Sulphur dioxide sensitivity and plasma antioxidants in adult subjects with asthma

Carol A Trenga, Jane Q Koenig, Paul V Williams

Abstract

Objectives—To screen adult subjects with asthma for sensitivity to inhaled sulphur dioxide (SO₂) and identify subject characteristics associated with that sensitivity. Medication use, symptoms, and plasma antioxidant nutrients between SO₂ responders and non-responders were compared.

Methods—Adult subjects (ages 18-39 years) with asthma were exposed to 0.5 ppm SO₂ for 10 minutes during moderate exercise. Pulmonary function tests and symptom ratings were assessed before and after exposure (n=47). A subject was classified as sensitive to SO₂ if forced expiratory volume in 1 second (FEV₁) showed a drop $\geq 8\%$ over baseline. Blood samples were obtained from subjects (n=38) before the SO₂ challenge; plasma ascorbate, *a*-tocopherol, retinol, carotenoids, and lipids were measured.

Results-Of the 47 subjects screened, 53% had a drop in $\text{FEV}_1 \ge 8\%$ (ranging from -8% to -44%). Among those 25 subjects, the mean drop in FEV_1 was -17.2%. Baseline pulmonary function indices (FEV₁% of predicted and FEV₁/FVC% (forced vital capacity)) did not predict sensitivity to SO₂. Although use of medication was inversely related to changes in pulmonary function after SO_2 (p<0.05), both SO_2 responders and non-responders were represented in each medication category. Total symptom scores after exposure were significantly correlated with changes in FEV, (p<0.05), FVC (p<0.05), and peak expiratory flow (PEF) (p<0.01) but not forced expiratory flow between 25% and 75% vital capacity (FEF₂₅₋₇₅). Plasma β-carotene concentrations were inversely associated with PEF values and ascorbate concentrations were inversely associated with FEV₁ and FEV₁/FVC (p=0.05 in all cases). High density lipoprotein concentrations were positively correlated with FEV₁% of predicted (p<0.05) and inversely correlated with change in FEF_{25-75} (p<0.05) after SO₂. Conclusion-These results show that the response to SO, among adults with mild to moderate asthma is very diverse. Severity of asthma defined by medication category was not a predictor of sensitivity to SO₂. Lung function values were associated with β-carotene and ascorbate concentrations in plasma; however, plasma antioxidant nutrient concentrations were not associated with sensitivity to inhaled SO₂.

(Occup Environ Med 1999;56:544-547)

Keywords: asthma; sensitivity; antioxidants

Sulphur dioxide (SO_2) is a common ambient and occupational air pollutant. Sources of SO₂ include electric coal fired power plants, smelters, wood pulp manufacturing, and food processing operations.¹ It is one of six common outdoor air pollutants regulated as criteria pollutants by the United States Environmental Protection Agency. About 600 000 workers in the United States are exposed to SO₂ at work.² The typical responses to inhaled SO₂ in subjects with asthma are acute bronchoconstriction measured as decrements in forced expiratory volume in one second (FEV₁) or increases in airway resistance.^{3 4} Subjects with asthma have significant changes in pulmonary function after brief exposures at concentrations as low as 0.25 ppm whereas subjects without asthma often have no significant change in pulmonary function after exposures below 5 ppm.⁵ A recent report determined the prevalence of airway hyperresponsiveness to SO₂ in an adult population of 790 subjects, aged 20-44 years, as part of the European Community respiratory health survey. The prevalence of SO₂ hyperresponsiveness (measured as a 20% decrease in FEV_1) in that population was 3.4%.6 Of subjects with a methacholine positive response, 22% showed sensitivity to SO₂ whereas only two out of 679 who were not methacholine positive had such sensitivity, although the presence of asthma was not used directly as a risk factor.

Concentrations of vitamins E $(\alpha$ tocopherol), C (ascorbate), A (retinol), and carotenoids in peripheral blood may be useful biomarkers for predicting the response of adults with asthma to air pollutants. Epidemiological studies have shown a relation between dietary concentrations of vitamin C and pulmonary function values.7-10 There is evidence that vitamin C intake in the general population is correlated with asthma status and that people with asthma have lower serum vitamin C than people without.¹¹ Low dietary intake of vitamins C^{12} and E^{13} are associated with an increased risk of developing asthma. Plasma concentrations of antioxidant vitamins do not always show a good correlation with dietary intake, particularly for lipid soluble antioxidants such as α -tocopherol and β-carotene. However, they serve as good markers of internal dose, as factors other than diet-such as variations in absorption and metabolism—are reflected plasma in concentrations.14 15

This paper describes the responses of adult subjects with asthma to a 10 minute SO_2

Department of Environmental Health and Pediatrics, University of Washington, Seattle, WA, USA C A Trenga J Q Koenig P V Williams

Correspondence to: Dr Jane Q Koenig, Department of Environmental Health 357234, University of Washington, Seattle, WA 98195, USA. Telephone 001 206 543 2026; fax 001 206 685 3990.

Accepted 16 April 1999

screening test. The relation between response to SO_2 exposure, medication, symptoms, and plasma antioxidant nutrients are discussed.

Methods

The use of human subjects was approved by the University of Washington Human Subjects Committee. Subjects with a history of asthma aged 18–39 years were recruited from local asthma and allergy clinics, university students, faculty, and staff, and the general population. Forty seven subjects (14 men and 33 women) completed the screening procedure. Use of medication was restricted as follows: use of long acting and short acting β_2 agonist was prohibited within 12 and 6 hours of the screening visit, respectively. Inhaled antiinflammatory medications were withheld on the screening day.

Subjects inhaled SO_2 by a mouthpiece while wearing noseclips for 10 minutes during moderate exercise on a treadmill. The treadmill was set to achieve about a threefold increase in resting minute ventilation. Minute ventilation was measured continuously during each challenge test. The SO_2 was generated in a gas aerosol generation and monitoring system connected to the mouthpiece described earlier.¹⁶

Pulmonary function (FEV₁, forced vital capacity (FVC), forced expiratory flow between 25% and 75% vital capacity (FEF₂₅₋₇₅)) was measured with a computerised spirometer (Spirometrics III) according to American Thoracic Society guidelines. Peak expiratory flow (PEF) was measured with a hand held peak flow meter (Vitalograph). Pulmonary function was measured before and within 10 minutes after the SO₂ challenge. An 8% drop in FEV₁, based on previous studies,^{16 17} was chosen as the criterion for categorising subjects as SO₂ responders. Subjects completed a symptom rating form before and after the exposure. Ten symptoms were rated from 0=none to 5=severe, grouped as follows: upper respiratory (nasal discharge, sore throat), lower respiratory (cough, chest pain or burning, dyspnoea, wheeze), and other (headache, fatigue, unusual smell or taste, dizziness).

Non-fasting blood samples were drawn from each subject at the beginning of the screening visit. Plasma ascorbate, α -tocopherol, retinol, carotenoids, and lipids (total cholesterol, high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, and triglycerides) were measured. Samples were analysed by the Clinical Nutrition Research Unit at the University of Washington. Plasma concentrations of ascorbic acid were measured enzymatically with a Cobas-Bio centrifugal

Table 1 Mean (SD) subject characteristics and SO₂ response by category of medication

Medication category*	Age (mean, y)	n	FEV ₁ % of predicted†	FEV ₁ /FVC %†	SO2 response (% change FEV1)
1	24.4	11	101.5 (16.5)	78.1 (10.3)	-3.4 (4.8)
2	26.5	15	100.3 (14.6)	90.0 (6.0)	-7.8(6.0)
3	24.3	12	91.7 (13.3)	75.7 (8.4)	-13.3 (13.9)
4	26.6	9	84.6 (9.7)	75.7 (9.3)	-17.6 (15.1)

*1=no regular medication; 2=bronchodilator when necessary; 3=daily bronchodilator; 4=bronchodilator+anti-inflammatory.

+Calculated from prescreening best FEV₁, and best FVC for FEV₁/FVC %.

analysis.¹⁸ Carotenoids,¹⁹ retinol, and α -tocopherol were extracted from plasma in a total lipid fraction and measured by high performance liquid chromatography.²⁰ A lipid profile was produced by standard clinical laboratory techniques.

Statistical analyses were conducted with the SPSS software package. Changes in pulmonary function changes by medication category were examined by analysis of variance (ANOVA) and a Bonferroni test to compare group means. Significance was set at p=0.05. Associations between medication category and pulmonary function change were measured by Spearman's correlation coefficients (one tailed). Paired t tests compared symptom scores before and after SO_2 challenge. Independent sample t tests were used to compare symptom scores by SO₂ response groups. Plasma nutrient and pulmonary function partial correlations were adjusted for age, race, and sex. Analysis of varience tests were applied to selected plasma variables (ascorbate, retinol, β-carotene, lycopene) to examine differences by SO₂ response groups and medication categories. A linear regression model (% change in FEV₁=vitamin E+vitamin C+ β -carotene+lycopene+constant) was used to test the hypothesis that SO₂ sensitivity, measured by change in FEV₁, is associated with plasma antioxidant concentrations. As plasma cholesterol, in the case of vitamin E, and HDL, in the case of lycopene, account for a substantial proportion of the variance in these two antioxidant nutrients, the model adjusted vitamin E for cholesterol and lycopene for HDL cholesterol.

Results

Based on data on use of medication from the questionnaire, subjects were divided into four groups that closely match the guidelines for the diagnosis and management of asthma.²¹ Table 1 shows the medication categories and subject characteristics including age, sex, baseline % predicted FEV₁, baseline FEV₁/FVC ratio, and the % change in FEV₁ after the SO₂ challenge. As seen in table 1, there was an inverse correlation between use of medication category and % predicted FEV₁ (Spearman's r=-0.40, p=0.003).

Percentage changes in measures of pulmonary function among SO₂ responders and SO₂ non-responders, by medication group, are shown in table 2. The change in FEV₁ after SO₂ challenge ranged from a small increase (6%) to a 44% decrement. Of the 47 subjects screened, 53% had a drop in $\text{FEV}_1 \ge 8\%$ (range -8% to -44%). The mean drop in FEF₂₅₋₇₅ after the SO_2 challenge was -26% for the SO_2 responders and -7% for the non-responders (p<0.001). Likewise the changes in FVC (-10% v - 1%) and PEF (-15% v - 2%)between the responders and non-responders were significant (p=0.001 and p=0.002, respectively). The SO₂ induced decrements in FEF₂₅₋₇₅ and FEV₁ were significantly greater (p<0.05) in subjects who used both bronchodilators and anti-inflammatory medication (group 4), compared with those who rarely used medication (group 1). Those who re-

Table 2 Pulmonary function changes (mean (SD)% before–after) by SO₂ response and medication group

SO ₂ Response	Medication category (n)	FEV_1	FVC	FEF ₂₅₋₇₅	PEF
Yes:					
1	3	-9.2(1.6)	-7.7(3.5)	-16.5 (3.6)	-8.2(4.7)
2	8	-12.4(2.9)	-3.9(5.9)	-27.6(7.4)	-9.3(13.1)
3	8	-19.4(13.2)	-12.9(15.7)	-21.1(18.3)	-18.6 (17.7)
4	6	-24.7 (13.0)	-14.6 (10.4)	-36.6 (17.1)	-20.9 (25.7)
Group mean		-17.2(10.9)	-9.8(11.2)	-26.4(14.9)	-15.0(17.6)
No:					
1	8	-1.3(3.5)	-0.09(0.8)	-5.4(7.6)	0.2 (5.8)
2	7	-2.5(3.6)	-0.6(2.2)	-10.3(5.2)	-4.3(4.1)
3	4	-1.1(2.5)	-1.8(3.1)	-1.2(5.2)	-3.4(6.7)
4	3	-3.3 (5.5)	-1.7(4.3)	-11.7(21.5)	-4.2(11.4)
Group mean		-1.9 (3.5)	-0.8(2.3)	-7.1 (9.4)	-2.5(6.3)
Total	47	-10.0(11.3)	-5.6 (9.4)	-17.3 (15.9)	-9.1(14.8)

sponded to SO_2 rated lower respiratory symptoms significantly higher than those who did not respond (p<0.05) after the SO_2 challenge (data not shown); this was not the case for upper respiratory or other symptoms.

Blood samples from 38 subjects were obtained for analysis. All correlations discussed were controlled for age, race, and sex. Three plasma variables were correlated with pulmonary function indices before SO₂ challenge. There was a significant inverse association between plasma β -carotene and FEV₁/FVC % (*r*=-0.40, p=0.02) and FEV₁ before challenge (*r*=-0.34, p<0.05). Concentrations of HDLs were positively associated with FEV₁ % of predicted (*r* = 0.35, p=0.04). Plasma ascorbate was inversely associated with PEF before challenge (*r*=-0.33, p<0.05).

Mean plasma nutrient concentrations between those who did and did not respond to SO_2 are shown in table 3. Although concentrations of plasma nutrients among subjects were normally distributed, the range of values among SO₂ responders was often at the low end of the distribution. For example, retinol ranged from 220 to 722 µg/l in those who responded (mean (SEM) 508 (27) µg/l) and from 318 to 808 in those who did not respond (mean (SEM) 537 (35) μ g/l). Similarly, the values for ascorbate in responders ranged from 0.19 to 1.83 (mean (SEM) 0.99 (0.09)) mg/dl and 0.52-1.85 (mean (SEM) 1.18 (0.08)) mg/dl in the non-responders. A value of <0.2 mg/dl for plasma ascorbate is considered deficient, 0.2-0.4 is marginal, and >0.4, adequate.²² Plasma concentrations of α -tocopherol were lower in responders than non-responders; however, β -carotene concentrations were higher in the responders.

Table 3 Screening plasma values (mean (SEM)) by SO_2 response

Plasma nutrient	SO_2 responder (n=22)	SO_2 non-responder (n=16)
Plasma ascorbate		
(mg/dl)	0.99 (0.09)	1.18 (0.08)
a-Tocopherol (mg/l)	8.70 (0.47)	9.22 (2.81)
Retinol (µg/l)	508 (27)	537 (35)
β-Carotene (µg/l)	231.3 (62.8)	195.1 (33.2)
Lycopene (µg/l) Total cholesterol	304.8.38 (28.3)	294.1 (25.4)
(mg/dl) HDL cholesterol	161.0 (6.2)	182.4 (9.1)
(mg/dl) LDL cholesterol	52.3 (3.0)	48.2 (4.1)
(mg/dl)	85.2 (5.4)	106 (6.1)
Triglycerides	117.6 (14.8)	144.1 (16.7)

Results of plasma lipid assays showed that mean LDL cholesterol was significantly lower in the responders (p=0.02). Mean total cholesterol concentrations were lower among nonresponders than among responders (161 mg/dl v 182 mg/dl; p<0.05). Concentrations of HDL were inversely correlated with change in FEF₂₅₋₇₅ (r=0.38, p=0.02) after SO₂ challenge; associations with changes in other pulmonary function measures (FEV₁ (r=0.08), FVC (r=0.30), PEF (r=-0.07)) were not significant.

A linear regression model applied for representative plasma antioxidants (vitamin E, vitamin C, vitamin A, β -carotene, lycopene) tested the hypothesis that SO₂ sensitivity, measured by pulmonary function changes in FEV₁ in these subjects (n=38), was associated with antioxidant concentrations. None of the associations was significant.

Discussion

Epidemiological studies have shown a relation between dietary concentrations of vitamin C and pulmonary function as described earlier.⁷⁻¹⁰ However, we found no significant association between plasma concentrations of ascorbate and baseline pulmonary function values in the 38 subjects in this study for whom there were blood samples. We did not have data on diet from the questionnaire on these subjects. The blood samples were not taken after fasting and that may have influenced the outcome; also, a single measurement is often not a good indication of long term values. This study used plasma nutrient concentrations because obtaining epithelial lung fluid concentrations was beyond our scope. However, positive correlations between lung tissue and serum concentrations of β -carotene, α -tocopherol, and total carotenoids (but not retinol) have been found,²³ adding credence to the concept of use of plasma antioxidant concentrations as a surrogate for lung tissue concentrations, although more research is needed in this area. The people who responded to SO_2 in this study participated in a double blind cross over study of the effects of antioxidant dietary supplementation on ozone induced bronchoconstriction. The response to ozone was found to be less after the combined vitamin C and E regimen compared with placebo24 again indicating a positive correlation between plasma antioxidant concentrations and lung function.

The plasma lipid profile results in this study indicated some differences relating to SO2 response. The lower concentrations of total cholesterol and LDL cholesterol among people who did not respond to SO₂, and the inverse association between HDL cholesterol concentrations and change in $\mathrm{FEF}_{\scriptscriptstyle 25\text{-}75}$ after exposure to SO₂, may be indirectly explained by the fact that patients with more severe asthma are less likely to exercise regularly, and thus may have a more unfavourable lipid profile. Also, there is evidence that diet may influence severity of asthma, or at least bronchial hyperresponsiveness.25 Subjects consuming more dietary fats might also eat fewer fruits and vegetables containing antioxidants and micronutrients that seem to have a protective effect in the lung.7-13

There was a diverse response among adult subjects with predominantly mild intermittent to mild persistent asthma to the SO₂ challenge test. Slightly more than half (53%) of the young adults reacted to clinically relevant concentrations of SO₂. Although use of medication was inversely related to changes in pulmonary function after SO₂, severity of asthma defined by medication category was not a perfect predictor of SO₂ sensitivity. People who did not respond were represented in each medication category: eight of 11 subjects in category 1; seven of 15 in category 2; four of 12 in category 3; and three of nine in category 4. Neither % predicted FEV, nor the FEV,/FVC ratio predicted sensitivity to SO₂. The magnitude of ratings on the symptom rating scale at baseline was not associated with sensitivity, although the symptom ratings after SO₂ challenge were significantly associated with the % change in FEV₁. This association indicates that the pulmonary function changes in this study are clinically relevant. The large decrements in FEV₁ after SO₂ challenge among the subjects in categories 3 and 4 (>25%, n=6), would result in stopping activity by most people. The inability of severity of asthma to serve as an indicator for sensitivity to SO₂ agrees with a recent epidemiological study which found that severity of asthma was not related to air pollutant response.26

As severity of asthma among subjects in this study was based on reported use of medication, we acknowledge the potential for misclassification. When using medication as a surrogate for severity, an optimal treatment regimen is assumed; compliance with prescribed medications is also a potentially problematic underlying assumption. Subjects were required to withhold medications for 6-12 hours before screening visits, however, there is the possibility of an interaction between SO₂ and medication in the subjects on regular anti-inflammatory treatment.

The SO₂ concentration in this study (0.5)ppm) and exposure conditions (10 minutes, 2 mph, 10% grade on treadmill) are comparable with moderate activity during increased ambient concentrations of SO2 and to certain workplace conditions. This concentration of SO_2 is found in community air for brief periods and would not result in failure to meet the present United States national standards of ambient air quality for SO₂, which is 0.14 ppm for a 24 hour average and 0.03 ppm for an annual average. The Environmental Protection Agency has considered setting a short term standard for SO_2 explicitly to protect people with asthma from brief, increased concentrations of SO₂. The Puget Sound Air Pollution Control Agency governing Seattle, Washington has set short term standards for SO₂: a 1 hour average of 0.40 ppm, never to be exceeded; a 1 hour average of 0.25 ppm not to be exceeded more than twice within 7 days; and a 3 hour average of 0.10 ppm, not to be exceeded more than once a year. The data in this study support the need for short term SO₂ standards to protect people with asthma. Further research is needed to evaluate the association between diet,

plasma antioxidants, and sensitivity to air pollutants.

We acknowledge the following people for their contributions to this study: the study subjects, Kimberly Murphy for excellent phlebotomy and technical assistance, Gary Norris for invaluable technical support, Robyn Perez for clerical assistance, and Drs Daniell, Darowalla, Drachman, Jorgensen, Linden, McCarty, Robinson, Rosenfeld, Sechena, and Takaro for medical supervision. This research was funded in part by NIEHS 1P30 ES07033; Roche Vitamins; UW Royalty Fund and NIH CNRU DK35816.

- 1 United States Environmental Protection Agency. Air quality criteria for particulate matter and sulfur oxides. Washington, DC: USEPA, 1982. (EPA-600/8-82-029.)
- 2 United States Department of Health and Human Services. Toxicological profile for sulfur dioxide. Atlanta, GA: USD-HHS, Agency for Toxic Substances Disease Registry,
- 3 Koenig JQ, Pierson WE. Pulmonary effects of inhaled sulfur dioxide in atopic adolescent subjects: a review. In: R Frank, JJ O'Neil, MJ Utell, et al, eds. Inhalation toxicology of air pollution: clinical research considerations. Philadelphia: Ameri-
- can Society for Testing and Materials, 1986:85–91. 4 Horstman DH, Folinsbee LJ. Sulfur dioxide-induced bronchoconstriction in asthmatics exposed for short dura-tions under controlled conditions: a selected review. In: Utell MJ, Frank R, eds. Susceptibility to inhaled pollutants. Philadelphia: American Society for Testing and Materials, 1989.
- 5 Koenig JQ. Atmospheric pollutants: sulfur dioxide and particulate matter. In: Barnes PJ, Grunstein MM, Leff AR, et al, eds. Asthma. Philadelphia: Lippincott-Raven, 1997: 1151 - 62
- 6 Nowak D, Jorres R, Berger J, et al. Airway responsiveness to sulfur dioxide in an adult population sample. Am J Respir Crit Care Med 1997;156:1151-6.
- Britton JR, Pavord ID, Richards KA, et al. Dietary antioxidant vitamin intake and lung function in the general population. Am J Respir Crit Care Med 1995;151:1383–7. Soutar A, Seaton A, Brown K, Bronchial reactivity and distore redivident Theorem 1007;52:166–70
- dietary antioxidants. *Thorax* 1997;**52**:166–70. Schwartz J, Weiss ST. Dietary factors and their relationship to respiratory symptoms: NHANES II. Am J Epidemiol 1990;**132**:67–76.
- Schwartz J, Weiss ST. Relationship between dietary vitamin C intake and pulmonary function in the First National 10 Health and Nutrition Examination Survey (NHANES I). Am J Clin Nutr 1994;59:110-14.
- 11 Hatch GE. Asthma, inhaled oxidants, and dietary antioxi-dants. Am J Clin Nutr 1995;61(suppl):625S-30S.
- 12 Greene LS. Asthma and oxidant stress: nutritional, environmental, and genetic risk factors. J Am Coll Nutr 1995:14:317-24.
- Troisi RJ, Willett WC, Weiss ST, et al. A prospective study of diet and adult-onset asthma. Am J Respir Crit Care Med 1995;151:1401-8. 13
- Kardinaal AFM, van't Veer P, Brants HAM, et al. Relations 14
- between antioxidant vitamins in adipose tissue, plasma and diet. Am J Epidemiol 1995;141:440–50.
 15 Kelly FJ, Mudway IS, Blomberg A, et al. Impact of dietary antioxidant supplements on airways epithelial lining fluid (ELF) antioxidant status. Am J Respir Crit Care Med 1998; 157:Á196
- 16 Koenig JQ, Pierson WE, Horike M, et al. Effects of SO, plus NaCl aerosol combined with moderate exercise on pull nary function in asthmatic adolescents. Environ Res 1981;25:340-8.
- Rondinelli RCA, Koenig JQ, Marshall SG. The effects of 17 sulfur dioxide on pulmonary function in healthy nonsmok-ing male subjects aged 55 years and older. *Am Ind Hyg* Assoc J 1987;48:299-303.
- 18 Tulley RT. New enzymatic method for vitamin C in plasma on CX5. *Clin Chem* 1992;38:1070.
- on CX3. Clin Chem 1992;38:1070.
 19 Craft NE, Wise SA, Sores JH. Optimization of an isocratic high performance liquid chromatographic separation of carotenoids. *J Chromatography* 1992;589:171–6.
 20 Bierri JG, Tolliver TJ, Catignani GL. Simultaneous determination of a-tocopherol and retinol in plasma or red cells by high performance liquid chromatography. Am J Clin Nutr 1979;32:2143–9.
 21 Neticul User and Pland Institute Culding function.
- 21 National Heart Lung and Blood Institute. Guidelines for diagnosis and management of asthma. Bethesda, MD: NIHLB, 1997. (NIH Publication No 97-4041A.)
- 22 Simko MD, Cowell C, Gilbride JA. Nutrition assessment. Rockville, MD: Aspen, 1984;165–6.
- 23 Redlich CA, Grauer JN, van Bennekum AM, et al. Charac-terization of carotenoid, vitamin A and a-tocopherol levels in human lung tissue and pulmonary macrophages. Am J Respir Crit Care Med 1996;**154**:1436–43.
- 24 Trenga CA, Williams PV, Koenig JQ. Dietary antioxidants attenuate ozone-induced bronchial hyperresponsiveness (BHR) in asthmatic adults. Am J Respir Crit Care Med 1997;155:A732.
- Black PN, Sharpe S. Dietary fat and asthma: Is there a con-nection? Eur Respir J 1997;10:6–12.
- 26 Hiltermann TJN, Stolk J, van der Zee SC, et al. Asthma severity and susceptibility to air pollution. Eur Respir J 1998:11:686-93.