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Objectives. Patient data that includes precise locations can reveal patients’
identities, whereas data aggregated into administrative regions may preserve
privacy and confidentiality. We investigated the effect of varying degrees of ad-
dress precision (exact latitude and longitude vs the center points of zip code or
census tracts) on detection of spatial clusters of cases.

Methods. We simulated disease outbreaks by adding supplementary spatially
clustered emergency department visits to authentic hospital emergency depart-
ment syndromic surveillance data. We identified clusters with a spatial scan sta-
tistic and evaluated detection rate and accuracy.

Results. More clusters were identified, and clusters were more accurately de-
tected, when exact locations were used. That is, these clusters contained at least
half of the simulated points and involved few additional emergency department
visits. These results were especially apparent when the synthetic clustered points
crossed administrative boundaries and fell into multiple zip code or census tracts.

Conclusions. The spatial cluster detection algorithm performed better when
addresses were analyzed as exact locations than when they were analyzed as
center points of zip code or census tracts, particularly when the clustered points
crossed administrative boundaries. Use of precise addresses offers improved
performance, but this practice must be weighed against privacy concerns in the
establishment of public health data exchange policies. (Am J Public Health. 2006;
96:2002–2008. doi:10.2105/AJPH.2005.069526)

Privacy Protection Versus Cluster Detection in 
Spatial Epidemiology
| Karen L. Olson, PhD, Shaun J. Grannis, MD, MS, and Kenneth D. Mandl, MD, MPH

detecting small, localized clusters, is to store
patient locations as either latitude and longi-
tude coordinates of home addresses or, more
commonly, as points within administrative
regions such as zip code areas or census
tracts. The latter practice presumably results
in patients being less identifiable as individu-
als, although extent of anonymity is certain
to vary.17,18 A recent study using simulated
risk data showed that, even when anonymity
is ensured, assigning individuals to census
tracts results in maps that do not accurately
portray disease risk.19

The goal of this study was to investigate
the effects of blurring identifiable patient data
by converting a patient’s home address from
an exact location to a regional centroid. We
assessed outbreak detection by adding syn-
thetic, spatially clustered emergency depart-
ment visits to authentic background hospital
emergency department surveillance data, cre-
ating semisynthetic data.20 The clusters were
placed in a region densely populated by pa-
tients. In previous work, we found that small

clusters near hospitals were difficult to
detect.21 Yet, one goal of a real-time surveil-
lance system is to detect unusual events early,
possibly when only a few individuals have
been affected. Depending on the nature of
the outbreak, early detection may be critical
in minimizing morbidity and mortality.

We used a spatial scan statistic22,23 to de-
termine whether the simulated clusters could
be detected. Pilot work indicated that this
metric would detect relatively small, compact
clusters in the present data. We examined 2
dimensions of cluster detection. One was de-
tection rate, defined simply as the percentage
of the semisynthetic data sets containing clus-
ters detected by the spatial scan statistic. The
other was accuracy, which we assessed by
comparing characteristics of detected clusters
with characteristics of simulated clusters.
Transferring addresses to the centroids of ad-
ministrative regions might increase detection
rates by essentially amplifying clusters when
many cases are concentrated at a single point.
By contrast, detection might be more difficult

With the widespread deployment of virtu-
ally real-time population health monitoring
systems, including syndromic surveillance
systems,1,2 there has been an increasing
focus on spatial cluster detection as a means
of identifying disease outbreaks. These spa-
tial epidemiological methods rely on knowl-
edge of patient locations to detect unusual
disease clusters. Patients’ home addresses
are recorded in hospital administrative data,
but use of this precise information raises
privacy concerns.3–5 Consequently, many
surveillance systems have begun to use re-
gional locations, such as zip code centroids
(center points).6–11 However, this practice
can distort the spatial distribution of the
original, nonaggregated data, which may ad-
versely affect subsequent spatial analyses.3

Therefore, it is important to study the po-
tential effect that aggregating data to cen-
troids may have on the statistical analyses
underlying these systems.12,13

Although there is compelling justification to
accurately monitor clinical data for public
health purposes, it is important to protect
identifiable patient information. The Privacy
Rule of the Health Insurance Portability and
Accountability Act14 requires that disclosed
health information be restricted to the mini-
mum necessary to satisfy its intended pur-
pose. The minimum amount of information
necessary for effective syndromic surveillance
has not been well investigated. However, the
issue has been explored in the context of can-
cer surveillance. A recent study revealed few
differences when late-stage breast and
prostate cancer results were compared for dif-
ferent area-specific units (town, census tract,
block group) and exact coordinates (the
study’s objective was not to search for small
area clusters).15 An earlier study showed that
small clusters did not characterize breast can-
cer incidence rates in the region assessed.16

The current practice in syndromic surveil-
lance, in which there is great interest in
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Note. Ten simulated cluster points were inserted into authentic emergency department data. The simulated points (small dark
circles) were randomly scattered within a 1-km circle (solid line) and fell into 2 zip codes of 5 points each. The simulated
cluster was located along a circle (dotted line) with a radius of 5 km that was centered at the study hospital. For this figure,
points representing patient addresses were moved random short distances from their true locations. Points analyzed as exact
latitude and longitude coordinates are shown in part a. The cluster identified by SaTScan contained the 10 simulated points
and 4 additional points (small open circles) from the hospital data. For the data shown in part b, points were analyzed as zip
code centroids, but exact locations are pictured. The cluster identified by SaTScan contained the 10 simulated points and 18
additional points (small open circles) from the hospital data.

FIGURE 1—Simulated spatial cluster analyzed through the use of (a) exact locations or
(b) zip code centroids.

in this case because not only would the simu-
lated cluster points be concentrated, so would
points from the background emergency de-
partment data.

METHODS

Surveillance Population
Simulated clusters were added to data de-

rived from emergency department visits at
an urban, pediatric, tertiary care hospital
that participates in the AEGIS health moni-
toring system.1 Baseline data comprised all
emergency room visits occurring between
May 11, 2002, and June 22, 2005, in which
the chief complaint or diagnosis was indica-
tive of respiratory illness.24 The syndromic
surveillance literature has most closely fo-
cused on symptoms of respiratory infection
because they characterize many conditions
of public health interest (e.g., influenza and
anthrax).

ArcGIS 9.0 (Environmental Systems Re-
search Institute Inc, Redlands, Calif) was used
to geocode (convert to latitude and longitude
coordinates) the home address of each pa-
tient, and addresses were mapped to census
tract and zip code regions defined by the US
Census Department. We used XTools Pro
(Data East LLC, Novosibirsk, Russia) to calcu-
late the centroid of each region included in
the study. The final data set included visits
made by patients living within 80 km (50 mi)
of the hospital (38122 visits; 90% of all
cases meeting the criteria for respiratory ill-
ness). Patient densities were higher closer to
the hospital.21 Among the patients included,
3806 (10%) lived 0 to 2 km from the hospi-
tal, and 18634 (49%) lived within 2 to 8 km.
Simulated cluster points were inserted into
the 2- to 8-km band.

When addresses were converted from their
exact locations to centroids, the distance from
the original location to a zip code centroid
(mean=1.37 km, SD=1.03, maximum=
12.39) was greater than the distance to a cen-
sus tract centroid (mean=0.64 km, SD=
0.68, maximum=7.80). The same was true
of the band containing the simulated cluster
points; the average distance to a zip code cen-
troid was 0.96 km (SD=0.49), and the aver-
age distance to a census tract centroid was
0.39 km (SD=0.30).

Simulated Clusters
We created 2 sets of simulated disease

clusters, one for zip code analyses and one
for census tract analyses. We added these
clusters to the baseline data to test the effect
of moving a point from its exact location to
the center of each respective administrative
region. We selected cluster parameters that
would mimic an early signal of an outbreak
first appearing as a small geographic cluster.
All simulated clusters contained 10 points
and were located along the edge of a circle
with a radius of 5 km centered at the hospi-
tal, as illustrated in Figure 1.

To test the effects of moving points to
the center of zip code areas, we created 80

simulated clusters. Cluster points were ran-
domly scattered within circles of 4 radius
sizes (0.5, 1, 2, and 3 km). To assess the ef-
fects of moving points to census tract cen-
troids, we created 40 simulated clusters;
points were scattered within circles of 2 ra-
dius sizes (0.5 and 1 km). An open source
software tool, AEGIS-CCT (available at
http://sourceforge.net/projects/chipcluster),25

was used to create these clusters.
Points from a single cluster may reside in

more than 1 administrative region. As a means
of testing the effects of cluster points crossing
administrative boundaries when these points
were analyzed as centroids, the 10 points that
made up each cluster were selected so that
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they fell into a total of 1, 2, 3, or 4 administra-
tive regions. By design, these points were
distributed as evenly as possible when they fell
into more than 1 region, because this pattern
was considered most difficult to detect. For ex-
ample, when points were dispersed into 2 re-
gions, 5 points were included in each region.

Simulated clusters varied on 2 parameters:
radius size and dispersion across administra-
tive boundaries. To allow selection of 5 sam-
ples for each radius size and dispersion value,
we initially created 17280 simulated clusters.
The underlying geography of the study region
affected the range of these parameters. For
example, simulated clusters with a 0.5-km ra-
dius that included all 10 points in a single zip
code area could be readily obtained. There
were 1603 initial clusters with these charac-
teristics, and 5 were randomly sampled. How-
ever, no initial clusters with a radius of 2 or
3 km included 10 points within a single cen-
sus tract. Therefore, these 2 radius sizes were
not analyzed for census tract regions.

Cluster Detection Test Sets
We added simulated cluster points to au-

thentic emergency department data for the
initial target date, June 23, 2002, and the pre-
ceding 6 days. This single week of data, which
contained the simulated outbreak, was com-
pared with the previous 6 weeks of baseline
data. The target date then increased by 5 days.
This procedure was repeated until the final tar-
get date, June 22, 2005, yielding 220 data
sets with which to test each simulated cluster.

To evaluate spatial cluster detection rates in
actual emergency department data when no
simulated clusters were added, we prepared
additional data sets to compare encounters
from each target date and the previous 6 days
with encounters from the preceding 6 weeks.
Although these rates may have reflected pre-
viously undetected spatial clustering in the
background emergency department data, we
treated them as false-positive events.

Cluster Detection
We used a spatial scan statistic22 imple-

mented in the SaTScan program26 to detect
spatial clustering. SaTScan creates circles of
various sizes around each point and evalu-
ates whether location inside as opposed to
outside a given circle is associated with a
higher risk of classification as a case (as

defined subsequently). For each data set, the
program identified the most likely clusters
and assigned P values on the basis of 999
Monte Carlo replications. When the P value
was less than .05, the presence of clustering
was assumed. The output from SaTScan in-
cluded information regarding individual
points contained in each cluster. Conse-
quently, it was possible to compare features
of the simulated cluster with features of the
most likely cluster identified by SaTScan.

SaTScan was configured to detect purely
spatial clusters with a Bernoulli (case–control)
model. Cases were defined as all encounters
in each data set that occurred during the final
(seventh) week assessed. Controls were de-
fined as all encounters in each data set that
occurred during the first 6 weeks, during
which time it was assumed that no spatial
clustering took place. This assumption could
not be verified, however, because there was
no documentation of known clusters of
respiratory cases in the present data. We
ran SaTScan 35200 times (80 simulated
clusters×220 data sets×2 levels of address
precision) to assess the effect of moving a
point from its exact location to a zip code
centroid and 17600 times (40×220×2) to
assess the effect of moving a point from its
exact location to a census tract centroid.

Other Statistical Analyses
All other statistical analyses were performed

with SAS (SAS Institute, Cary, NC). We con-
ducted separate analyses for zip code areas
and census tracts so that we could compare
the 2 levels of the independent variable, ad-
dress precision (exact coordinates vs a regional
centroid). One dependent variable was detec-
tion rate, which was defined as the percentage
of significant spatial clusters, that is, those with
SaTScan P values below .05. We assessed ac-
curacy with 2 additional dependent variables:
proportion of significant clusters containing at
least half of the simulated points and number
of additional authentic emergency department
visits drawn into the clusters.

Two other independent variables were
radius size of the simulated cluster and num-
ber of regions into which simulated cluster
points fell. Generalized estimating equations
were used to account for the covariance be-
tween observations at the 2 levels of address

precision. Preliminary analyses revealed sig-
nificant interactions between the independent
variables. Consequently, we conducted sepa-
rate analyses for each radius size and number
of regions, focusing on the comparison of
exact coordinates with regional centroids.

RESULTS

Baseline Spatial Cluster Detection Rates
We examined the assumption that spatial

clustering did not occur in the background
emergency department data by calculating
cluster detection rates for data that did not
contain the simulated cluster points. We ex-
pected a false-positive rate of 5%. Detection
rates did not differ significantly when ad-
dresses were converted from exact locations
to zip code centroids. Background cluster
identification rates were 13% (28 of 220) for
exact locations and 9% (20 of 220) for zip
code centroids (odds ratio [OR]=1.46; 95%
confidence interval [CI]=0.79, 2.68). The
background cluster detection rate was 11%
(25 of 220) when addresses were converted
from their exact locations to census tract cen-
troids, and this rate did not differ from the
rate observed for exact locations (OR=1.14;
95% CI=0.64, 2.02).

Detection of Simulated Clusters by Level
of Address Precision

We analyzed overall detection results for
exact coordinates and regional centroids. The
clusters identified by SaTScan could contain
the simulated cluster points, the cluster points
from the background emergency department
data, or both types of cluster points. Exact co-
ordinates yielded more (12858; 73%) signifi-
cant clusters than zip code centroids (7876;
45%; OR=3.35; 95% CI=3.20, 3.50). Simi-
larly, exact coordinates yielded more signifi-
cant clusters (8126; 92%) than census tract
centroids (7117; 81%; OR=2.85; 95% CI=
2.59, 3.13).

As a measure of accuracy, we required that
significant clusters contain at least half of the
original simulated points. A larger absolute
number and a larger proportion of the signifi-
cant clusters met this requirement when exact
coordinates were analyzed. Of the 12858 sig-
nificant clusters, 12016 (93%) contained 5 to
10 simulated points when they were analyzed
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TABLE 1—Percentages of Significant SaTScan Clusters for Points Analyzed as Either Exact
Coordinates or Centroids of Zip Code or Census Tracts

Radius of Simulated Exact Odds Ratio 
Cluster and No. of Regions Coordinates, % Centroid, % (95% Confidence Interval)

Zip code

0.5 km

1 91.5 83.3 2.18 (1.82, 2.60)

2 89.4 27.7 21.90 (17.70, 27.10)

3 89.5 58.9 5.97 (4.97, 7.19)

4 100.0 29.1 ∞
1 km

1 100.0 87.6 ∞
2 71.8 36.8 4.37 (3.81, 5.02)

3 91.9 45.1 13.83 (11.09, 17.26)

4 85.5 28.3 14.90 (12.36, 17.98)

2 km

1 91.1 80.4 2.50 (2.08, 3.00)

2 59.8 31.4 3.26 (2.85, 3.72)

3 52.0 31.8 2.32 (2.05, 2.62)

4 37.2 11.5 4.58 (3.76, 5.56)

3 km

1 96.5 94.1 1.76 (1.27, 2.43)

2 41.1 31.3 1.53 (1.36, 1.73)

3 48.5 22.5 3.26 (2.81, 3.78)

4 23.0 16.4 1.53 (1.29, 1.80)

Census tract

0.5 km

1 100.0 99.8 ∞
2 99.0 96.4 3.74 (2.13, 6.54)

3 93.3 70.0 5.94 (4.75, 7.43)

4 99.7 61.5 228.47 (73.69, 708.41)

1 km

1 100.0 97.7 ∞
2 97.1 90.1 3.67 (2.55, 5.29)

3 71.2 64.5 1.36 (1.22, 1.51)

4 78.5 66.9 1.80 (1.57, 2.06)

Note. SaTScan was run 1100 times per cell to calculate percentages of clusters significant at P < .05. Number of regions
indicates the number of administrative regions (zip code or census tract) into which the 10 simulated cluster points fell.

as exact coordinates; when these clusters were
analyzed as zip code centroids, 6842 (87%)
contained 5 to 10 simulated points (OR=2.16;
95% CI=1.96, 2.37). Results were similar
when we compared exact coordinates (n=
7997; 98%) with census tract centroids (n=
6796; OR=2.93; 95% CI=2.38, 3.60).

As another measure of accuracy, we cal-
culated the numbers of additional points
from the background emergency department
data that were drawn into the significant
clusters. The clusters contained fewer addi-
tional emergency department visit points
(i.e., points that were not part of the original
simulated cluster) when addresses were ana-
lyzed as exact locations (mean=4, SD=10,
range=0–111) than when they were ana-
lyzed as zip code centroids (mean=10,
SD = 21, range = 0–157). Similarly, fewer
additional emergency department visits
(mean=2, SD=6, range=0–100) were in-
cluded in the cluster when these visits were
analyzed as exact locations than when they
were analyzed as census tract centroids
(mean=4, SD=11, range=0–147).

Additional Independent Variables
Effects on detection rates. The overall results

were complicated by interactions between ad-
dress precision and the other 2 independent
variables (simulated cluster radius and num-
ber of regions into which the simulated clus-
ter points fell). Therefore, we conducted sepa-
rate analyses exploring the effects of these
variables. Cluster detection rates for precise
locations and zip code and census tract cen-
troids are shown in Table 1. The odds ratios
indicate that exact coordinates yielded higher
rates than centroids.

Accuracy of spatial cluster detection. As men-
tioned, as a measure of accuracy, we required
that significant clusters contain at least half of
the simulated points (Table 2). When the sim-
ulated points fell into multiple administrative
regions, exact locations almost always yielded
larger proportions of clusters with 5 to 10
simulated points, as well as larger absolute
numbers. However, when the simulated points
fell into only 1 region, the differences in pro-
portions were small, even when they were sta-
tistically significant. Nonetheless, exact coordi-
nates yielded larger absolute numbers of
clusters considered accurately detected.

To further assess accuracy, we examined
the number of emergency department visit
points included in significant clusters contain-
ing at least 5 to 10 simulated points. These
results are presented in Figures 1 and 2. We
analyzed the same simulated cluster using ei-
ther exact locations or zip code centroids
(Figure 1). Both clusters identified by SaTScan
were significant and contained the 10 original
simulated points. Four additional emergency
department visits were included in the cluster
when points were analyzed as exact locations.

However, when points were analyzed as zip
code centroids, 18 additional visits were in-
cluded in the significant cluster.

The individual graphs in Figure 2 show the
total numbers of significant clusters that con-
tained at least half of the simulated points
and indicate whether these clusters may have
been obscured by inclusion of an excessive
number of additional emergency department
visit points. The solid black portion of each
bar highlights clusters containing only the
simulated points. The cross-hatched portion
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TABLE 2—Percentages of Significant SaTScan Clusters Containing at Least Half of the
Simulated Cluster Points

Significant Clusters With 5–10 of the Simulated Points

Radius of Simulated Exact Coordinates, Centroid, Odds Ratio (95% 
Cluster and No. of Regions % (No.) % (No.) Confidence Interval)

Zip code

0.5 km

1 99 (994) 98 (894) 1.88 (1.05, 3.38)

2 98 (963) 78 (239) 13.30 (8.23, 21.48)

3 98 (963) 89 (577) 5.39 (3.39, 8.57)

4 100 (1099) 79 (253) 291.0 (39.91, 2122.6)

1 km

1 99 (1094) 98 (942) 4.26 (1.90, 9.54)

2 92 (728) 85 (346) 2.00 (1.47, 2.73)

3 98 (993) 82 (407) 12.06 (7.39, 19.68)

4 97 (913) 79 (247) 8.76 (5.65, 13.60)

2 km

1 97 (974) 97 (857) 1.10 (0.69, 1.74)

2 88 (581) 82 (282) 1.69 (1.25, 2.27)

3 85 (486) 67 (233) 2.84 (2.17, 3.71)

4 69 (284) 33 (41) 4.71 (3.20, 6.92)

3 km

1 98 (1045) 99 (1020) 0.90 (0.47, 1.75)

2 75 (340) 82 (281) 0.68 (0.52, 0.89)

3 81 (434) 51 (127) 4.10 (3.09, 5.45)

4 49 (125) 53 (96) 0.85 (0.62, 1.17)

Census tract

0.5 km

1 100 (1100) 99 (1086) ∞
2 99 (1081) 99 (1049) 1.42 (0.66, 3.03)

3 99 (1011) 91 (702) 6.53 (3.91, 10.90)

4 100 (1093) 93 (628) 21.32 (7.65, 59.45)

1 km

1 100 (1099) 98 (1053) 22.96 (3.08, 170.96)

2 99 (1056) 98 (975) 1.44 (0.72, 2.91)

3 94 (736) 88 (622) 2.22 (1.62, 3.03)

4 95 (821) 93 (681) 1.58 (1.12, 2.23)

highlights clusters with fewer than 10 addi-
tional emergency department visits.

As can be seen in Figure 2, use of exact
locations involved at least 2 advantages over
use of centroids. First, a greater proportion of
the significant clusters contained 5 to 10 of
the original simulated points when they were
analyzed as exact locations. Second, relatively
few additional emergency department visits
were drawn into these clusters. However,
there remained some noteworthy portions of
clusters with many additional points. Also,
when the simulated cluster had a 0.5-km

radius and all of its points fell into a single
census tract, there appeared to be some ad-
vantage to using centroids, given that more of
the clusters contained no additional emer-
gency department visits. Nevertheless, the cu-
mulative number of clusters with 0 to 9 addi-
tional visits was almost the same for exact
coordinates and census tract centroids.

DISCUSSION

Real-time population health monitoring sys-
tems, including syndromic surveillance

systems, have been developed to detect abnor-
mal patterns of disease.1,6,27 An important de-
cision regarding the design of such systems has
been the level of precision at which to store
geographic data. Lower resolution data may
better protect privacy. Higher resolution data
may yield superior detection performance.

Characteristics of the disease cluster itself
dictate whether reporting case locations as
exact coordinates or as administrative region
centroids leads to the highest likelihood of de-
tection. There are clearly circumstances in
which knowledge of exact locations yields su-
perior outbreak detection performance. The
present results highlight the effects of forgoing
address precision and, via scan statistics, using
regional centroids for spatial cluster detection.

When a small number of clustered points
were dispersed over 1 to 4 regions, the simu-
lated clusters were more accurately detected
when they were analyzed as exact locations
than when they were analyzed as centroids;
that is, more significant clusters were identi-
fied, and these clusters were more likely to
include at least half of the simulated points.
Furthermore, they often contained few sur-
plus points from the background emergency
department data.

By contrast, when clusters were analyzed
as centroids, it was possible for the detection
algorithm to miss all of the simulated points
from 1 or more zip code or census tracts, re-
sulting in fewer clusters with at least half of
the simulated points being identified. This
possibility was especially apparent when the
simulated points fell into 2 zip code areas. In
this situation, until the simulated cluster ra-
dius was quite large (3 km), the number
of significant clusters for centroids greatly
decreased (relative to exact locations) when
the points for one of the zip code areas were
missed.

Because census tracts are smaller than zip
code areas, distances were smaller when a
point moved from its exact location to a cen-
sus tract centroid than when it moved to a
zip code centroid. Consequently, the decrease
in detection rates for census tract centroids
when the simulated cluster points crossed ad-
ministrative boundaries was not as dramatic
as that observed for zip code areas. None-
theless, such decreases did occur with increas-
ing numbers of boundaries crossed.
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Note. Pairs of bars compare clusters identified by SaTScan when points were analyzed at two levels of address precision, as either exact x-y coordinates or as centroids of administrative regions (zip
codes or census tracts). The height of the bars indicates the number of significant clusters that contained at least half (5-10) of the simulated points that were inserted into the data. Bands within
the bars indicate the number of additional points in the clusters that came from the background emergency department visits. Number of regions refers to the number of administrative regions into
which the simulated cluster points fell.

FIGURE 2—Significant SaTScan clusters that contained at least half of the simulated cluster points, by type of administrative region and radius
size of the simulated cluster: zip code area, 0.5-km radius (a); zip code area, 1-km radius (b); zip code area, 2-km radius (c); zip code area,
3-km radius (d); census tract, 0.5-km radius (e); and census tract, 1-km radius (f).
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There were some limitations associated
with our study. For example, the clusters cre-
ated were simulated, and thus, they represent
only one of many possible scenarios for an ac-
tual outbreak. In addition, the simulated clus-
ters were limited to a single size and circular
shape, and they were placed within a specific
band around a single hospital. This approach
enabled us to focus on an important cluster
parameter, its dispersion across administrative
boundaries. However, other parameters may
be important, such as population density
around the cluster, which will differ from re-
gion to region. Furthermore, other spatial ana-
lytic techniques may perform differently than
the scan statistic used in this study, particu-
larly if the cluster is not circular in shape.

Also, we focused on 1 form of geographic
masking, that is, moving a point to a regional
centroid. This approach allowed us to evaluate
current syndromic surveillance practices. How-
ever, other masking techniques exist for mov-
ing points either deterministically or stochasti-
cally to new locations, and the effects of these
transformations on the results of spatial analy-
ses remain important areas of study.3,28–30

In terms of detecting spatial clusters in the
present semisynthetic surveillance data, we
found that use of exact locations was generally
advantageous, although there were some ex-
ceptions when cluster points were contained in
a single zip code or census tract. This result il-
lustrates that there are clearly conditions
under which the power of spatial cluster detec-
tion is improved when exact address informa-
tion is available. In particular, exact locations
yielded improved power when the cluster
crossed the artificial, administrative boundaries
associated with census tracts and zip code
areas. This improved power should be consid-
ered and balanced against privacy considera-
tions in determining level of address precision
in public health data exchange policies.
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