Skip to main content
Thorax logoLink to Thorax
. 2001 Mar;56(3):223–227. doi: 10.1136/thorax.56.3.223

Similarities and differences in lectin cytochemistry of laryngeal and tracheal epithelium and subepithelial seromucous glands in cases of sudden infant death and controls

F Paulsen 1, T Tschernig 1, A Debertin 1, W Kleemann 1, R Pabst 1, B Tillmann 1
PMCID: PMC1758781  PMID: 11182016

Abstract

BACKGROUND—It has been speculated that non-specific defence mechanisms of the epithelium and subepithelial seromucous glands play a role in the larynx and lungs in cases of sudden infant death.
METHODS—The larynx and trachea from five children who had died of sudden infant death (SID) syndrome and five control cases of comparable age were compared for the presence of lectin binding sites (12different lectins tested).
RESULTS—The secretory product of mucin producing cells contained carbohydrates including galactose and sialic acids. Binding sites for fucose and N-acetyl-galactosamine were only present in some of the specimens and distribution revealed no correlation between cases of SID and controls. Epithelial cells and serous cells of seromucous glands contained binding sites for sialic acid in cases of SID and controls. Moreover, binding sites for mannose were detected in these cells but were only present in SID cases. The difference between the SID and control groups as to the presence/expression of concanavalin A was highly significant.
CONCLUSIONS—It is suggested that mucus hypersecretion in SID occurs in response to bacterial toxins or viral infection and is not specific. The different binding sites for mannose in cases of SID and controls could indicate differences in the production of antimicrobial peptides. A disturbed expression pattern of antimicrobial peptides in children who later succumb to SID could be responsible for an imbalance of the local microflora with a higher density of microorganisms on the mucosa. Further studies are required to elucidate the pattern of expression of antimicrobial peptides in subsequent SID victims.



Full Text

The Full Text of this article is available as a PDF (190.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bals R., Goldman M. J., Wilson J. M. Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun. 1998 Mar;66(3):1225–1232. doi: 10.1128/iai.66.3.1225-1232.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bals R., Wang X., Wu Z., Freeman T., Bafna V., Zasloff M., Wilson J. M. Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest. 1998 Sep 1;102(5):874–880. doi: 10.1172/JCI2410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berry P. J. Pathological findings in SIDS. J Clin Pathol. 1992 Nov;45(11 Suppl):11–16. [PubMed] [Google Scholar]
  4. Blackwell C. C., MacKenzie D. A., James V. S., Elton R. A., Zorgani A. A., Weir D. M., Busuttil A. Toxigenic bacteria and sudden infant death syndrome (SIDS): nasopharyngeal flora during the first year of life. FEMS Immunol Med Microbiol. 1999 Aug 1;25(1-2):51–58. doi: 10.1111/j.1574-695X.1999.tb01326.x. [DOI] [PubMed] [Google Scholar]
  5. Blackwell C. C., Saadi A. T., Raza M. W., Weir D. M., Busuttil A. The potential role of bacterial toxins in sudden infant death syndrome (SIDS). Int J Legal Med. 1993;105(6):333–338. doi: 10.1007/BF01222118. [DOI] [PubMed] [Google Scholar]
  6. Brock C. A. An evaluation of mucus glycoproteins in the larynges of victims of sudden infant death syndrome. J Laryngol Otol. 1995 May;109(5):403–409. doi: 10.1017/s0022215100130294. [DOI] [PubMed] [Google Scholar]
  7. Fink B. R., Beckwith J. B. Laryngeal mucous gland excess in victims of sudden infant death. Am J Dis Child. 1980 Feb;134(2):144–146. doi: 10.1001/archpedi.1980.02130140018006. [DOI] [PubMed] [Google Scholar]
  8. Forstner J. F. Intestinal mucins in health and disease. Digestion. 1978;17(3):234–263. doi: 10.1159/000198115. [DOI] [PubMed] [Google Scholar]
  9. Harrison D. F. Histologic evaluation of the larynx in sudden infant death syndrome. Ann Otol Rhinol Laryngol. 1991 Mar;100(3):173–175. doi: 10.1177/000348949110000301. [DOI] [PubMed] [Google Scholar]
  10. Harrison D. F. Laryngeal morphology in sudden unexpected death in infants. J Laryngol Otol. 1991 Aug;105(8):646–650. doi: 10.1017/s0022215100116925. [DOI] [PubMed] [Google Scholar]
  11. Hiller A. S., Kracke A., Tschernig T., Kasper M., Kleemann W. J., Tröger H. D., Pabst R. Comparison of the immunohistology of mucosa-associated lymphoid tissue in the larynx and lungs in cases of sudden infant death and controls. Int J Legal Med. 1997;110(6):316–322. doi: 10.1007/s004140050095. [DOI] [PubMed] [Google Scholar]
  12. Hutch J. A. The role of urethral mucus in the bladder defense mechanism. J Urol. 1970 Feb;103(2):165–167. doi: 10.1016/s0022-5347(17)61914-1. [DOI] [PubMed] [Google Scholar]
  13. Kleemann W. J., Hiller A. S., Tröger H. D. Infections of the upper respiratory tract in cases of sudden infant death. Int J Legal Med. 1995;108(2):85–89. doi: 10.1007/BF01369910. [DOI] [PubMed] [Google Scholar]
  14. Körner C., Lehle L., von Figura K. Carbohydrate-deficient glycoprotein syndrome type 1: correction of the glycosylation defect by deprivation of glucose or supplementation of mannose. Glycoconj J. 1998 May;15(5):499–505. doi: 10.1023/a:1006939104442. [DOI] [PubMed] [Google Scholar]
  15. Miyazaki T., Fujiki T., Inoue Y., Takano K. Immunoelectron microscopic identification of lysozyme-expressing cells in human labial salivary glands. Arch Histol Cytol. 1998 Aug;61(3):199–214. doi: 10.1679/aohc.61.199. [DOI] [PubMed] [Google Scholar]
  16. Park K., Lim D. J. Development of secretory elements in murine tubotympanum: lysozyme and lactoferrin immunohistochemistry. Ann Otol Rhinol Laryngol. 1993 May;102(5):385–395. doi: 10.1177/000348949310200512. [DOI] [PubMed] [Google Scholar]
  17. Raza M. W., Essery S. D., Elton R. A., Weir D. M., Busuttil A., Blackwell C. Exposure to cigarette smoke, a major risk factor for sudden infant death syndrome: effects of cigarette smoke on inflammatory responses to viral infection and bacterial toxins. FEMS Immunol Med Microbiol. 1999 Aug 1;25(1-2):145–154. doi: 10.1111/j.1574-695X.1999.tb01338.x. [DOI] [PubMed] [Google Scholar]
  18. Reid G. M., Tervit H. Sudden infant death syndrome (SIDS): immunoglobulins and hypoxia. Med Hypotheses. 1995 Mar;44(3):202–206. doi: 10.1016/0306-9877(95)90136-1. [DOI] [PubMed] [Google Scholar]
  19. Reuter G., Struwe R., Feige J., Brede R., Bumm P., Schauer R. Analysis of carbohydrate composition and sialidase activity in oral secretions of patients with tumors in the upper aerodigestive tract. Eur Arch Otorhinolaryngol. 1992;249(1):5–11. doi: 10.1007/BF00175662. [DOI] [PubMed] [Google Scholar]
  20. Roche W. R. Immunopathology of SIDS. J Clin Pathol. 1992 Nov;45(11 Suppl):46–48. [PubMed] [Google Scholar]
  21. Schröder J. M. Epithelial antimicrobial peptides: innate local host response elements. Cell Mol Life Sci. 1999 Oct 1;56(1-2):32–46. doi: 10.1007/s000180050004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stoltenberg L., Vege A., Saugstad O. D., Rognum T. O. Changes in the concentration and distribution of immunoglobulin-producing cells in SIDS palatine tonsils. Pediatr Allergy Immunol. 1995 Feb;6(1):48–55. doi: 10.1111/j.1399-3038.1995.tb00258.x. [DOI] [PubMed] [Google Scholar]
  23. Tschernig T., Kleemann W. J., Pabst R. Bronchus-associated lymphoid tissue (BALT) in the lungs of children who had died from sudden infant death syndrome and other causes. Thorax. 1995 Jun;50(6):658–660. doi: 10.1136/thx.50.6.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Walker W. A. Host defense mechanisms in the gastrointestinal tract. Pediatrics. 1976 Jun;57(6):901–916. [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES