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Sorting nexin 3 (SNX3) is disrupted in a patient with a
translocation t(6;13)(q21;q12) and microcephaly,
microphthalmia, ectrodactyly, prognathism (MMEP)
phenotype
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A patient with microcephaly, microphthalmia, ectrodactyly, and prognathism (MMEP) and mental
retardation was previously reported to carry a de novo reciprocal t(6;13)(q21;q12) translocation. In
an attempt to identify the presumed causative gene, we mapped the translocation breakpoints using
fluorescence in situ hybridisation (FISH). Two overlapping genomic clones crossed the breakpoint on
the der(6) chromosome, locating the breakpoint region between D6S1594 and D6S1250. Southern
blot analysis allowed us to determine that the sorting nexin 3 gene (SNX3) was disrupted. Using Inverse
PCR, we were able to amplify and sequence the der(6) breakpoint region, which exhibited homology
to a BAC clone that contained marker D13S250. This clone allowed us to amplify and sequence the
der(13) breakpoint region and to determine that no additional rearrangement was present at either
breakpoint, nor was another gene disrupted on chromosome 13. Therefore, the translocation was bal-
anced and SNX3 is probably the candidate gene for MMEP in the patient. However, mutation screen-
ing by dHPLC and Southern blot analysis of another sporadic case with MMEP failed to detect any
point mutations or deletions in the SNX3 coding sequence. Considering the possibility of positional
effect, another candidate gene in the vicinity of the der(6) chromosome breakpoint may be responsible
for MMEP in the original patient or, just as likely, the MMEP phenotype in the two patients results from
genetic heterogeneity.

Split hand/split foot malformation (SHFM) is character-
ised by a developmental defect of the central rays of the
hands and/or feet during embryogenesis. Although usu-

ally inherited in an autosomal dominant manner, sporadic
cases have also been reported.1 The highly variable clinical
manifestations of ectrodactyly can be isolated (MIM 183600)
or associated with other congenital abnormalities. Examples
of syndromic ectrodactylies are the EEC (ectrodactyly,
ectodermal dysplasia, and cleft lip/palate) syndrome (MIM
129900), the Patterson-Stevenson-Fontaine syndrome (MIM
183700), or the ADULT (MIM 103285) syndrome. Several syn-
dromic ectrodactylies have now been shown to be allelic forms
of the same gene. Indeed, the SHFM4/EEC3 locus (MIM
605289, MIM 604292) was recently shown to be allelic with
Hay-Wells syndrome (MIM 106260). The gene responsible for
these conditions is P63, a homologue of the tumour suppressor
gene P53, and maps to chromosome 3q27.2–5 Nonetheless,
ectrodactyly is genetically heterogeneous, as several other loci
have been identified using either chromosomal rearrange-
ments or linkage analysis. The SHSF1 locus (MIM 183600) was
mapped to chromosome 7q21.2-q21.3 by a great number of
patients with interstitial deletions or translocations involving
that region.6–11 The SHSF2 locus (MIM 313350) was mapped to
Xq26 by linkage analysis in a large Pakistani kindred.12

Another locus named SHSF3 (MIM 600095) was mapped to
10q24-q25 by a complex rearrangement involving 10q25.2-
qter and subsequent linkage analysis in families with no
cytogenetically detectable rearrangement.13–16 Moreover, other
loci are presumed to be located on chromosome 2q3417 and
chromosome 7q11.2-q21.3 (EEC1)18 19 because of chromo-
somal rearrangements associated with SHFM. Finally, a locus
at 6q21-q22 has been suggested because of several chromo-
somal rearrangements associated with limb, facial, and
cardiac malformations, as well as microcephaly and growth

and developmental delay.20–25 Although most of the rearrange-
ments were interstitial deletions, two patients had de novo
reciprocal translocations, t(6;13) and t(6;7), both involving
chromosome 6q21.20 22 These observations provided compel-
ling evidence for the presence of a gene involved in limb
development and other developmental pathways at band
6q21.

In this study, we report the mapping of the (6;13)(q21;q12)
translocation breakpoints in the patient reported by Viljoen
and Smart.20 The patient had microcephaly, microphthalmia,
ectrodactyly of the feet, and prognathism (MMEP). Using
FISH analysis, we localised the breakpoint on chromosome
6q21 close to marker D6S1250. Subsequent cloning of the
breakpoint fragment allowed localisation of the der(13)
breakpoint close to marker SHGC-102422 in the region
13q11-q12. Sequencing of the chromosome 13 breakpoint
confirmed that the translocation was balanced, with no miss-
ing or duplicated material. Gene mapping at the site of the
breakpoints showed that the translocation breakpoint does
not appear to disrupt any gene on chromosome 13, but does
disrupt a gene on chromosome 6q21, called sorting nexin 3
(SNX3).

MATERIALS AND METHODS
Patients
The clinical features of patient 1 with the (6;13) reciprocal

translocation have previously been described in detail.20

Briefly, the patient had ectrodactyly of the feet, microcephaly

(OFC <3rd centile), prognathism, central cleft lip and palate,

and severe mental retardation. With the exception of her fin-

gerised thumbs, both hands were normal. She had bilateral

microphthalmia and was totally blind. Cytogenetic analysis of

the patient showed a balanced translocation, 46,XX,

t(6;13)(q21;q12).20
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Patient 2 has also previously been described in detail.26 He

had a phenotype very similar to the first patient and both

patients were described as having microcephaly, microphthal-

mia, ectrodactyly, and prognathism (MMEP).

Cell lines and DNA samples
Ethidium bromide treatment of a lymphoblastoid cell line of

patient 1 was used to generate prometaphase spreads for FISH

analysis.27 28 DNA was isolated by high salt precipitation29 and

diluted to a concentration of 105 ng/µl.

RNA extraction and cDNA synthesis
Total RNA was extracted from lymphoblastoid cell lines

(approximately 3 × 106 cells) using TRIzol® LS (Life Technolo-

gies) according to the manufacturer’s procedure. Samples

were treated with DNase I/Amp (Life Technologies) for 15

minutes at room temperature and purified using the RNeasy

Mini Kit (QIAGEN, Valencia, CA, USA). Approximately 3 µg of

total RNA were reverse transcribed into cDNA using random

hexamers (SuperScript™ Preamplification System, Life Tech-

nologies).

Fluorescence in situ hybridisation (FISH) analysis
PAC and BAC clones were used as FISH probes. The genomic

clones were selected according to their microsatellite marker

content, their genetic mapping position from the Cedar web

site (http://cedar.genetics.soton.ac.uk/pub/chrom6/map), and

their physical mapping position on the Whitehead radiation

map (http://www-genome.wi.mit.edu/). Microsatellite mark-

ers mapping to chromosome 6q21 were used to screen the

“non-redundant” (nr) database and the “high throughput

genomic sequences” (htgs) database from the National Center

of Biotechnology Information (NCBI), using BLASTN (http://

www.ncbi.nlm.nih. gov/blast).

Human genomic BAC and PAC clones were purchased from

Research Genetics (Huntsville, AL, USA) and DNA was

isolated using the QIAGEN® plasmid maxi kit (QIAGEN,

Valencia, CA, USA). Purified BAC or PAC DNA was labelled

with digoxigenin-11-dUTP (Boehringer Mannheim Biochemi-

cal, Indianapolis, IN, USA) by standard nick translation

procedures. FISH analysis was performed as described by

Brkanac et al.30

Sequencing of PCR products
PCR products were gel purified for direct sequencing with

gene specific primers using the Thermosequenase Cy™5 Dye

Terminator kit (Amersham Pharmacia Biotech, Piscataway,

NJ, USA) according to the manufacturer’s procedures.

Southern blot analysis
SNX3 cDNA was amplified by RT-PCR from mRNA prepared

from fresh lymphocytes, using cDNASNX3 primers (table 1).

SNX3 exons 3 and 4 and their flanking intronic sequences were

amplified from genomic DNA using primers designed for

mutation analysis (table 1). BAC clone RP11-427M20 (Gen-

Bank accession No AC079380) was used as a basis for

“ex4dup” primers (table 1) and probe design. PCR products

were gel purified using QIAquick gel extraction kit; 25 ng were

labelled with 50 µCi at 3000 Ci/mmol [α 32P]-CTP (NEN, Bos-

ton, MA, USA), using the random prime labelling system

Redprime™ II (Amersham Pharmacia Biotech, Piscataway, NJ,

USA ). Southern blot analysis was performed as described

previously.31

Densitometry
Densitometric analysis of Southern blot filters hybridised with

SNX3 probes was performed as previously described.32 A single

copy probe from chromosome 4, D4S12, was hybridised to

each filter as a control. Hybridisation signals of both D4S12

and SNX3 gene specific probes were measured using the

Molecular Dynamics 300A Computing Densitometer (Amer-

sham Pharmacia Biotech, Piscataway, NJ, USA). Calculations

of the SNX3/D4S12 probe ratios allowed comparisons between

the controls and the patients, facilitating detection of

deletions.

Inverse PCR
Inverse PCR was performed as described previously31 using

“IPCR primers”, corresponding to the “complementary”

primers of SNX3 exon 4 (table 1).

SNX3 IMAGE clone
A SNX3 Unigene cluster, Hs.12102, from the NCBI database

(http://www.ncbi.nlm.nih.gov/unigene) allowed identifica-

tion of SNX3 IMAGE clones No 1084159 and No 1977743 that

were purchased from Research Genetics (Huntsville, AL,

USA). IMAGE clone No 1977743 was sequenced using M13

universal CyTM5 labelled primers with the Thermosequenase

fluorescent labelled primer cycle sequencing kit with 7-deaza-

dGTP (Amersham Pharmacia Biotech, Piscataway, NJ, USA).

Internal primers “nestedSNX3” (table 1) were designed and

used for sequencing of the entire 1.6 kb insert. Alignment

between the known SNX3 cDNA sequence (GenBank acces-

sion No NM_003795) and the IMAGE clone No 1977743

sequence was performed using the program Windows 32 Seq-

Man 4.05© (DNASTAR Inc, Madison, WI, USA).

Mutation detection by dHPLC analysis
Individual exons of the SNX3 gene, along with flanking

intronic sequences, were amplified and tested by dHPLC

analysis as described by Han et al.33

RESULTS
Mapping of the 6q21 breakpoint
In order to localise the breakpoint in band 6q21 of the t(6;13)

translocation, we conducted a systematic series of FISH

analyses. As shown in fig 1A, we could narrow the breakpoint

region to less than 1 cM using seven BAC/PAC probes. In order

to cover the area between clone RP3-429G5 (positive for

marker D6S1594) that mapped to the der(6) and clone

RP3-354J5 (positive for marker D6S1250) that mapped to the

Table 1 List of the oligonucleotide primers

Primer pair
name Forward Reverse

Product
size

Annealing
temperature

cdnaSNX3 5′-TGATCACCAAGCCGCAGAAC-3′ 5′-CAAATTAAAAGGGGGAAAGAGAAA-3′ 846 bp 62°C
SNX3exon1 5′- GCGGCGGCGGCGGCTGAAC -3′ 5′- GCGGGAGGGGTTTCTTGGGAGAGG -3′ 269 bp 65°C
SNX3exon2 5′-TGATTTCTTTTGTTTTGCCATAC -3′ 5′-TTTTGCTTTAAAGTTGCATCATAA -3′ 221 bp 55°C
SNX3exon3 5′-AAATTTTCACAACCCGTCATCAT -3′ 5′-AAATGGCTGAAAGAAAAGGCAACA -3′ 281 bp 55°C
SNX3exon4 5′- TTTTGAACTCCCCCACCTTGTAT-3′ 5′- TTTCTGTGCAGCATGCTAAAAGTT-3′ 253 bp 65°C
“ex4dup” 5′-CTAACCAAAAATTCGTAAGTAT-3′ 5′-GAAATGTGCTGTAAAATGTAAC-3′ 308 bp 55°C
IPCR 5′-GAAGGGGCAAAAACGTGACTATT-3′ 5′-TGTGCCAGAGGATGACCAG-3′ ND 65°C
NestedSNX3 5′-ATGGCTGCGAAGTGAATTAGAAAG-3′ 5′-AAGCTGGAGGCAACACAATCA-3′ ND 60°C

ND, not determined.
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der(13) chromosome, we constructed a BAC/PAC contig map

(data not shown). This contig was then used for further FISH

analysis of the region of interest. In summary, two clones

mapped proximal, nine mapped distal, and two clones (RP11-

183F17 and RP11-144P8) hybridised to both derivative

chromosomes in addition to the normal chromosome 6 (fig

1B). Since these two clones overlapped by 40 kb, the

breakpoint location was narrowed to this overlapping region.

Interestingly enough, FISH analysis using clones RP1-128O3

and RP3-429G5, which covered the same region, did not result

in signals on both derivative chromosomes (fig 2). This might

be explained by the fact that they only overlapped by 14 kb.

Molecular cloning of the 6q21 breakpoint
In order to detect a candidate gene mapping to the 40 kb

breakpoint region, a genomic sequence analysis was per-

formed by searching the NCBI database (http://

www.ncbi.nlm.nih.gov/), which identified two already pub-

lished genes: tailless (TLX), which is located in clone

RP3-429G5, centromeric to the overlapping region, and sort-

ing nexin 3 (SNX3), which exhibited homology to both RP3-

429G5 and RP1-128O3 and was thus included in the overlap-

ping region that spanned the breakpoint (fig 1B). The

genomic structure of the SNX3 gene was determined by

alignment between the known SNX3 cDNA sequence

(GenBank accession No NM_003795) or the IMAGE clone

No1977743 and the PAC clone RP1-128O3 using BLASTN 2

sequences (http://www.ncbi.nlm.nih.gov/gorf/bl2.html)

(table 2). The SNX3 gene is composed of four exons that

encompass 50 kb. Southern hybridisation with a SNX3 cDNA

probe had shown a different pattern between the translo-

cated patient and the controls. To determine precisely which

exon was contained in the shifted DNA fragments, we

hybridised with probes containing first exon 3 (fig 3A) and

then exon 4 (fig 3B). Since both exons 3 and 4 hybridised to

two different fragments in patient 1, but normally hybridise

to a single DNA fragment for all the enzymes tested, the

translocation breakpoint occurred somewhere between exons

3 and 4. Isolation of the 1.4 kb PstI fragment (fig 3B) by

Inverse-PCR using exon 4 specific primers allowed us to

sequence the chromosome 6 breakpoint. A BLASTN search

(http://www.ncbi.nlm.nih.gov/blast/) against the “non-

redundant” database confirmed the presence of SNX3 exon 4

and its adjacent intronic sequence in the shifted fragment

and showed that the breakpoint occurred within a SINE/Alu

repeat, 222 bp upstream from exon 4 (fig 4). This result was

consistent with the fact that clones RP3-429G5 and

RP1-128O3 did not give a split signal when hybridised to the

derivative chromosomes. The signal was too weak to be

detected since only 7 kb of RP3-429G5 hybridised to der(13)

and only 7.8 kb hybridised to der(6) with probe RP1-128O3.

Molecular cloning of the 13q12 breakpoint
The BLASTN search against the “htgs” database also identified

a BAC clone RP11-347L8 (GenBank accession No AL137250)

containing several markers specific to chromosome 13q12.

This placed the breakpoint on chromosome 13 close to marker

SHCG-102422. Since the BAC clone sequence was deposited in

the database, we could design primers from the flanking

sequences of each chromosome at the breakpoints and

amplify the der(13) chromosome breakpoint region. Sequenc-

ing of the PCR product showed that no material was deleted

Figure 1 (A) Mapping of the breakpoint region from the t(6;13) translocation at chromosome 6q21. Ideogram of chromosome 6 and the
chromosome band 6q21 showing the results of the first three rounds of FISH analysis which narrowed the breakpoint region from 11 cM to 1
cM. Clones hybridising to the der(6) chromosome are represented by solid lines and clones hybridising to the der(13) chromosome are
represented by dashed lines. (B) Physical map of the breakpoint region showing the four clones mapping to the breakpoint region. Arrows
indicate the transcript orientation of the two genes tailless (TLX) and sorting nexin 3 (SNX3) relative to the centromere. The diagram is not
drawn to scale.
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and that a two base duplication (TA) from the chromosome 6

Alu repeat sequence was present at both breakpoint sites (fig

4).

Characterisation of the human SNX3 gene
A 1201 bp mRNA sequence of the SNX3 gene (GenBank acces-

sion No NM_003795) was reported by Haft et al,34 which

encoded for a protein of 162 amino acids. Although SNX3 was

widely expressed (NCBI Unigene database, Hs.12102), it was

more strongly expressed in heart, skeletal muscle, and

spleen.34 A SNX3 Unigene cluster, Hs.12102, comprising 241

ESTs entries, included an IMAGE clone No 1084159 from a

colon tumour library. However, this clone of 2.4 kb could not

be characterised any further as it failed to grow, but sequenc-

ing of another IMAGE clone (No 1977743) from a brain

library, with a 1.52 kb insert, showed a novel isoform, which

we named SNX3.2. The isoform appears to have originated

from use of a cryptic splice site within exon 1 that eliminates

22 amino acids (fig 5). In addition, the 3′UTR was extended by

288 bp with another putative polyadenylation site and the

5′UTR was extended by 135 bp upstream of the known

sequence. Hybridisation of Southern filters with exon 4 of

SNX3 had shown an extra fragment in the controls and

patients with all three enzymes that was not expected from

the genomic sequence of clones RP1-120O3 or RP3429G5 (fig

3B). Hybridisation of CEPH random subjects with SNX3 exon

4 showed the same fragments and a polymorphism of at least

three alleles (data not shown). A BLASTN search against the

htgs database (NCBI) showed 95% homology over 117 bp

between exon 4 probe and BAC clone RP11-427M20. This 117

bp sequence was the only homology found between the SNX3
cDNA and this BAC clone. This clone was mapped to chromo-

some 4 by identification of several markers including

D4S1575, using the electronic PCR from NCBI. The size of one

of the extra fragments was consistent with the predicted

restriction map from BAC clone RP11-427M20. According to

the database sequence, the exon 4 homologous sequence on

chromosome 4 was interrupted by a LINE element, which may

cause this region to be unstable, possibly generating the three

fragments shown by Southern hybridisation.

Mutation analysis of patient 2
To further our analysis of the SNX3 gene, we screened patient

226 for alterations of the gene as he had the MMEP phenotype

and did not have any cytogenetically visible rearrangements.

Amplification of all four SNX3 exons and their flanking

sequence was used for dHPLC analysis and sequencing. No

differences in dHPLC patterns were detected between a

control and patient 2. Also, we sequenced the four exons of the

SNX3 gene for patient 2 and failed to detect any point

mutation. Southern analysis detected an extra fragment with

the SNX3 exon 4 probe, which varied in size depending on the

Figure 2 Fluorescence in situ hybridisation (FISH) images of the BAC clone RP11-183F17 (A) and of the BAC clone RP11-144P8 (B) on
metaphase chromosomes of the patient with a 6;13 translocation. Red signals identify chromosome 6 centromeres. Note a stronger green
signal on the der(13) chromosome compared to the der(6) chromosome for probe RP11-183F17, while probe RP11-144P8 exhibits a stronger
green signal on the der(6) chromosome compared to the der(13) chromosome.

Table 2 Splice site sequence and organisation of the SNX3 gene

Exon Exon size (bp) Intron Intron size (kb) Donor site Acceptor site

1 267* I 37.64 GATgtgagcaac ttgtttcagACA
1′ 198 I′ 37.71 AAGgtgaggcaa ”
2 95 II 8.33 AAGgtaagaatg acattttagGTC
3 124 III 2.24 CAAgtaagtgctc attctcagGGT
4 740†
4′ 1028†

*Correspond to a cryptic splice site in exon 1.
†The size of the last exon differs according to a different polyadenylation site.
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enzyme used for digestion. However hybridisation with a

chromosome 4 specific probe “ex4dup” showed that all of the

extra fragments originated from chromosome 4 and were

present in normal subjects (data not shown).

DISCUSSION
In this study, we were able to map both breakpoints of a

translocation t(6;13)(q21;q12) in a patient with MMEP. Using

FISH analysis, we could map the breakpoint region on

chromosome 6 between D6S1594 and D6S1250, while the

der(13) breakpoint was subsequently mapped close to SHCG-

102422. Molecular cloning of both breakpoints confirmed the

cytogenetic karyotype previously reported by Viljoen and

Smart20 and also confirmed that the translocation was

balanced.
The sorting nexin 3 (SNX3) gene was found to be disrupted

within intron 3 by the der(6) breakpoint. Therefore, we

suspect that the disruption of the SNX3 gene underlies the

MMEP phenotype in patient 1. However, no alteration of the

SNX3 gene could be detected in patient 2, a sporadic case with

the MMEP phenotype but with no cytogenetically detectable

Figure 3 Southern blot analysis of genomic DNA from two controls, C1 and C2, and patient 1 with the t(6;13) translocation (P2). (A) The
filter hybridised with a SNX3 exon 3 probe. (B) The filter hybridised with a SNX3 exon 4 probe. Exons 3 and 4 normally hybridise to a single
band of 3.1 and 9.2 kb with PstI and HindIII enzymes, respectively. The arrows indicate the altered restriction fragments owing to the t(6;13)
translocation. These are only present in the patient P2.

Figure 4 Diagrams of the sequence analysis of the t(6;13) translocation breakpoints. (A) The normal chromosome 6 and the der(6)
chromosome and (B) the normal chromosome 13 and the der(13) chromosome are represented with the chromosomal organisation of the
repeat sequence, symbolised by arrows, and SNX3 exons 3 and 4, symbolised by boxes. The upper case lettering corresponds to chromosome
6 sequence and the lower case lettering to chromosome 13 sequence. The underlined sequence corresponds to a 2 base duplication from the
chromosome 6 Alu repeat sequence at the chromosome junction. The bold sequence corresponds to SNX3 exon 4.
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rearrangement. It is possible that a mutation in the promoter
region of the SNX3 gene could still be responsible for the phe-
notype, as we have not screened this portion of the gene. Also,
an inversion of the gene could have been missed by Southern
analysis if one or both breakpoints had occurred within an
intron or involved the promoter region only. Both scenarios
could result in haploinsufficiency as in the patient with the
translocation.

When a chromosome breakpoint does not directly disrupt
the disease causing gene, it is thought to alter the gene
expression by a phenomenon called position effect, for which
the mechanism is still unknown. Several hypotheses have
been suggested and reviewed by Kleinjan and van
Heyningen.35 (1) The chromosomal rearrangement could
separate the promoter from a distant regulatory element. (2)
The chromosomal rearrangement may juxtapose a gene with a
regulatory element from another gene. (3) The chromosomal
rearrangement may bring a gene and its regulatory element
close to another gene generating a competition for the regula-
tory element between the two genes. (4) And finally the rear-
rangement could give rise to position effect variegation (PEV),
a phenomenon first described in Drosophila36 and later reported
in mammalian systems.37 38 Several translocation cloning
projects have shown that a gene causing a disorder is not
always disrupted within the coding sequence35 or that, even
though a gene is disrupted, it can still be another gene
mapping proximal or distal to the breakpoint that causes the
phenotype.39 Therefore, the MMEP phenotype in patient 1
could in fact be cause by the impaired expression of another
gene or by contiguous genes in the vicinity of the der(6)
breakpoint. The necessity of altering the expression of two
genes in order to underlie the MMEP phenotype would be
consistent with its rarity. Patient 2 could possibly carry an
inversion involving contiguous genes, while in patient 1 SNX3
is disrupted by the breakpoint, and perhaps another gene is
affected by position effect.

SNX3 is a member of the sorting nexin family, composed of
at least 14 other members (NCBI database).34 40 None of the
sorting nexin family members has yet been associated with
any human disorder. Sorting nexin family members are iden-
tified by a conserved phox homology (PX) domain of about
100 amino acids, first characterised in NADPH oxidase,
p47phox and p40phox.41 42 Function of the SNX3 protein
remains to be characterised to determine its putative role in
development. The PX domain is highly conserved through
evolution, therefore suggesting a similarity in biological func-
tion between species.34 The yeast Grd19p is the most closely
related in sequence to the human SNX3. Grd19p was shown to
maintain late Golgi enzymes in their proper locations by
retrieving mislocalised molecules from the prevacuolar com-
partment and Grd19p is not required for vacuolar protein
sorting, unlike the other studied yeast sorting nexin
proteins.43 Study of the SNX3 function may help in deciding if
SNX3 is or is not a good candidate gene for this disorder. SNX3
knockout mice would be most useful in providing this
information.
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