Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2004 Jan;75(1):33–37.

Oxygen extraction fraction and acetazolamide reactivity in symptomatic carotid artery disease

H Yamauchi 1, H Okazawa 1, Y Kishibe 1, K Sugimoto 1, M Takahashi 1
PMCID: PMC1757491  PMID: 14707303

Abstract

Objective: It has been proposed that cerebral blood flow (CBF) response to acetazolamide may be reduced according to the degree of autoregulatory vasodilation in regions with normal oxygen extraction fraction (OEF), whereas the CBF response may be absent in regions with increased OEF where vasodilation may be maximal in response to reduced perfusion pressure. The objective of this study was to test this hypothesis.

Methods: Positron emission tomography (PET) was used to study 30 symptomatic patients with carotid artery steno-occlusive lesions. CBF at baseline and 10 minutes after an intravenous injection of 1 g acetazolamide was measured. The correlation between the change in CBF during acetazolamide administration and the baseline value of OEF in the affected hemisphere was examined.

Results: The baseline OEF value was inversely and non-linearly correlated with the percentage change in CBF during acetazolamide administration (R2 = 0.25, p = 0.02). There was an upward trend of OEF with diminishing acetazolamide response below a critical level around zero response. Acetazolamide response less than 6.65% over baseline (sensitivity 100%, specificity 89%, positive predictive value 50%, negative predictive value 100%) was established as most helpful in predicting abnormally high OEF.

Conclusions: The inverse, non-linear relationship between OEF and CBF response to acetazolamide suggests that these two measurements may not identify haemodynamic impairment in the same patients.

Full Text

The Full Text of this article is available as a PDF (280.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams H. P., Jr, Powers W. J., Grubb R. L., Jr, Clarke W. R., Woolson R. F. Preview of a new trial of extracranial-to-intracranial arterial anastomosis: the carotid occlusion surgery study. Neurosurg Clin N Am. 2001 Jul;12(3):613-24, ix-x. [PubMed] [Google Scholar]
  2. Baron J. C., Bousser M. G., Rey A., Guillard A., Comar D., Castaigne P. Reversal of focal "misery-perfusion syndrome" by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography. Stroke. 1981 Jul-Aug;12(4):454–459. doi: 10.1161/01.str.12.4.454. [DOI] [PubMed] [Google Scholar]
  3. DeGrado T. R., Turkington T. G., Williams J. J., Stearns C. W., Hoffman J. M., Coleman R. E. Performance characteristics of a whole-body PET scanner. J Nucl Med. 1994 Aug;35(8):1398–1406. [PubMed] [Google Scholar]
  4. Derdeyn C. P., Grubb R. L., Jr, Powers W. J. Cerebral hemodynamic impairment: methods of measurement and association with stroke risk. Neurology. 1999 Jul 22;53(2):251–259. doi: 10.1212/wnl.53.2.251. [DOI] [PubMed] [Google Scholar]
  5. Feeney D. M., Baron J. C. Diaschisis. Stroke. 1986 Sep-Oct;17(5):817–830. doi: 10.1161/01.str.17.5.817. [DOI] [PubMed] [Google Scholar]
  6. Frackowiak R. S., Lenzi G. L., Jones T., Heather J. D. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980 Dec;4(6):727–736. doi: 10.1097/00004728-198012000-00001. [DOI] [PubMed] [Google Scholar]
  7. Grubb R. L., Jr, Derdeyn C. P., Fritsch S. M., Carpenter D. A., Yundt K. D., Videen T. O., Spitznagel E. L., Powers W. J. Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA. 1998 Sep 23;280(12):1055–1060. doi: 10.1001/jama.280.12.1055. [DOI] [PubMed] [Google Scholar]
  8. Herold S., Brown M. M., Frackowiak R. S., Mansfield A. O., Thomas D. J., Marshall J. Assessment of cerebral haemodynamic reserve: correlation between PET parameters and CO2 reactivity measured by the intravenous 133 xenon injection technique. J Neurol Neurosurg Psychiatry. 1988 Aug;51(8):1045–1050. doi: 10.1136/jnnp.51.8.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Herscovitch P., Markham J., Raichle M. E. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med. 1983 Sep;24(9):782–789. [PubMed] [Google Scholar]
  10. Imaizumi Masao, Kitagawa Kazuo, Hashikawa Kazuo, Oku Naohiko, Teratani Tadamasa, Takasawa Masashi, Yoshikawa Takuya, Rishu Piao, Ohtsuki Toshiho, Hori Masatsugu. Detection of misery perfusion with split-dose 123I-iodoamphetamine single-photon emission computed tomography in patients with carotid occlusive diseases. Stroke. 2002 Sep;33(9):2217–2223. doi: 10.1161/01.str.0000027638.19392.7e. [DOI] [PubMed] [Google Scholar]
  11. Klijn C. J., Kappelle L. J., Tulleken C. A., van Gijn J. Symptomatic carotid artery occlusion. A reappraisal of hemodynamic factors. Stroke. 1997 Oct;28(10):2084–2093. doi: 10.1161/01.str.28.10.2084. [DOI] [PubMed] [Google Scholar]
  12. Klijn C. J., Kappelle L. J., van Huffelen A. C., Visser G. H., Algra A., Tulleken C. A., van Gijn J. Recurrent ischemia in symptomatic carotid occlusion: prognostic value of hemodynamic factors. Neurology. 2000 Dec 26;55(12):1806–1812. doi: 10.1212/wnl.55.12.1806. [DOI] [PubMed] [Google Scholar]
  13. Kuroda S., Houkin K., Kamiyama H., Mitsumori K., Iwasaki Y., Abe H. Long-term prognosis of medically treated patients with internal carotid or middle cerebral artery occlusion: can acetazolamide test predict it? Stroke. 2001 Sep;32(9):2110–2116. doi: 10.1161/hs0901.095692. [DOI] [PubMed] [Google Scholar]
  14. Lammertsma A. A., Jones T. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain: 1. Description of the method. J Cereb Blood Flow Metab. 1983 Dec;3(4):416–424. doi: 10.1038/jcbfm.1983.67. [DOI] [PubMed] [Google Scholar]
  15. Markus H., Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain. 2001 Mar;124(Pt 3):457–467. doi: 10.1093/brain/124.3.457. [DOI] [PubMed] [Google Scholar]
  16. Ogasawara Kuniaki, Ito Hiroshi, Sasoh Masayuki, Okuguchi Taku, Kobayashi Masakazu, Yukawa Hirotsugu, Terasaki Kazunori, Ogawa Akira. Quantitative measurement of regional cerebrovascular reactivity to acetazolamide using 123I-N-isopropyl-p-iodoamphetamine autoradiography with SPECT: validation study using H2 15O with PET. J Nucl Med. 2003 Apr;44(4):520–525. [PubMed] [Google Scholar]
  17. Ogasawara Kuniaki, Ogawa Akira, Terasaki Kazunori, Shimizu Hiroaki, Tominaga Teiji, Yoshimoto Takashi. Use of cerebrovascular reactivity in patients with symptomatic major cerebral artery occlusion to predict 5-year outcome: comparison of xenon-133 and iodine-123-IMP single-photon emission computed tomography. J Cereb Blood Flow Metab. 2002 Sep;22(9):1142–1148. doi: 10.1097/00004647-200209000-00012. [DOI] [PubMed] [Google Scholar]
  18. Okazawa H., Yamauchi H., Sugimoto K., Takahashi M., Toyoda H., Kishibe Y., Shio H. Quantitative comparison of the bolus and steady-state methods for measurement of cerebral perfusion and oxygen metabolism: positron emission tomography study using 15O-gas and water. J Cereb Blood Flow Metab. 2001 Jul;21(7):793–803. doi: 10.1097/00004647-200107000-00004. [DOI] [PubMed] [Google Scholar]
  19. Okazawa H., Yamauchi H., Sugimoto K., Toyoda H., Kishibe Y., Takahashi M. Effects of acetazolamide on cerebral blood flow, blood volume, and oxygen metabolism: a positron emission tomography study with healthy volunteers. J Cereb Blood Flow Metab. 2001 Dec;21(12):1472–1479. doi: 10.1097/00004647-200112000-00012. [DOI] [PubMed] [Google Scholar]
  20. Powers W. J. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991 Mar;29(3):231–240. doi: 10.1002/ana.410290302. [DOI] [PubMed] [Google Scholar]
  21. Raichle M. E., Martin W. R., Herscovitch P., Mintun M. A., Markham J. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med. 1983 Sep;24(9):790–798. [PubMed] [Google Scholar]
  22. Sette G., Baron J. C., Mazoyer B., Levasseur M., Pappata S., Crouzel C. Local brain haemodynamics and oxygen metabolism in cerebrovascular disease. Positron emission tomography. Brain. 1989 Aug;112(Pt 4):931–951. doi: 10.1093/brain/112.4.931. [DOI] [PubMed] [Google Scholar]
  23. Votaw J. R., Shulman S. D. Performance evaluation of the Pico-Count flow-through detector for use in cerebral blood flow PET studies. J Nucl Med. 1998 Mar;39(3):509–515. [PubMed] [Google Scholar]
  24. Yamauchi H., Fukuyama H., Kimura J. Hemodynamic and metabolic changes in crossed cerebellar hypoperfusion. Stroke. 1992 Jun;23(6):855–860. doi: 10.1161/01.str.23.6.855. [DOI] [PubMed] [Google Scholar]
  25. Yamauchi H., Fukuyama H., Kimura J., Konishi J., Kameyama M. Hemodynamics in internal carotid artery occlusion examined by positron emission tomography. Stroke. 1990 Oct;21(10):1400–1406. doi: 10.1161/01.str.21.10.1400. [DOI] [PubMed] [Google Scholar]
  26. Yamauchi H., Fukuyama H., Nagahama Y., Nabatame H., Nakamura K., Yamamoto Y., Yonekura Y., Konishi J., Kimura J. Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET. J Neurol Neurosurg Psychiatry. 1996 Jul;61(1):18–25. doi: 10.1136/jnnp.61.1.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yamauchi H., Fukuyama H., Nagahama Y., Nabatame H., Ueno M., Nishizawa S., Konishi J., Shio H. Significance of increased oxygen extraction fraction in five-year prognosis of major cerebral arterial occlusive diseases. J Nucl Med. 1999 Dec;40(12):1992–1998. [PubMed] [Google Scholar]
  28. Yamauchi Hiroshi, Okazawa Hidehiko, Kishibe Yoshihiko, Sugimoto Kanji, Takahashi Masaaki. Reduced blood flow response to acetazolamide reflects pre-existing vasodilation and decreased oxygen metabolism in major cerebral arterial occlusive disease. Eur J Nucl Med Mol Imaging. 2002 Aug 6;29(10):1349–1356. doi: 10.1007/s00259-002-0899-x. [DOI] [PubMed] [Google Scholar]
  29. Yokota C., Hasegawa Y., Minematsu K., Yamaguchi T. Effect of acetazolamide reactivity on [corrected] long-term outcome in patients with major cerebral artery occlusive diseases. Stroke. 1998 Mar;29(3):640–644. doi: 10.1161/01.str.29.3.640. [DOI] [PubMed] [Google Scholar]
  30. Yonas H., Pindzola R. R. Physiological determination of cerebrovascular reserves and its use in clinical management. Cerebrovasc Brain Metab Rev. 1994 Winter;6(4):325–340. [PubMed] [Google Scholar]
  31. Yonas H., Smith H. A., Durham S. R., Pentheny S. L., Johnson D. W. Increased stroke risk predicted by compromised cerebral blood flow reactivity. J Neurosurg. 1993 Oct;79(4):483–489. doi: 10.3171/jns.1993.79.4.0483. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES