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Abstract
Objective—To investigate whether inter-
leukin 13 (IL13) could act in a chondro-
protective manner and protect cartilage
stimulated to resorb with a combination of
IL1á and oncostatin M (OSM), in a similar
way to the anti-inflammatory cytokine,
IL4.
Methods—IL13 was added to explant cul-
tures of bovine nasal cartilage stimulated
to resorb with IL1á and OSM, and the
release of collagen and proteoglycan de-
termined. Collagenolytic and tissue in-
hibitors of metalloproteinase (TIMP)
activities were determined by bioassay.
Northern blot analyses were performed to
determine the eVects of IL13 on the induc-
tion of matrix metalloproteinase-1
(MMP-1), MMP-3, MMP-13, and TIMP-1
gene expression.
Results—IL13 can prevent the release of
collagen from bovine nasal cartilage in a
dose dependent manner. This was accom-
panied by a concomitant decrease in
measurable collagenolytic activity in the
culture supernates and an increase in
TIMP activity. Northern blot analysis
showed that IL13 down regulated MMP-3
and MMP-13 levels but up regulated
MMP-1 and TIMP-1 gene expression in
bovine nasal chondrocytes at 24 hours.
Conclusion—This study showed for the
first time that IL13 can block collagen
release from resorbing cartilage in a simi-
lar manner to IL4. This is accompanied by
a reduction in detectable collagenolytic
activity, a decrease in MMP-3 and
MMP-13 mRNA levels, and an up regula-
tion of TIMP-1 expression.
(Ann Rheum Dis 2001;60:150–157)

Cartilage is composed of an extensive extracel-
lular matrix of proteoglycans and collagens and
relatively isolated numbers of chondrocytes,
which maintain tissue integrity. The chondro-
cytes regulate cartilage metabolism under both
normal and pathophysiological conditions.
These cells initiate the rapid release of
proteoglycan from cartilage in response to
proinflammatory cytokines, such as interleukin
1á (IL1á)1 and tumour necrosis factor á
(TNFá),2 but this component of the matrix is
quickly replaced.3 Collagen is much less readily
released from the tissue, and when degradation
occurs the structural integrity of the tissue is
irreversibly lost.4 Therefore, collagen degrada-

tion is a key point in the control of cartilage
turnover.

The matrix metalloproteinases (MMPs) com-
prise a family of zinc dependent homologous
enzymes that collectively can degrade all the
components of the extracellular matrix. The
three mammalian collagenases, collagenase-1
(MMP-1),5 neutrophil collagenase (MMP-8),6

and collagenase-3 (MMP-13),7 have the ability
to cleave the three á chains of types I, II, and III
collagens at a single site to give characteristic
three quarters and one quarter length products.8

Gelatinase A (MMP-2)9 and membrane type 1
MMP (MMP-14)10 can also cleave collagen in
this manner. These potent enzymes are tightly
regulated at a number of points, including
synthesis and secretion by cytokines and growth
factors, the production of pro-enzyme forms
requiring proteolytic cleavage for activation, and
inhibition of these active forms by naturally
occurring inhibitors.11 The tissue inhibitors of
metalloproteinases (TIMPs) are a specific group
of inhibitors that form stable 1:1 stoichiometric
complexes with active MMPs.12 This family of
inhibitors now consists of at least four
members—TIMP-1,13 TIMP-2,14 TIMP-3,15

and TIMP-4.16

The involvement of these proteinases in the
normal turnover of connective tissue matrix
that takes place during growth and develop-
ment is well established.17 Furthermore, cer-
tain MMPs have been shown to have critical
roles in wound healing,18 tumour growth and
metastasis,19 and the pathological destruction
of cartilage and bone in the arthritides.20 21

Raised levels of MMP-1 have been seen in
arthritic synovial tissue and cartilage22 and in
synovial fluids taken from patients with rheu-
matoid arthritis (RA).23 24 Synovial cells and
chondrocytes produce MMPs in response to
proinflammatory cytokines such as IL1á and
TNFá, suggesting their importance in the
breakdown of cartilage collagen in arthritic
diseases. In a previous study we showed that
treatment of bovine nasal cartilage in explant
culture, with a combination of IL1á and
oncostatin M (OSM) led to the release of
proteoglycan and collagen fragments.25 More
recently, we have shown that IL4, a 20 kDa
pleiotropic anti-inflammatory cytokine, can act
in a chondroprotective manner, blocking the
release of collagen fragments from bovine nasal
cartilage in explant culture.26 IL13 is an
anti-inflammatory cytokine known to resemble
IL4, sharing approximately 30% homology at
the protein level and exhibiting many overlap-
ping biological activities.27 An unglycosylated

Ann Rheum Dis 2001;60:150–157150

Department of
Rheumatology, School
of Clinical and Medical
Sciences, 4th Floor
Catherine Cookson
Building, The Medical
School, Framlington
Place, University of
Newcastle-upon-Tyne,
Newcastle-upon-Tyne
NE2 4HH, UK
C S Cleaver
A D Rowan
T E Cawston

Correspondence to:
Dr Cleaver
C.S.Cleaver@ncl.ac.uk

Accepted 28 June 2000

www.annrheumdis.com

http://ard.bmj.com


protein of 132 amino acids with a molecular
size of 10 kDa,28 IL13 was cloned and
sequenced and found to be located in close
proximity to the IL4 gene, on chromosome
5q31.29

IL13 has been shown to inhibit a range of
proinflammatory cytokines, including IL1â,
TNFá, IL6, and IL8 in monocytes, macro-
phages, B cells, natural killer cells, and
endothelial cells in a similar way to IL4.28–31

Addition of exogenous IL13 to cultures has
been shown to reduce significantly the produc-
tion of IL1â and TNFá by synovial fibroblasts
and mononuclear cells.32 Studies have also
shown that in vitro IL13 can inhibit bone
resorption.33 Furthermore, subcutaneous in-
oculation of vector cells, engineered to secrete
IL13 into mice, ameliorated collagen induced
arthritis, supporting the notion that IL13 has
anti-inflammatory potential in RA.34 In view of
these apparent structural and functional simi-
larities, we investigated whether IL13 can pro-
tect cartilage by preventing collagen release in
the same manner as we demonstrated for IL4.26

In this study we show for the first time that
IL13 acts in a chondroprotective manner by
specifically blocking collagen release from car-
tilage stimulated to resorb with IL1á + OSM
by reducing the levels of active collagenase(s).

Materials and methods
CULTURE MEDIUM AND TEST REAGENTS

Human recombinant IL1á and IL4 were
generous gifts from Glaxo Group Research Ltd
(Greenford, UK). IL1á was used at a final con-
centration of 1 ng/ml. Human recombinant
OSM and IL13 were obtained from R&D Sys-
tems Ltd (Oxon, UK). OSM was used at a final
concentration of 10 ng/ml in all experiments.
IL1á, OSM, and IL13 were stored at −80°C
and diluted from stock solutions into culture
medium. IL13 was used in a range of concen-
trations from 1 to 50 ng/ml. Pro-MMP-3 was a
generous gift from Professor Hideaki Nagase
(Kennedy Institute, London, UK). Control
culture medium was Dulbecco’s modification
of Eagle’s medium (DMEM) containing 25
mM HEPES (Gibco, Paisley, UK) supple-
mented with streptomycin (100 µg/ml), penicil-
lin (100 U/ml), glutamine (2 mM), and
gentamycin (2.5 µg/ml). All other chemicals
and biochemicals were commercially available
analytical grade reagents available from Sigma
(Poole, UK) or BDH (Poole, UK) or have been
previously described.25

CELL CULTURE

Bovine nasal cartilage was cut into 2 mm pieces
and chondrocytes isolated by sequential enzy-
matic digestion of the tissue to produce a
primary culture. Briefly, the cartilage was incu-
bated at 37°C for 15 minutes with hyaluroni-
dase at 1 mg/ml in phosphate buVered saline
(PBS) (Sigma). After three washes with PBS,
0.25% (w/v) trypsin was added for 30 minutes
at 37°C. Finally, 3 mg/ml bacterial collagenase
was added to the cartilage and left at 37°C
overnight. Chondrocytes were collected by
centrifugation at 1100 rpm for five minutes and
incubated in DMEM supplemented with 10%

fetal calf serum, 100 U/ml of penicillin, 100
µg/ml streptomycin, 40 U/ml nystatin, and 100
µg/ml ascorbate. Cells were grown to 70–80%
confluence, then starved for 24 hours in
serum-free DMEM before adding cytokines.

CARTILAGE DEGRADATION ASSAY

Bovine nasal septum cartilage was held at 4°C
overnight after slaughter. Discs were cut from 2
mm slices to give pieces of 2 mm diameter and
washed twice in PBS. Three discs per well of a
24 well plate were incubated for 24 hours at
37°C in 600 µl control medium. Fresh control
medium (600 µl), with or without test reagents
(four wells for each condition), was then added
and the plate incubated at 37°C for seven days.
Supernates were collected and replaced with
fresh medium containing identical test reagents
to day 1. The experiment was continued for a
further seven days and day 7 and 14 supernates
were stored at −20°C until assay. Where
MMP-3 was added at day 7 of culture,
pro-MMP-3 was activated by addition of
trypsin (Sigma) for 15 minutes at room
temperature to a final concentration of 1
mg/ml. Soybean trypsin inhibitor (Sigma) was
then added in excess for one hour at room
temperature to inhibit the trypsin present.
MMP-3 was diluted into culture medium
immediately before use at a concentration of
either 0.83 µg/ml or 3.33 µg/ml to give 0.5
µg/well or 2 µg/well respectively and fresh
cytokines added. Control plates had no
MMP-3 added. The experiment was continued
for a further seven days and day 7 and 14
supernatants were stored at −20°C until assay.

CYTOTOXICITY ASSAY

Lactate dehydrogenase assays were performed
on day 7 and day 14 media to assess viability of
explanted tissue using the CytoTox 96 cytotox-
icity assay (Promega, Southampton, UK). No
increase in lactate dehydrogenase levels with
any of the cytokine combinations was found.
Serum was excluded from cartilage explants
because it can increase cartilage metabolism in
the absence of exogenous cytokines.35 The
absence of serum was also shown not to aVect
viability of the tissue (data not shown).

PROTEOGLYCAN AND COLLAGEN DEGRADATION

To determine the total glycosaminoglycan
(GAG) and hydroxyproline (OHPro) content
of the cartilage samples, the remaining carti-
lage was digested with papain (4.5 mg/ml;
Sigma) in 0.1 M phosphate buVer, pH 6.5,
containing 5 mM EDTA and 5 mM cysteine
hydrochloride, with incubation at 65°C until
digestion was complete (16 hours).

As a measure of proteoglycan release, media
samples and digests were assayed for sulphated
GAG, using a modification of the 1,9-
dimethylmethylene blue dye binding assay.36

Sample or standard (40 µl) was mixed with dye
reagent in the well of a microtitre plate, and the
absorbance at 525 nm determined immedi-
ately. Bovine chondroitin sulphate (5–40 µg/
ml) was used as a standard. As a measure of
collagen release, OHPro released to the culture
medium was assayed by a microtitre modifica-
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tion of the assay described by Bergman and
Loxley.37 Fresh chloramine T (7% (w/v)
solution) was diluted 1:4 in acetate citrate
(57 g sodium acetate, 37.5 g trisodium citrate,
5.5 g citrate acid, 385 ml propan-2-ol/l water).
p-Dimethylaminobenzaldehyde (20 g in 30 ml
60% perchloric acid) was diluted 1:3 in
propan-2-ol. Samples were hydrolysed in 6 M
HCl for 20 hours at 105°C and the hydrolysate
neutralised by drying over NaOH in vacuo
using a Savant speed vac. The residue was dis-
solved in water and 40 µl of sample or standard
(OHPro; 5–30 µg/ml) added to microtitre
plates together with chloramine T reagent (25
µl) and then dimethylaminobenzaldehyde rea-
gent (150 µl) after four minutes. The plate was
heated at 60°C for 35 minutes, cooled, and the
absorbance at 560 nm determined. Results
were expressed as a percentage of the total.

ENZYME AND INHIBITOR ASSAYS
3H acetylated collagen was used to measure
collagenolytic activity by the diVuse fibril
assay.38 A trypsin control was included to con-
firm the labelled collagen had not become
denatured. Latent enzyme was activated with
aminophenyl mercuric acetate (APMA; final
concentration 0.7 mmol/l). Inhibitory activity
was measured by addition of samples to a
known amount of active rabbit collagenase in
the diVuse fibril assay. The percentage inhibi-

tion was then calculated. One unit of colla-
genase degrades 1 µg of collagen per minute at
37°C. One unit of inhibitory activity inhibits
two units of collagenase by 50%.

RNA ISOLATION AND NORTHERN BLOTTING

Total cellular RNA from chondrocytes was
extracted and purified using the RNeasy kit
(Qiagen, Crawley, UK) under RNAse-free
conditions according to the manufacturer’s
instructions. The extracted RNA was quanti-
fied spectrophotometrically. Equal amounts
(20 µg) of total RNA were resolved on 1% aga-
rose formaldehyde gels, and transferred to
GeneScreen Plus membrane (NEN, Boston,
USA) by capillary transfer and ultraviolet cross
linked. RNA was stained with ethidium bro-
mide and visualised under ultraviolet light to
check for integrity. Membranes were prehy-
bridised for two hours in 10 ml of hybridisation
solution (50% formamide, 1% sodium dodecyl
sulphate, 1 M NaCl, 1 × Denhardt’s solution
(Sigma), 100 µg/ml denatured salmon sperm
DNA) and warmed to 42°C. Blots were probed
for 18 hours at 42°C with cDNA probes
(human MMP-1, MMP-3, MMP-13,
TIMP-1) labelled with á-[32P]dCTP using
random priming.

The membrane was then washed twice in 2 ×
saline-sodium citrate (SSC) for 15 minutes at
room temperature, followed by two washes in 2

Figure 1 The eVect of interleukin 1á (IL1á) in combination with oncostatin M (OSM), with or without IL13, on the
release of proteoglycan and collagen from bovine nasal cartilage in explant culture. Three discs of cartilage per well in
quadruplicate were cultured in 600 µl control medium alone, IL1á (1 ng/ml), OSM (10 ng/ml), IL1á + OSM, with and
without IL13 (2–50 ng/ml), for 0–7 days and the media removed. Each well was replenished under identical conditions and
left for a further seven days. At day 14 media were removed and the remaining cartilage digested with papain. The levels of
glycosaminoglycan (GAG) and hydroxyproline (OHPro) released into the medium on days 7 and 14 were determined and
the results expressed as a percentage of the total. Results are expressed as mean (SD). The data shown are representative of
three independent experiments. Student’s unpaired two tailed t test was used to compare IL1á and IL1á + IL13, where
†††p<0.001 and †p<0.05. The same test was used to compare IL1á + OSM with IL1á + OSM + IL13, where
***p<0.001 and **p<0.01.
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× SSC + 0.5% sodium dodecyl sulphate for 30
minutes at 65°C. Images were visualised using
a STORM 860 phosphorimager (Molecular
Dynamics, Chesham, UK). The mRNA levels
were measured by scanning densitometry of
the bands using ImageMaster 1D software
(Amersham Pharmacia Biotech, Little Chal-
font, UK). Equal loading of RNA was assessed
from the ethidium bromide stained membrane.

STATISTICAL ANALYSIS

The statistical significance between two groups
was determined by Student’s unpaired two
tailed t test. Values of p<0.05 were considered
significant.

Results
EFFECT OF IL13 ON THE RELEASE OF

PROTEOGLYCAN AND COLLAGEN FROM BOVINE

NASAL CARTILAGE TREATED WITH IL1á, OSM, AND

IL1á + OSM

Previous studies have shown that IL1á and
OSM together can reproducibly stimulate the
release of collagen from bovine nasal cartilage
in explant culture by day 14.25 39 These
conditions were used in the present study as
the cytokine stimulus to promote cartilage
degradation. This culture system has been
designed and validated for the specific purpose
of studying collagen release from cartilage. In
this study IL1á and IL1á + OSM both release
proteoglycan from the cartilage. IL13 partially
inhibited the release of proteoglycan by IL1á
alone, by day 7, but was unable to prevent the
release induced by IL1á + OSM. In the
presence of IL13 at 50 ng/ml the eVect on col-

lagen release in response to IL1á alone or IL1á
+ OSM could be blocked. A dose dependent
eVect was seen on collagen release by day 14,
with complete inhibition seen at concentra-
tions of IL13 of 50 ng/ml, and a small but sig-
nificant inhibition still seen at 2 ng/ml (fig 1).
IL13 alone (50 ng/ml) had no eVect on either
GAG or OHPro release compared with control
values, and both were found to be viable at day
14.

ANALYSIS OF MEDIUM FROM BOVINE NASAL

CARTILAGE CULTURES FOR COLLAGENOLYTIC

AND TIMP INHIBITORY ACTIVITIES

Bovine nasal cartilage stimulated with IL1á,
OSM, or IL1á + OSM, with and without IL13,
was assayed for collagenolytic activity (fig 2)
and MMP inhibitory activity (fig 3). Colla-
genolytic activity was present in IL1á and IL1á
+ OSM media removed at day 14. Conversely,
little activity could be detected in the IL1á or
IL1á + OSM in the presence of IL13 (50
ng/ml) treated samples, although as the con-
centration of IL13 decreased, the levels of
active collagenase increased in a dose depend-
ent manner. The appearance of active colla-
genolytic activity correlated with the release of
collagen. TIMP levels were reduced in IL1á
and IL1á + OSM treated cartilage to below
control levels. The presence of IL13 (50 ng/ml)
with IL1á or IL1á + OSM increased TIMP
levels significantly (fig 3). APMA activation of
any pro-enzyme present resulted in a signifi-
cant increase in detectable collagenolytic activ-
ity in the IL13 treated samples. Interestingly,
the level of total collagenase activity was

Figure 2 Levels of active and total collagenase activity in media samples removed from cartilage cultures at day 14 after
stimulation with interleukin 1á (IL1á), oncostatin M (OSM), IL1á + OSM with and without IL13 (50 ng/ml).
Cartilage was incubated and treated as described in fig 1. The levels of active and total collagenase released into the
medium on day 14 were measured and the results expressed as U/ml (mean (SD)). Active and total collagenase were
measured as described in “Materials and methods”. Student’s unpaired two tailed t test was used to compare IL1á and
IL1á + IL13, where †††p<0.001. The same test was used to compare IL1á + OSM with IL1á + OSM + IL13, where
***p<0.001, **p<0.01, and *p<0.05.
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slightly reduced in the IL1á + OSM + IL13 (2
ng/ml) sample, below the levels seen for the
higher concentrations of IL13. However, this
reduction was not significant (p=0.1193).

CARTILAGE COLLAGEN RELEASE INHIBITED BY IL13

AND IL4 CAN BE RECOVERED BY ADDITION OF AN

EXOGENOUS ACTIVATOR OF PROCOLLAGENASES

MMP-3 has been shown to activate procolla-
genases and to be important in the initiation of
collagen damage.40 41 Therefore, to investigate
further whether IL13 was preventing activa-
tion, a known activator of pro-MMPs, MMP-3,
was exogenously added to bovine nasal carti-
lage stimulated with IL1á + OSM, with and
without IL13 (50 ng/ml). To compare potency
both IL4 and IL13 were used in this experi-
ment. Figure 4A indicates the reproducible
chondroprotective eVects of IL4 and IL13. In
the presence of exogenous MMP-3 at 0.83
µg/ml, the percentage release of collagen was
significantly increased in a dose dependent
manner (fig 4B). The addition of MMP-3 at
3.33 µg/ml resulted in a dramatic release of
collagen with levels close to those seen for IL1á
+ OSM (fig 4C).

EFFECTS OF IL13 ON MMP-1, MMP-3, MMP-13, AND

TIMP-1 MRNA PRODUCTION BY BOVINE NASAL

CHONDROCYTES

Northern blot analysis showed that at 24 hours
IL1á and IL1á + OSM significantly up
regulated expression of MMP-1, MMP-3, and
MMP-13 (fig 5). In the presence of IL13,
expression of both MMP-3 and MMP-13
induced by both IL1á and IL1á + OSM was
significantly reduced. The observed eVect was
more pronounced for MMP-3 (figs 5B and C).

Figure 3 Levels of tissue inhibitors of metalloproteinase (TIMP) inhibitory activity in
media samples removed from cartilage cultures at day 14 after stimulation with interleukin
1á ( IL1á), oncostatin M (OSM), IL1á + OSM, with and without IL13. Cartilage was
incubated and treated as described in fig 1. The levels of TIMP released into the medium on
day 14 were measured and the results expressed as U/ml (mean (SD)). Student’s unpaired
two tailed t test was used to compare IL1á and IL1á + IL13, where †††p<0.001. The
same test was used to compare IL1á + OSM with IL1á + OSM + IL13, where
***p<0.001.
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In contrast with both MMP-3 and MMP-13,
IL13 had a pronounced stimulatory eVect on
the expression of MMP-1, strongly up regulat-
ing levels when in the presence of both IL1á
and IL1á + OSM (fig 5A). IL13 up regulated
TIMP-1 gene expression when in combination
with IL1á and IL1á + OSM (fig 5D).

Discussion
The loss of the collagen fibrillar network has a
profound eVect on the fundamental integrity of
cartilage and represents the irreversible phase
of cartilage destruction. We investigated the
eVect of adding IL13 to cartilage induced to
resorb with IL1 + OSM, to examine whether
IL13, like IL4, could confer protection to car-
tilage from collagen loss. We have shown, for
the first time, that IL13 can decrease collagen
loss in a bovine nasal cartilage model as previ-
ously described for IL4.26

T cells have a prominent role in the initiation
and maintenance of the rheumatoid joint.42 43

Two main groups of T cells exist which can be
distinguished by the cytokines they produce. T
helper 1 (Th1) cells produce cytokines and

growth factors such as IL2 and interferon ã,
and these in turn can promote the activation of
proinflammatory cytokines such as IL1 and
TNFá. The proinflammatory cytokines then
initiate the production of degradative enzymes,
including collagenases, which in turn leads to
collagen loss and cartilage destruction in the
joint. Th1 cells have been shown to predomi-
nate in the joints of patients with RA.44 Th2
cells generally secrete high levels of inhibitory
or anti-inflammatory cytokines like, IL4, IL5,
IL10, and IL13. Recently, anti-inflammatory
cytokines have been implicated in the resolu-
tion of inflammatory reactions, presumably in
part through their eVect of decreasing produc-
tion of proinflammatory cytokines.45 It has
been shown that these anti-inflammatory
cytokines may also contribute to the down
regulation of the inflammatory response
through production of other receptor antago-
nists, such as IL1 receptor antagonist
(IL1ra).46 47 IL13, like IL4, has been shown to
inhibit production of a range of proinflamma-
tory cytokines, including IL1, TNFá, IL6, and
IL8 and also stimulate the production of IL1ra

Figure 5 Interleukin 13 (IL13) inhibits IL1á and IL1á + oncostatin M (OSM) induction of metalloproteinase-3
(MMP-3) and MMP-13 mRNA but not MMP-1 or tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) mRNA in
bovine nasal chondrocytes at 24 hours. Total RNA was isolated at 24 hours after the addition of IL1á (1 ng/ml), OSM
(10 ng/ml), IL1á + OSM, alone or in combination with IL13 in cultures of bovine nasal chondrocytes. Northern blots were
hybridised to cDNA probes corresponding to MMP-1 (A), MMP-3 (B), MMP-13 (C), and TIMP-1 (D). Ethidium
bromide stained 28 S rRNA was used for normalisation of RNA loading. The northern blots are shown on the left hand
side of the figure and were measured by scanning densitometry. The results are expressed as fold induction over control on
the right hand side. The data shown are representative of three independent experiments.

14
12
10
8
6
4
2

TIMP-1

MMP-13

MMP-3

MMP-1

D

C

B

A

28 S

IL1α (1 ng/ml)

OSM (10 ng/ml)

IL13 (ng/ml)

–

–

–

+

–

–

–

+

–

+

+

–

+

–

50

+

–

10

+

–

5

+

–

1

+

+

50

+

+

10

+

+

5

+

+

1

IL1α (1 ng/ml)

OSM (10 ng/ml)

IL13 (ng/ml)

–

–

–

+

–

–

–

+

–

+

+

–

+

–

50

+

–

10

+

–

5

+

–

1

+

+

50

+

+

10

+

+

5

+

+

1

0

Fo
ld

 in
d

u
ct

io
n

40

30

20

10

0

Fo
ld

 in
d

u
ct

io
n

30

25

20

15

10

5

0

Fo
ld

 in
d

u
ct

io
n

40

30

20

10

0

Fo
ld

 in
d

u
ct

io
n

Blocking of collagen release by interleukin 13 155

www.annrheumdis.com

http://ard.bmj.com


in monocytes, macrophages and B cells.27 More
recently, IL13 has been shown to inhibit
production of IL1â, TNFá, and MMP-3 and
also to stimulate the production of IL1ra in
human osteoarthritic synovial membranes in
ex vivo culture.48

We have previously shown that MMP-1 is up
regulated when cartilage is cultured in the
presence of IL1 + OSM, but this enzyme must
be activated before collagen degradation will
proceed.25 39 However, the proteinases respon-
sible for the activation of procollagenases in
cartilage tissue are unidentified. IL13 has a
dose dependent, chondroprotective eVect on
the release of collagen from bovine nasal carti-
lage. The eVect of IL13 on proteoglycan
release was less dramatic. IL1 + OSM has been
shown previously to be more eVective than IL1
alone in promoting proteoglycan release from
bovine nasal cartilage,25 presumably by induc-
ing aggrecan degrading activity.49 It is not
known if this membrane associated activity is
the same as that recently described as
ADAMTS-5.50 51 Possibly, IL13 eVects are spe-
cific to collagenases and not aggrecanases.
Alternatively, it might be that where proteogly-
can release is driven by high concentrations of
cytokines then IL13 is unable to reverse this
process. Recent studies have shown that both
IL4 and transforming growth factor â can
decrease proteoglycan loss in a dose dependent
manner when concentrations of IL1á and
OSM are reduced to 0.2 ng/ml and 2 ng/ml,
respectively (Hui W, personal communica-
tion).

Measurement of collagenolytic activity
showed that where active collagenase was
present, a concomitant increase in collagen
release was seen. In the presence of high
concentrations of IL13, active collagenase was
not detectable. We can extrapolate, therefore,
that there is no collagenolytic activity in the tis-
sue because no collagen release is seen.
However, this does not exclude any seques-
tered TIMP/collagenase complex. Activation
of procollagenases with APMA significantly
increased the levels of detectable collagenase in
IL13 treated samples. Interestingly, when IL13
(2 ng/ml) was in the presence of IL1á + OSM
the total collagenolytic activity appeared to be
reduced to levels below those seen when IL13
concentrations were increased. This result was
unexpected and surprising. Possibly, total
collagenase activity might be reduced if the
enzyme is sequestered by matrix components
or inhibitors or possibly destroyed by other
proteinases. However, the results indicate that
there is suYcient procollagenase present to
promote extensive collagen loss if activated and
supports the notion that down regulation of
collagenolytic activity is an important mecha-
nism in cartilage protection. We suggest that
IL13 can prevent activation of procollagenases,
by down regulation of an enzyme(s) present in
the activation cascade, and/or by promoting
local levels of TIMP, thus preventing matrix
turnover. Possibly, IL13 may down regulate
plasminogen activators, known to play an
important part in the activation of procolla-
genases.52 Addition of an exogenous activator

(MMP-3) increased collagen release in the
presence of IL13 and IL4 in a dose dependent
manner to levels close to those for IL1á + OSM
alone. In the MMP-3 treated controls there
was no increase in collagen release. This was
expected because MMP-3 cannot cleave native
fibrillar collagen. If IL13 and IL4 were simply
preventing activation of procollagenases by
down regulating an activating enzyme(s), it
might be speculated that addition of MMP-3 at
its lowest concentration should be suYcient to
cause total collagen release. However, IL13
and IL4 may be preventing activation through
production of an inhibitor. Therefore, addition
of MMP-3 at low concentrations is not
suYcient to overcome the local levels of inhibi-
tor present, thus resulting in partial collagen
release. By increasing the MMP-3 concentra-
tion, the local levels of inhibitor are exceeded
and hence the dramatic release of collagen is
recovered.

We have investigated the transcriptional
regulation of various genes of importance in
cartilage breakdown and shown, for the first
time, that IL13 can down regulate the
MMP-13 gene expression in a dose dependent
manner. Interestingly, IL13 appeared to in-
crease MMP-1 gene expression. Possibly, IL13
can diVerentially regulate MMP-1 and
MMP-13 expression in bovine chondrocytes.
Recently, it has been reported that transform-
ing growth factor â can diVerentially regulate
MMP-1 and MMP-13 expression in human
fibroblasts.53 A similar finding was also de-
scribed in normal and osteoarthritic chondro-
cytes.54 The eVect of IL13 on MMP-3 levels
was similar to the pattern of expression seen
with MMP-13. Recently, it was reported that in
human synovial fibroblasts, IL4 down regu-
lated production of MMP-3 induced by IL1 at
the mRNA level.55 IL13 increased TIMP-1
gene expression at the mRNA level and also in
the bioassay. However, because the TIMP bio-
assay measures all TIMPs and not just
TIMP-1, we cannot attribute this increase
solely to TIMP-1. The results indicate that lev-
els of TIMP detected are unlikely to counteract
the IL1 + (OSM) induced MMP activities on
collagen. Therefore, further investigations are
under way to identify whether other members
of the TIMP family are indeed up regulated in
response to IL13.

In summary, we have shown that IL13 can
act in a chondroprotective manner by (a) spe-
cifically preventing loss of collagen from bovine
nasal cartilage, (b) reducing the amount of
active collagenases that are released from the
cartilage, and (c) act in a dose dependent man-
ner and significantly reduce IL1 and IL1 +
OSM induced production of both MMP-13
and MMP-3 mRNA. Further studies will
enable us to elucidate the mechanism by which
IL13 prevents breakdown of cartilage collagen.
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