereas others show an abrupt onset of repetitive

firing at a nonzero firing frequency (52). These types of

threshold excitability are recently referred to as ‘‘type 1’’ and

‘‘type 2’’, respectively. RS cells in the cortex are well known

to have ‘‘type 1’’ excitability, i.e., continuous frequency ver-

sus steady current intensity (f-I) relationship, because they

support extremely low frequency firing (53,54). In contrast,

it has quite recently been reported that FS interneurons in the

rat somatosensory cortex demonstrate ‘‘type 2’’ membrane

excitability because FS cells begin repetitive firing with an

abrupt onset at increasing levels of sustained current step

stimuli, i.e., discontinuous f-I relationship (42–44). In ad-

dition, in this study, we demonstrate that LTS cells are

‘‘type 1’’ with a continuous f-I relationship (Fig. 1, Cb
and Db), which to our knowledge has not been reported

previously.

FIGURE 6 Stability index for FS, LTS, and NPRS cells. Box plots are

shown for the three cell types, with lines at the lower quartile, median, and

upper quartile values. Also, see Table 4.

TABLE 4 Summary of stability index for LTS, NPRS,

and FS cells

LTS NPRS FS

No. of cells 18 22 23

Stability index (310�4) �2.72 6 2.33 �3.16 6 3.44 �1.54 6 2.19

P ,0.05 ,0.05 –

The significant difference of LTS versus FS or NPRS versus FS cells is

indicated in P.
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As shown in Fig. 7, for some low-dimensional Hodgkin-

Huxley type conductance-based neural models, numerical

simulations indicate a close link between threshold dynamics

and the shape of PRCs. Experimentally, in contrast, PRCs

classified as monophasic or biphasic did not always strictly

correspond with type-1 and type-2 excitability, respectively.

An interesting aspect of our results is the heterogeneity of

PRC type within cell types as defined by action potential

shape and firing pattern, which indicates that a cell ‘‘type’’

may in fact encompass cells with a variety of dynamical

behaviors and perhaps distinct subtypes. In future experi-

mental studies, there is certainly scope for a more sophis-

ticated classification of PRC shape than we have attempted

here, for example, by using the approach of Galán et al. (55).

Cell-type dependent noise-induced stability of
neural oscillations

Cortical neurons in vivo must operate in high levels of noise

resulting from channel gating fluctuations, noisy synaptic

transmission, and background network activity (56–58).

‘‘Noise’’ may also include, or even be dominated by the

complex, apparently stochastic input that must be encoded

and processed as information by a cortical neuron. It is

important, therefore, to begin to quantify and elucidate the

stability of oscillations of cortical interneurons under noisy

perturbation, and its functional impact. For cortical neurons,

significant questions are: i), What is the effect of oscillatory

stability on neural coding? ii), How do different cell types

FIGURE 7 Oscillatory properties of

the Morris-Lecar (ML) and fast-spiking

cell models. (A) The ML model. A

monophasic phase resetting curve in a

type-1 regime (a) and a biphasic PRC in

type-2 regime (b), and the correspond-

ing one-cycle membrane voltage traces

during periodic oscillation (b and d),

respectively. (B) The fast-spiking-cell

model proposed by Erisir et al. (44). (a)

The frequency versus current intensity

curve. The original model was modified

to fit the curve to experimentally

obtained data in Tateno et al. (43).

The bifurcation point is at I ¼ 76.4 pA.

(b) Perturbation magnitude dependence

of biphasic PRCs. (c) Depolarizing

current intensity dependence of PRCs

with a perturbation magnitude Ip ¼ 5

pA; (d) r-value versus depolarizing

current (Id) intensity. The curve takes

a minimum value (0.175), which is re-

ferred to as the r-index, ;120 pA with

a perturbation magnitude Ip ¼ 5 pA.

Analysis of Cortical Neural Firing Stability 691

Biophysical Journal 92(2) 683–695



differ in their oscillatory stability? iii), What noise level in

neural models is appropriate for representing stable and

unstable firing in actual cortical circuits?

Our approach to these problems has been to apply the

recently developed theory of random dynamical systems (45)

to a simple, reduced one-dimensional phase-model mimick-

ing experimentally observed neural oscillations, and to obtain

a stability index that is a stochastic version of a Lyapunov

exponent, from experimentally observed PRCs. In general, it

is always true that adding noise to any oscillator will induce

variability of oscillations, and in neural oscillators, a certain

degree of randomness in spike timing. However, perhaps

unexpectedly, the variability or the randomness is not always

sufficient to make the system lose oscillation regularity and

to drastically change its asymptotic behavior. Such random-

ness may not necessarily have a negative functional impact

on neural systems and may contribute to creating new order,

for example, as in the enhancement of signal detection

through stochastic resonance described in sensory systems

(59,60) or noise-induced synchronization of neural oscilla-

tions proposed in olfactory bulb mitral cells (61).

As some recent studies have described (46,47,62,63),

from a random dynamical system viewpoint, the destruction

of limit cycles of deterministic conductance-based neural

models by weak additive noise is replaced by the concept of

stochastic equilibria. That is, in a certain situation, even weak

noisy perturbation to a neural model is sufficient to transform

its limit cycle into a single stochastic equilibrium point,

which is a stochastic process and continues to fluctuate in the

future. This means that for almost all initial conditions and

under the same noise realization, any sample path of the state

point converges to a single (stationary) stochastic process

after a transient period. Fig. 8 shows such an example of the

noisy FS-cell model in an oscillatory regime. In Fig. 8, under

FIGURE 8 (A) Time evolution of many state points on the V-m-n3 phase space for an identical noise realization input, in an oscillatory regime of the FS-cell

model. In the absence of noise, the model has a stable limit cycle. For D¼ 2.0 mV, snapshots of the state points are illustrated in the space for a starting grid of

64,000 initial conditions regularly positioned in hexahedral grids at t¼ 0 ms (A), t¼ 0.2 ms (B), t¼ 1.0 ms (C), t¼ 300 ms (D), t¼ 500 ms (E), and t¼ 1.3 s (F).
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the same noise realization, state points of the identical FS-

cell units start from many different initial conditions (Fig. 8

A) and finally converge to a single point (Fig. 8 F), which is a

stochastic process, after a transient period (Fig. 8, B–E).

Therefore, for the same noisy, complex input or ‘‘frozen

noise’’ stimulus, the set of trajectories and, in the sense of

neural coding, the spike timing is reliable across an ensemble

after the transient period (62,63).

As in neural models, weak noisy inputs to cortical inter-

neurons could create a similar situation, either stabilizing or

destabilizing the oscillation, leading to more reliable or un-

reliable spike timing. The oscillatory stability and the tran-

sient period to stochastic equilibrium must depend on the

specific cell type, e.g., on the balance among various trans-

membrane ion channels including Kv1 and Kv3 channels

(63). We found that FS cells have a smaller average stability

index value than the other two cell types, but less variability

in the index values. This indicates that FS cells may have a

longer transient period on average to approach their putative

stochastic equilibria. One interpretation of this result is that

FS cells are driven less easily by noisy input than are the

other two cell types, because they have a comparatively

strong preferred oscillation frequency or resonance. In other

words, FS cells may avoid becoming entrained to a driving

noisy input over short periods.

There are rather few reports of stable intracellular re-

cordings in awake animals (56,57,64–67). However, these

studies indicate that cortical neurons typically have a depo-

larized membrane potential ;�60 mV, with a standard

deviation of fluctuations of 2–6 mV. In addition, Tateno and

Robinson (63) recently showed that at such noise levels, the

leading Lyapunov exponents of an FS-cell model are strictly

negative for each realization. This result supports the idea

that the analysis described in this study could be quite rele-

vant to the normal function of cortical networks.

Possible roles of interneurons in cortical
population activity

Networks of GABAergic interneurons are implicated in

synchronizing cortical activity over a wide range of fre-

quencies. For cognitive processes such as perception and

attention, fast network oscillations in the cortex are proposed

to establish transient temporal correlations between spatially

distributed neurons with a temporal resolution of ,10 ms

(67). Both synchronizing and desynchronizing mechanisms

provided by GABAergic interneurons are thought to be

important in governing such concerted activity. In the cortex,

population oscillations appear to arise as an emergent pro-

perty of networks of interneurons, mutually connected both

through electrical coupling and chemical synaptic connec-

tions (37,38,68). It is also known that gap junctions almost

exclusively connect GABAergic neurons belonging to the

same class (33). That is, the interneuron network connections

in the cortex are strictly cell-type dependent and homoge-

neous within cell types, and network activity is thus influ-

enced by the distinctive dynamics of each cell type. The

different phase resetting properties of each cell type corre-

sponds to a type-specific strategy for participating in con-

certed rhythmic activity.

The PRC as a tool to examine oscillatory stability

We have demonstrated that using random dynamical system

theory, PRCs can become a useful practical tool not only

for understanding the phase shifts of neural oscillation in

response to small perturbations, but also for characterizing

and classifying oscillatory behavior for noisy or complex

inputs. This approach is quite general for oscillators in the

presence of noise, and is also applicable to a variety of other

biological oscillators.
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