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ABSTRACT

Protein–RNA interactions play essential roles in a
number of regulatory mechanisms for gene expres-
sion such as RNA splicing, transport, translation
and post-transcriptional control. As the number of
available protein–RNA complex 3D structures has
increased, it is now possible to statistically examine
protein–RNA interactions based on 3D structures.
We performed computational analyses of 86 repre-
sentative protein–RNA complexes retrieved from
the Protein Data Bank. Interface residue propensity,
a measure of the relative importance of different
amino acid residues in the RNA interface, was
calculated for each amino acid residue type (residue
singlet interface propensity). In addition to the
residue singlet propensity, we introduce a new
residue-based propensity, which gives a measure
of residue pairing preferences in the RNA interface
of a protein (residue doublet interface propensity).
The residue doublet interface propensity contains
much more information than the sum of two singlet
propensities alone. The prediction of the RNA
interface using the two types of propensities plus
a position-specific multiple sequence profile can
achieve a specificity of about 80%. The prediction
method was then applied to the 3D structure of two
mRNA export factors, TAP (Mex67) and UAP56
(Sub2). The prediction enables us to point out
candidate RNA interfaces, part of which are consis-
tent with previous experimental studies and may
contribute to elucidation of atomic mechanisms of
mRNA export.

INTRODUCTION

The recent discovery of unconventional non-coding RNAs
(ncRNAs) (1,2) suggests that RNA molecules may mediate
unknown biological functions (2,3). Many RNAs form large
ribonucleoprotein complexes such as the ribosome, the
spliceosome and the signal recognition particle. It is expected
that ncRNAs too perform some biological functions also in
complex with proteins (4). Coding RNAs are modified and
transported by specific proteins as occurs during mRNA
splicing (5), transport (6) and translation (7). In addition, spe-
cific proteins carry out the repair of damaged RNA (8) and
the editing of transcribed RNA (9). In humans, it is estimated
that about 1500 proteins interact with RNA (10).

3D structures of protein–RNA complexes could provide
valuable insight into the function of these complexes, how-
ever few structures of RNA-binding protein in complex
with RNA were solved. In such a situation, computational
statistical analysis of protein–RNA interactions may play a
significant role possibly to predict complex structures.

A number of computational studies have examined inter-
actions between proteins and nucleotides, especially DNA
(11–17). These studies showed that electrostatic interactions
play a major role in mediating protein–DNA associations
(13,15). The protein surface mediating DNA-binding is gen-
erally characterized by a positive electrostatic potential (18).
Characteristics of protein–RNA associations are thought to be
similar to that of protein–DNA associations (19) and RNA-
binding area on protein surface is similarly predicted by
electrostatic potential calculation. However, accuracy of cal-
culating electrostatic potential of protein surfaces is low
due to the ambiguity in dielectric constant and ion strength
of the environment and also due to inaccuracies in the posi-
tions of pertinent atoms (20). In addition, possible structural
changes upon complex formation make predictions more dif-
ficult. Stawiski et al. (21) argued that the DNA/RNA-binding
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area of a protein could not be identified only by the calcula-
ted surface electrostatic potential. For example, eukaryotic
release factor (eRF1) is known to interact with ribosomal
RNA (rRNA) and mRNA, but the interface areas for
those RNAs are still not firmly identified (22–24), even
though the 3D structure of eRF1 has been known for some
time (25).

Compared with a number of computational studies of
protein–DNA associations, a limited number of studies have
examined protein–RNA associations, likely due to the paucity
of structural data of protein–RNA complexes. As the number
of protein–RNA complexes deposited in the Protein Data
Bank (PDB) (26) increases, some statistical analyses
on interactions between amino acid residues and RNA mole-
cules have been performed (27–30). These studies showed
the importance of Arg and Lys for interactions with RNA
and this is consistent with the importance of electrostatic
interactions. In addition, protein–RNA interfaces are poin-
ted out to involve more non-polar weak interactions than
protein–DNA interfaces (27,30). These studies suggested
possibility of applying the observed amino acid freque-
ncy of the protein–RNA interfaces to predict the RNA
interfaces of other protein, but few studies have attempted
this (23).

In order to better understand the nature of protein–RNA
complexes based on 3D structural data, we performed statis-
tical analyses of the amino acid residue at the RNA interfaces
of 86 RNA-binding proteins. We introduced a new propensity
measure for amino acid residues that focuses on a residue pair
in the interface. Protein–RNA interactions are reported to
involve a number of non-polar weak interactions and these
weak interactions often occur in a patch (27,30). Therefore,
a statistical analysis of residue pairs in the RNA inter-
face is expected to shed light on new characteristics. We
applied the determined residue propensities plus information
from position-specific multiple sequence profiles based on
homologous sequences to RNA interface prediction. The
combination of information from these different sources
enabled us to achieve reasonable accuracy in RNA interface
prediction.

MATERIALS AND METHODS

Protein–RNA complexes

Protein–RNA complexes solved by X-ray crystallography
were selected from the Protein Quaternary structure file
Server (PQS) (31). When an entry contained multiple protein
chains, each chain was treated separately. We limited this
study to handle complexes containing RNA molecules with
at least 3 bases and protein with at least 50 amino acid resi-
dues. Viral protein–RNA complexes were ignored, since
these complexes often included only a small part of RNA
and most of the RNA interfaces on proteins were not deter-
mined. The RNA-binding proteins were classified into groups
based on amino acid sequence similarity. A pair of proteins
was placed in the same group, when the sequence identity
was >50%. A representative complex with the best resolu-
tion from each group was selected. Multiple proteins were
chosen from the same group, when the interface residues
differed.

Definition and identification of RNA interface and
protein surface

An atom in the protein–RNA interface was defined, based on
the degree of difference in the accessible surface area of the
atom calculated, using the protein structure coordinates with
and without RNA. When the difference was non-vanishing,
the atom was considered an interface atom. The RNA inter-
face area was defined by clustering the interface atoms
based on distances between them using the single linkage
clustering method. The threshold was set to 7.0 s. In an
RNA interface area, at least one pair of atoms is located
within 7.0 s and no atoms from two different RNA interface
areas are within 7.0 s. An RNA interface residue was defined
as a residue with at least one RNA interface atom.

To calculate the residue propensity for the RNA interface,
the frequency of residues on protein surface was required as
a background distribution. Protein surface residues were
defined based on the solvent accessibility of each residue.
In this study, a surface residue was defined as a residue
with accessibility of no <8%.

Interface residue propensity

To measure the relative importance of different amino acid
types in RNA-binding interface, the residue interface propen-
sity was calculated.

Residue singlet interface propensity. The residue singlet
interface propensity (Pi) was calculated for each amino acid
type [AAi (i ¼ 1, . . . , 20)] as a fraction of the frequency that
AAi contributes to a protein–RNA interface compared to
the frequency that AAi contributes to a protein surface. The
frequencies of surface AAi (fi) and interface AAi (�ff i) were
calculated with the following equations:

f i ¼
niP20
i¼1 ni

‚ �ff i ¼
�nniP20
i¼1 �nni

‚ 1

where ni is the number of amino acid type i on the protein
surface and �nni is that in the RNA interface. The number ni

was obtained from the population of non-homologous pro-
teins in the PDB and �nni was determined from the data for
protein–RNA complexes described above. We added pseudo-
counts to the observed �nni to minimize possible statistical error
in �ff i caused by a paucity of data (32). These pseudocounts
should reflect a priori expectations of the occurrence of the
amino acid type i in the RNA interface. Since we did not
have a priori expectations of the amino acid type in the inter-
face, we set all pseudocounts to one. The residue singlet
interface propensity (Pi) is

Pi ¼
�ff i

f i

‚ 2

When Pi is more than one, amino acid type i occurs more fre-
quently in the interface than on the protein surface. This
method is similar to the one employed by Jones et al. (27).

Residue doublet interface propensity. The residue doublet
interface propensity gives a measure of the pairing preference
of amino acid types in protein–RNA interfaces. Amino acid
type i and the adjacent amino acid type j were considered
to be a doublet, if the distance between their Cb atoms
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(Ca for Gly) was no more than a certain threshold. In this
study, the threshold was set to 7.0 s. This threshold value
was chosen to account for neighboring residues. The residue
doublet interface propensity (Pij) was calculated as follows.
The frequency of doublet amino acid type ij (i, j ¼
1, . . . , 20) on the protein surface (fij) and that in the protein–
RNA interface (�ff ij) were calculated from the number of
residue doublets with the following equations:

f ij ¼
nijP20

i¼1

P20
j¼1 nij

‚ �ff ij ¼
�nnijP20

i¼1

P20
j¼1 �nnij

‚ 3

where nij is the number of doublet type ij on the protein sur-
face and �nnij is that in the RNA interface. We added pseudo-
counts to the observed �nnij to minimize possible statistical
error in �ff ij caused by a paucity of data. The frequency of
doublet type ij on the protein surface (fij) and that in the
RNA interface (�ff ij) can also be expressed as

f ij ¼ f i · f j · Cij‚ 4

�ff ij ¼ �ff i · �ff j · Dij‚ 5

where fi (or fj) and �ff i (or �ff j) are given in Equation 1 and Cij

and Dij are the surface and interface residue doublet coeffi-
cients, respectively. If amino acid types i and j had no cor-
relation on the protein surface, then Cij ¼ 1.0 and in the
RNA interface, Dij ¼ 1.0.

The residue doublet preference in the RNA interface was
determined from Equations 2, 4 and 5 to be

Qij ¼
�ff ij

f ij

¼ Pi · Pj ·
Dij

Cij
‚ 6

where Pi and Pj are the residue singlet interface propensities
in Equation 2. We defined

Pij ¼
Dij

Cij
‚ 7

as the residue doublet interface propensity.

Reliability estimation of the calculated propensities. The
limited dataset may reduce the statistical reliability of the
calculated propensities. A bootstrap procedure was used to
estimate the standard deviation of Pi and Pij. We constructed
bootstrap datasets based on 1000 resamplings. Corresponding
to each bootstrap dataset, we calculated the bootstrap replica-
tions of Pi and Pij and standard deviations were estimated
from the replications. To assess the reliability of Pij, we tested
whether the values derived from the replications followed
Gaussian distribution and whether the value obtained using
the entire data was within a certain deviation from the aver-
age value calculated from the replications (bootstrap per-
centile method). In this test, we set a 15% deviation from
the average value as a reliability standard.

Position-specific multiple sequence profile. Homologous
protein sequences for each group of RNA-binding proteins

were extracted using BLAST (33) from a set of amino acid
sequences gained from the translation of non-redundant
DNA sequences stored in GenBank (34). Amino acid
sequences with no <50% sequence identity to the query
sequence were selected. The multiple sequence profile was
then calculated from a multiple sequence alignment of
those sequences. The profile Vi(x) (i ¼ 1, . . . , 20) for the res-
idue at position x in the multiple sequence alignment is the
observed frequency of amino acid type i;

ViðxÞ ¼
miðxÞP20
j¼1 mjðxÞ

‚
X

ViðxÞ ¼ 1
� �

‚ 8

where mi(x) is the number of amino acid type i in residue
position x in the multiple sequence alignment.

The profile Uij(x, y) for a pair of residue positions x and y in
a multiple sequence alignment is the observed pair frequency
of amino acid type i in position x and amino acid type j in
position y;

Uijðx‚yÞ ¼ mijðx‚yÞP20
k‚ l¼1 mklðx‚yÞ

‚
X20

i‚ j¼1

Uijðx‚yÞ ¼ 1

 !
‚ 9

where mij(x, y) is the number of amino acid type i in position
x and amino acid type j in position y simultaneously in the
multiple sequence alignment. In order to enable us to use
the information from multiple sequence profile, we discarded
a query sequence from our dataset, when no homologous
sequence was found.

Prediction score

The prediction score, the indicator of a particular residue to
bind RNA, was determined by assigning propensities and/or
profiles to a residue located at the protein surface. We
assumed that RNA-binding residues are located on the sur-
face and proteins do not undergo large structural changes
upon RNA-binding. We used several methods to determine
the prediction scores.

Singlet score (S). A singlet score was assigned to each surface
residue. The value Sx(S) for a residue at position x was deter-
mined by amino acid type i of the residue at that position in a
protein under consideration. Hence,

SxðSÞ ¼ log2 PiðxÞ‚ 10

where Pi(x) is simply given by Pi from Equation 2.

Multiple sequence profile score (P). Functional residues are
generally well conserved (35). A score based on a position-
specific multiple sequence profile was defined by information
entropy Sx(P);

SxðPÞ ¼ �
X20

i¼1

ViðxÞ log2 ViðxÞ‚ 11

where Vi(x) is given by Equation 8.

Singlet plus profile score (SP). The singlet plus profile score
weights a singlet score by the probability that a specific
amino acid type i is conserved within a specific protein
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family with an overall identity of >50%;

SxðSPÞ ¼
X20

i¼1

ViðxÞ log2 Pi‚ 12

where Vi(x) and Pi are given by Equations 8 and 2,
respectively.

Averaged singlet score (AS). Binding of RNA to protein is a
cooperative phenomenon involving interactions between vari-
ous parts of protein and RNA. Therefore, it is likely that if
one amino acid residue is involved in RNA-binding, its
near neighbor residues are also involved. If this is the case,
the propensity averaged over near neighbor residues should
be more pertinent for the prediction of RNA-binding. We
therefore examined scores averaged over residues located
within a certain distance. We set a distance of 7.0 s between
Cb (Ca for Gly) atoms. The score of residue x, when a num-
ber of residues within the distance is Nx (residue x included),
is given as;

SxðASÞ ¼ 1

Nx

XNx

y27:0A

log2 PjðyÞ‚ 13

where y is a surface residue located within 7.0 s from residue
x and Pj(y) is simply given by Equation 2. The value of 7.0 s

was the most effective distance for prediction determined
after a systematic trial of various values.

Averaged singlet plus profile score (ASP). The singlet score is
weighted by the profile and then averaged over near neighbor
residues;

SxðASPÞ ¼ 1

Nx

XNx

y27:0A

X20

j¼1

VjðyÞ log2 Pj‚ 14

Singlet and doublet score (ASD). The doublet propensity is
defined as a correlation of amino acid types i and j in the
interface as in Equations 6 and 7. Therefore, singlet and
doublet score for a surface residue x of amino acid type i is
defined as;

SxðASDÞ ¼ SxðASÞ þ 1

Nx

XNx�1

y27:0A‚ y 6¼x

log2 PiðxÞjðyÞ‚ 15

where Pi(x)j(y) is simply given by Pij of Equation 7.

Singlet and doublet plus profile score (ASPD). The singlet
and doublet propensities can be weighted by the probability
that a specific amino acid type is conserved within a specific
protein family with an overall identity of >50% (Equation 9);

SxðASPDÞ ¼ SxðASPÞ þ 1

Nx

XNx�1

y27:0A‚ y 6¼xX20

i¼1

X20

j¼1

Uijðx‚yÞlog2PiðxÞjðyÞ 16

Averaged singlet and doublet score (A2SD). The singlet and
doublet scores can be averaged among the residues located

within a certain distance. The score of residue x, when the
number of residues within the distance is Nx (residue x
included), is given as;

SxðA2SDÞ ¼ 1

Nx

XNx

y27:0A

SyðASDÞ‚ 17

where y is a surface residue located within 7.0 s of residue x
and Sy(ASD) is given by Equation 15. As the abbreviation of
this score suggests, Equation 17 performs the averaging step
twice. The justification for this procedure will be discussed
later.

Averaged singlet and doublet plus profile score (A2SPD). The
singlet and double plus profile score can be averaged among
the residues within a certain distance.

SxðA2SPDÞ ¼ 1

Nx

XNx

y27:0A

SyðASPDÞ‚ 18

where y is a surface residue located within 7.0 s of residue
x and Sy(ASPD) is given by Equation 16.

Prediction evaluation

The quality of a prediction was evaluated using a jack-knife
test. A set of propensities was calculated based on protein–
RNA complex structures after excluding the protein to be pre-
dicted (target protein) and we examined different methods of
prediction of RNA-binding residues of the target protein with
the scores based on the equations in the previous section. An
amino acid residue was predicted to be a protein–RNA inter-
face residue, when its prediction score was higher than a cer-
tain threshold. The quality of the prediction was evaluated by
comparing the prediction result and the real protein–RNA
interfaces. We performed this procedure on each protein in
the dataset. To assess the quality of various scores, the predic-
tion was carried out for each method for a series of threshold
values and the sensitivity and specificity (36) were calculated.
Sensitivity was defined as the fraction of correctly predicted
true RNA interface residues (the ratio of true positive to
real interface residues). Specificity was defined as the fraction
that a positive prediction was correct (the ratio of true posi-
tives to predicted interface residues). A prediction method
was most useful when both the sensitivity and specificity
were high.

RESULTS AND DISCUSSION

Dataset of protein–RNA complexes

We selected 86 RNA-binding proteins from PQS (Supple-
mentary Table 1). The dataset contained two different
threonyl-tRNA synthetase complexes, one with PDB ID
1KOG binding to mRNA and the other with PDB ID 1QF6
binding to threonyl-tRNA. The two RNA molecules bound
different surfaces of the synthetase. We included three
54 kDa proteins of the signal recognition particle, each
from eubacteria, archaea and eukaryote; two 19 kDa proteins
of the signal recognition particle, each from archaea and
eukaryote; three aspartyl-tRNA synthetases, each from
eubacteria, archaea and eukaryote; and two tRNA-guanine
transglycosylases, each from archaea and eubacteria. Proteins
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in each group were homologous, but sequence identity was
<50% and the residues associated with RNA molecules in
each structure were not conserved. In the 30S ribosomal pro-
teins, we omitted the THX subunit (chain V in 1J5E) and in
the 50S ribosomal proteins, we omitted the L10 (chain G in
1JJ2) and L39E (chain 1) subunits. The THX and L10 sub-
units were shorter than our selection criteria and L39E had
no similar sequences in the sequence database, thus preclud-
ing us from building a multiple sequence profile.

The dataset contained different types of RNA including
four complexes of snRNA molecules, 7 of signal recognition
particle RNA (SRP RNA), 8 of mRNA, 20 tRNA, 45 ribo-
somal RNA (rRNA) and 2 other RNA–protein complexes.

Protein–RNA interfaces

The single linkage clustering method was used to identify
clusters of RNA interface atoms on the protein surfaces
with a threshold of 7.0 s. Within 86 protein surfaces exam-
ined, 141 RNA interface patches were observed. Some of
the identified patches were small. When a patch with area
<100.0 s

2 was omitted, �1.6 patches per tRNA-binding pro-
teins and 1.1 for other RNA-binding proteins for a total of
111 patches were identified. RNA interfaces in tRNA-binding
proteins were often separated into two, one for the acceptor
stem and the other for the anti-codon loop.

Of the analyzed patches, the area of the RNA interface
varied from (by definition) 100 to 7000 s

2 approximately
and consisted of 3–170 amino acid residues. On average,
one amino acid residue occupied about 40 s

2 of the interface
and these values are consistent with those observed by
Nadassy et al. (13) calculated using the protein–nucleic
acid complexes available at that time. The distribution of
size of the area had reasonable correlation with the type
of bound RNA. In our study, we noted that an interface
with a size <1500 s

2 bound all types of RNA, while those
>1500 s

2 bound either rRNA or tRNA and those >2900 s
2

bound only rRNA.

Residue singlet interface propensity

The residue singlet interface propensities are shown in
Figure 1 in a log2 scale. The top seven high propensities
were observed for Arg, Lys, Tyr, Met, His, Gly and Phe in
descending order. The similar studies in the past on residue
singlet interface propensity showed similar results with slight
differences in the order of amino acid residues from high
to low values (27–30). Our data showed that the positively
charged residues (Arg, Lys) were preferred in the interface
of RNA-binding proteins. The preference of Arg was pro-
nounced. These preferences were observed not only for
protein–RNA complexes, but also for protein–DNA com-
plexes (15,16). For DNA interfaces, it was hypothesized
that Arg occurred more frequently than Lys due to the length
of its side-chain, its capacity to interact in different conforma-
tions and/or its ability to produce good hydrogen-bonding
geometries (15).

High propensity was observed for Tyr in RNA interfaces.
Frequent stacking interactions between aromatic side chains
and nucleic acid bases in a number of protein–RNA com-
plexes may explain this observation (19,30).

Residue doublet interface propensity

The surface residue doublet coefficients Cij, the interface
residue doublet coefficients Dij and the residue doublet inter-
face propensities Pij in Equation 7 are shown in Figure 2. All
values are shown in a log2 scale and are color-coded. As
seen in Figure 2A, the logarithm of the surface residue doub-
let coefficients Cij of hydrophobic residues were weakly
positive. The logarithm of the coefficients of pairs, each
with positively and negatively charged residues, was also
positive and those of positively charged residue pairs and
those of negatively charged residue pairs were negative.
These data suggest that hydrophobic residues are paired and
charged residues form salt bridges on the protein surface. The
interface residue doublet coefficients Dij were, as a whole,
much more variable than the surface doublet coefficients
(Figure 2B). The calculated coefficients for hydrophobic res-
idue pairs were much greater than those seen for the surface
residues, but the coefficients of positively and negatively
charged residue pairs were negative and this was the opposite
of that observed for the surface residue doublet coefficients,
suggesting that salt bridge formation was not favored at
RNA interfaces. Negatively charged residues were less com-
mon in the RNA interfaces and positively charged residues
can mediate electrostatic interactions with RNA.

The doublet interface propensities (Figure 2C) are more
reflective of Dij, because Pij was given by Dij/Cij and Cij

was far less variable than Dij. In Figure 2C, a residue doublet
propensity in red reflects Pij > 1.0, meaning that a particular
pair was more favored in the RNA interface than on the sur-
face in general. A residue doublet propensity in blue indicates
that a particular pair was disfavored and a propensity in white
indicates that the frequency of the occurrence of the two resi-
dues in a pair is independent. Boxes with a cross mark indi-
cate that the data were not statistically sufficient to warrant
significance of the result. Out of the possible 210 pairs of res-
idue types, 173 pairs had a doublet propensity that passed the
tests of significance described in Materials and Methods.

The distribution of doublet propensities displayed in a log2

scale (Figure 2C) has several interesting characteristics. The
log doublet propensities of positively charged residue pairs

Figure 1. Histogram of the calculated residue singlet interface propensity in a
logarithm (log2) scale. A positive propensity indicates that a residue occurs
more frequently in the interface than on the protein surface. An error bar for
each propensity corresponds to standard deviations estimated from a
bootstrap procedure with 1000 resamplings. The number given below the
horizontal axis is the count of each amino acid type in the protein–RNA
interfaces.
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were close to zero. Interactions with the RNA backbone may
stabilize the proximity of positively charged residues, but
these residues were not preferentially found as pairs in the
RNA interface. The log doublet propensities of negatively
charged residues were negative. The log doublet propensities
of aromatic residue pairs were generally positive. Aromatic
residues facilitate RNA-binding by stacking an aromatic
group with RNA bases (19,30) and this stacking appears to
be favored by a pair of aromatic residues. The pair of Tyr
and Lys had a significant negative log doublet propensity,
despite the high positive singlet propensities of these residues
(Figure 1). We are not aware of a physico-chemical reason
for disfavoring this pair. Doublet propensities of aliphatic
residues were generally high and the top doublet propensity
was observed for the Ile–Ile pair. The log singlet propensity
of Ile was negative, but when Ile existed in a pair, the log
doublet propensity became positive. The physico-chemical
reasons causing the pair remain unclear. We have found a
case that two Ile side-chains formed a planar structure pos-
sibly to provide a bed to accept an uracyl base of the RNA
molecule in the spliceosomal protein. By comparing the
results in Figures 1 and 2, nearly 13% (27 out of 210 cases)
of the doublet propensities had signs that were the opposite of
a sign given by a sum of two singlet propensities. These
results emphasize the importance of the residue doublet
propensity.

Ability to predict protein–RNA interfaces

Propensities and multiple sequence profiles (Equations 8 and
9) were used for predicting the RNA interfaces of the proteins
listed in Supplementary Table 1. Interfaces for RNA-binding
were subjected to jack-knife prediction and the quality of the
prediction was evaluated in terms of sensitivity and specifi-
city as detailed in the Materials and Methods. We tested the
nine different prediction methods (Equations 10–18) and the
ability of these methods to predict the correct RNA interfaces
is summarized in Figure 3.

Amino acid residues that are important for the function of a
protein tend to be more conserved during the course of
molecular evolution and the degree of conservation can be
a good indicator of function (35). We quantified the degree
of conservation as indicated in Equation 11 and examined
whether conservation was a good predictor of RNA interfaces
[the black line (P) in Figure 3]. Residues involved in forming
RNA interfaces were expected to be highly conserved, but
not all highly conserved surface residues were part of RNA
interfaces. This may explain the rather low specificity of P.
The prediction using the singlet propensity showed a simi-
larly low specificity (Equation 10, S in Figure 3) and when
this was weighted with the multiple sequence profile (Equa-
tion 12), no clear improvement in the quality of prediction
was observed (SP in Figure 3). By averaging the singlet pro-
pensities over near neighbor residues (Equation 13), the qual-
ity of prediction improved (AS in Figure 3). As discussed in
the Materials and Methods, RNA-binding is a cooperative
phenomenon involving a number of near neighbor residues.
This cooperation can be incorporated into the prediction by
using the averaged singlet propensity and the improved pre-
dictive ability of this value suggests that the protein–RNA
interface area has such a shape that can be covered by a set

Figure 2. A graphical matrix of the surface residue doublet coefficients Cij

(A), the interface residue doublet coefficients Dij (B) and the residue doublet
interface propensities Pij (C) color-coded in a logarithm (log2) scale. Cys–Cys
pair in A and Cys–Cys and Cys–Trp pairs in B are off the scale. In (C), a
value with a cross mark indicates that the data are not statistically sufficient to
warrant the result.
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of mutually overlapping spheres with 7.0 s radii. When the
singlet score was first weighted by the multiple sequence
profile and then averaged over the near neighbor residues
(Equation 14), the quality of prediction was further improved
(ASP in Figure 3). The multiple sequence profile provides the
empirical probability of each amino acid type being found
at the position under consideration. Therefore, the score
weighted by the multiple sequence profile reflects the score
for a homologous set of proteins and suppresses possible
noise due to random amino acid occurrence. Inclusion of
the doublet propensity score further improved our predictive
ability (Equation 15) and the predictive ability was further
enhanced by the multiple sequence profile weighting (Equa-
tion 16) (ASD and ASPD, respectively in Figure 3).

Residue doublet propensities gave information of residue
pair preference shown in Figure 2. The differences between
AS and ASD and between ASP and ASPD represent the con-
tribution of the doublet propensities. Incorporation of the
doublet propensities into the calculations markedly increased
the specificity of our predictions and this was especially true
when using a high score threshold and the resulting sensitiv-
ity was low. Averaging scores over near neighbor residues
effectively increased our predictive ability (compare S to
AS) and therefore, we performed an averaging procedure
for the doublet information contained in ASD and ASPD.
The singlet information in those scores was already averaged.
Therefore, the averaging doublet information in ASD and
ASPD resulted in averaging the singlet information twice
(therefore, the names of scores were A2SD and A2SPD).

Thus, residues as far as 14.0 s away might influence the
score. This procedure further enhanced the prediction speci-
ficity and sensitivity as seen in Figure 3 (A2SD and A2SPD).

The quality of all nine prediction methods converged to a
point where sensitivity and specificity were �0.9 and 0.3,
respectively. At this point, the threshold for determining the
predicted interface was too low and most surface residues
were predicted to constitute RNA interfaces in all prediction
methods. When all of the surface residues were predicted as
RNA interfaces, most of the interface residues were correctly
predicted (sensitivity 	 1.0) and many non-interface residues
(�70% of the surface residues) were also positively predicted
(specificity 	 0.3).

The prediction with the averaged singlet and doublet
propensities plus the multiple sequence profile (A2SPD)
achieved the best quality. Its specificity reached as high as
0.8 at the most strict threshold. We used the nine different
methods (Equations 10–18) to predict the RNA-binding inter-
face of the known RNA-binding interface for sex-lethal pro-
tein (PDB ID: 1B7F) in Figure 4. In this case, the sensitivity
of the predictions was fixed close to 0.5. As shown in the
figure, the specificities improved in the order of S, P, SP,
AS, ASP, ASD, A

2
SD, ASPD and A

2
SPD. The improvement

was manifested by the reduction in false positive residues, i.e.
over-prediction (green residues in Figure 4). The difference
between AS and ASD and between ASD and ASPD indicated
the effects of the doublet propensity and the multiple
sequence profile on the predictions, respectively.

Summary of our prediction method

A number of studies have presented structure-based analyses
of protein–RNA interactions (27,28,30,37). Those studies
showed singlet propensities similar to the present work. In
our report, we were able to predict the RNA interface rela-
tively well after incorporating the doublet propensity and
the multiple sequence profile into our calculations. The speci-
ficity of prediction by A2SPD was as high as 80%. With this
specificity, the prediction can determine residues that are
almost certain to interact with RNA and this could advance
wet-lab experiments designed to identify residues constituting
the RNA interface. By mutating each of the predicted resi-
dues, there is a reasonable probability of experimentally iden-
tifying RNA interface residues with minimal cost compared
with a random mutagenesis approach.

In our future work, we will try to improve the prediction
of RNA interface starting with those residues predicted as
RNA interface with high confidence. Our data suggests that
the protein–RNA interface area can be described as a set of
overlapping spheres and residues near those predicted to
comprise the RNA interface are likely involved in protein–
RNA interactions. Additional methods capable of delineating
interface and non-interface areas around the ‘predicted core
interface residue’ will allow predictions to be made with
higher specificity and sensitivity. A prediction improvement
of this nature was also suggested by Kloczkowski et al.
(38) for improving their GOR secondary structure prediction.
They suggested that by incorporating the information from a
small number of residues predicted with high confidence into
the next level of prediction, the overall quality of prediction
should improve.

Figure 3. Quality of interface predictions evaluated on 86 jack-knifed
datasets. The dotted lines show the evaluation of the prediction with the
propensities and the solid lines show that of the prediction with the
propensities plus the profile. The prediction using the profile only (P) is
shown in black solid line. The predictions using the singlet propensities
(S and SP) are shown in green. The predictions using the averaged singlet
propensities (AS and ASP) are shown in cyan. The predictions using the
doublet propensities (ASD and ASPD) are shown in red. The predictions
using averaged singlet and doublet propensities (A2

SD and A
2
SPD) are

shown in orange.
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Figure 4. RNA interface predictions for a known complex structure, sex-lethal protein (PDB ID: 1B7F), using nine different methods. Two figures are shown for
each method, in which the structure is rotated 180
 around the y (vertical) axis. Residues in yellow are true positives (correctly predicted as interface residues)
and those in green are false positives (predicted as interface residues, but are not interfaces). Residues in white are true negatives (correctly predicted as non-
interface residues) and those in cyan are false negatives (predicted as non-interface residues, but are interfaces). Residues in dark blue are buried residues, which
were not considered in the prediction. The actual values of sensitivity (the ratio of true positive to real interface) and specificity (the ratio of true positive to
predicted interface) for each case are given to the left of each figure.
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Our work was mainly based on statistical analyses of res-
idue occurrence on the RNA interface, thus, the validity of
our results strongly depends on the size of the dataset. The
dataset was still small for calculating the residue doublet pro-
pensities for all pairs of residues shown in Figure 2 and some
of the calculated propensities could not pass the test of sig-
nificance. Our prediction method can be further improved
as the number of known protein–RNA complex structures
increases.

Prediction of the mRNA interface in an mRNA
export system

We applied our prediction method to a nuclear mRNA export
system, one of the most important protein–RNA complexes.
The nuclear mRNA export system is composed of many

protein subunits including TAP (Mex67) (39) and UAP56
(Sub2) (40,41). TAP shuttles between the nucleus and cyto-
plasm, associates with poly(A)+RNA and interacts directly
with nuclear pore complexes (42–44). TAP directly binds
mRNAs and promotes their export (42). The crystal structure
of an RNA-binding domain (RBD) from human TAP was
determined and random mutagenesis experiments and RNA-
binding assays were carried out to identify residues that inter-
act with mRNA (39). UAP56 plays important roles in the
splicing reaction as well as in the nuclear export of mature
mRNA (45). We applied our best prediction method
(A2SPD) to the 3D structures of the RBD of TAP (PDB
ID: 1KOH) and UAP56 (PDB ID: 1XTJ).

The result of prediction on TAP by A2SPD was shown in
Figure 5A and B. Each residue was colored from red to blue,
from high to low score. We visually located four high score

Figure 5. Application of our best prediction method to 3D structures of mRNA export proteins. RNA interface prediction for the RBD domain of human TAP
(A and B) and for human UAP56 (C and D). Two figures are shown for each molecule, in which the structure is rotated 180
 around the x (horizontal) axis.
Surface residues are colored based on the prediction scores (Equation 18). Residues in yellow to red have a high score and residues in deep green to blue have a
low score. In (A and B), an amino acid residue with its number in red was predicted as a protein–RNA interface residue consistent with mutation experiments.
A residue with its number in blue was not predicted as a protein–RNA interface residue consistent with mutation experiments. A residue with its number in
orange was predicted as a protein–RNA interface residue, but no mutation experiments have been done to examine this. A residue with its number in black was
predicted as a non-interface residue, but mutational experiments have shown a role for these residues in RNA-binding. A residue with its number in green was
predicted as a protein–RNA interface residue, but mutation experiments did not suggest this residue lies at the interface.
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patches in Figure 5A, centered at R105, R128, K218 and
R249. A patch centered at R105 is an artifact because R105
was an N-terminal residue only in the crystallized 3D struc-
ture. In the wild type protein, there are an additional 104
N-terminal amino acid residues. Comparison between our
prediction and previous mutagenesis experiments (39,46)
showed that: (i) the residues with high propensities [R128,
K129 and R249 (red letters)] affected RNA-binding; (ii) the
residues with negative propensities [E164, R307, D329 and
K347 (blue letters)] did not affect RNA-binding; (iii) residues
K132, R233, R276, Y278 and K304 (black letters) were
experimentally shown to be important for RNA-binding, but
do not have high scores (false negative); and (iv) residue
R186 (green letter) has a positive score, but does not affect
RNA-binding (false positive). Our positive prediction for
residues Y126, Y154, R158, K218 and R250 (orange letters)
requires experimental verification. Of those residues, Y126,
Y154 and R158 are located in a patch centered at the experi-
mentally verified interface residue R128. R250 is located in
a patch centered at R249 that was also experimentally veri-
fied as an RNA interface residue. Therefore, the residues in
orange letters except for K218 are expected to be in the inter-
face. Our prediction incorrectly identified the experimentally
verified interface residues K132, R233, R276, Y278 and
K304 (black letters). Except for residue K304, the remaining
residues are located near interface residues predicted with
high confidence and we expect that those residues can be
predicted as interface residues in our future improvement.

Our prediction results for human UAP56 are shown in
Figure 5C and D. UAP56 is an essential eukaryotic pre-
mRNA splicing protein that also functions in mRNA export
(47–49) and the specific mechanism of UAP56 in splicing
and mRNA export remains unknown. The 3D structure of
UAP56 is similar to proteins of the superfamily II (SF2)
ATPase/helicase (40,41). UAP56 was shown to have RNA-
dependent ATPase activity in vitro (41). The residues with
high score, namely R48, G151, R175, R181, K295, P313,
R338, R339, R380 and F381 correspond to conventional
RNA interfaces found in the SF2 family of RNA helicases
(conserved helicase motifs). Helicase function is required
for RNA splicing (50) and these regions of UAP56 are likely
involved in the RNA splicing process. The high score resi-
dues R240 and K241 do not correspond to the RNA interfaces
known in SF2 family of RNA helicases. We speculate that
residues near R240 and K241 are important for mRNA
export, because these residues are apparently not required
for helicase activity and mRNA export does not seem to
require helicase activity of UAP56. Shi et al. independently
suggested that the surface including these two residues
could be an interface for RNA, based on their observation
that the surface structure of this area changes upon ADP
binding (41).

CONCLUDING REMARKS

In this work, we used existing protein–RNA 3D structures to
analyzed residue propensities in protein–RNA interface with
a new measure and applied the propensities to RNA interface
prediction. The prediction had high specificity and can be
used to predict protein–RNA interface residues from protein

structures without biochemical or functional data. This
method was then applied to two proteins involved in the
nuclear mRNA export system. All of the prediction methods
are available at http://yayoi.kansai.jaea.go.jp/qbg/kyg/.

SUPPLEMENTARY DATA

Supplementary data are available at NAR Online.

ACKNOWLEDGEMENTS

This work was supported by ITBL project and was carried out
on ITBL computer at the Japan Atomic Energy Agency.
Funding to pay the Open Access publication charges for this
article was provided by CREST, JST.

Conflict of interest statement. None declared.

REFERENCES

1. Storz,G. (2002) An expanding universe of noncoding RNAs. Science,
296, 1260–1263.

2. Mattick,J.S. (2005) The functional genomics of noncoding RNA.
Science, 309, 1527–1528.

3. Ravasi,T., Suzuki,H., Pang,K.C., Katayama,S., Furuno,M.,
Okunishi,R., Fukuda,S., Ru,K., Frith,M.C., Gongora,M.M. et al. (2006)
Experimental validation of the regulated expression of large numbers
of non-coding RNAs from the mouse genome. Genome Res., 16,
11–19.

4. Ambros,V. (2001) microRNAs: tiny regulators with great potential.
Cell, 107, 823–826.

5. Jurica,M.S. and Moore,M.J. (2003) Pre-mRNA splicing: awash in a sea
of proteins. Mol. Cell, 12, 5–14.

6. Moore,M.J. (2005) From birth to death: the complex lives of eukaryotic
mRNAs. Science, 309, 1514–1518.

7. Noller,H.F. (2005) RNA structure: reading the ribosome. Science, 309,
1508–1514.

8. Aas,P.A., Otterlei,M., Falnes,P.O., Vagbo,C.B., Skorpen,F., Akbari,M.,
Sundheim,O., Bjoras,M., Slupphaug,G., Seeberg,E. et al. (2003)
Human and bacterial oxidative demethylases repair alkylation damage
in both RNA and DNA. Nature, 421, 859–863.

9. Bock,R. (2000) Sense from nonsense: how the genetic information of
chloroplasts is altered by RNA editing. Biochimie, 82, 549–557.

10. Keene,J.D. (2001) Ribonucleoprotein infrastructure regulating the flow
of genetic information between the genome and the proteome.
Proc. Natl Acad. Sci. USA, 98, 7018–7024.

11. Mandel-Gutfreund,Y., Schueler,O. and Margalit,H. (1995)
Comprehensive analysis of hydrogen bonds in regulatory protein
DNA-complexes: in search of common principles. J. Mol. Biol., 253,
370–382.

12. Jones,S., van Heyningen,P., Berman,H.M. and Thornton,J.M. (1999)
Protein–DNA interactions: a structural analysis. J. Mol. Biol., 287,
877–896.

13. Nadassy,K., Wodak,S.J. and Janin,J. (1999) Structural features of
protein-nucleic acid recognition sites. Biochemistry, 38, 1999–2017.

14. Pabo,C.O. and Nekludova,L. (2000) Geometric analysis and
comparison of protein–DNA interfaces: why is there no simple code for
recognition? J. Mol. Biol., 301, 597–624.

15. Luscombe,N.M., Laskowski,R.A. and Thornton,J.M. (2001) Amino
acid-base interactions: a three-dimensional analysis of protein–DNA
interactions at an atomic level. Nucleic Acids Res., 29, 2860–2874.

16. Jones,S., Shanahan,H.P., Berman,H.M. and Thornton,J.M. (2003)
Using electrostatic potentials to predict DNA-binding sites on
DNA-binding proteins. Nucleic Acids Res., 31, 7189–7198.

17. Tsuchiya,Y., Kinoshita,K. and Nakamura,H. (2004) Structure-based
prediction of DNA-binding sites on proteins using the empirical
preference of electrostatic potential and the shape of molecular
surfaces. Proteins, 55, 885–894.

Nucleic Acids Research, 2006, Vol. 34, No. 22 6459



18. Honig,B. and Nicholls,A. (1995) Classical electrostatics in biology and
chemistry. Science, 268, 1144–1149.

19. Draper,D.E. (1999) Themes in RNA–protein recognition. J. Mol. Biol.,
293, 255–270.

20. Sheinerman,F.B., Norel,R. and Honig,B. (2000) Electrostatic aspects of
protein–protein interactions. Curr. Opin. Struct. Biol., 10, 153–159.

21. Stawiski,E.W., Gregoret,L.M. and Mandel-Gutfreund,Y. (2003)
Annotating nucleic acid-binding function based on protein structure.
J. Mol. Biol., 326, 1065–1079.

22. Liang,H., Wong,J.Y., Bao,Q., Cavalcanti,A.R. and Landweber,L.F.
(2005) Decoding the decoding region: analysis of eukaryotic release
factor (eRF1) stop codon-binding residues. J. Mol. Evol., 60, 337–344.

23. Kim,O.T.P., Yura,K., Go,N. and Harumoto,T. (2005) Newly sequenced
eRF1s from ciliates: the diversity of stop codon usage and the
molecular surfaces that are important for stop codon interactions.
Gene, 346, 277–286.

24. Kolosov,P., Frolova,L., Seit-Nebi,A., Dubovaya,V., Kononenko,A.,
Oparina,N., Justesen,J., Efimov,A. and Kisselev,L. (2005) Invariant
amino acids essential for decoding function of polypeptide release
factor eRF1. Nucleic Acids Res., 33, 6418–6425.

25. Song,H., Mugnier,P., Das,A.K., Webb,H.M., Evans,D.R., Tuite,M.F.,
Hemmings,B.A. and Barford,D. (2000) The crystal structure of human
eukaryotic release factor eRF1—mechanism of stop codon recognition
and peptidyl-tRNA hydrolysis. Cell, 100, 311–321.

26. Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N.,
Weissig,H., Shindyalov,I.N. and Bourne,P.E. (2000) The Protein Data
Bank. Nucleic Acids Res., 28, 235–242.

27. Jones,S., Daley,D.T., Luscombe,N.M., Berman,H.M. and
Thornton,J.M. (2001) Protein–RNA interactions: a structural analysis.
Nucleic Acids Res., 29, 943–954.

28. Treger,M. and Westhof,E. (2001) Statistical analysis of atomic contacts
at RNA–protein interfaces. J. Mol. Recognit., 14, 199–214.

29. Kim,H., Jeong,E., Lee,S.W. and Han,K. (2003) Computational analysis
of hydrogen bonds in protein–RNA complexes for interaction patterns.
FEBS Lett., 552, 231–239.

30. Allers,J. and Shamoo,Y. (2001) Structure-based analysis of
protein–RNA interactions using the program ENTANGLE. J. Mol.
Biol., 311, 75–86.

31. Henrick,K. and Thornton,J.M. (1998) PQS: a protein quaternary
structure file server. Trends Biochem. Sci., 23, 358–361.

32. Lawrence,C.E., Altschul,S.F., Boguski,M.S., Liu,J.S., Neuwald,A.F.
and Wootton,J.C. (1993) Detecting subtle sequence signals: a Gibbs
sampling strategy for multiple alignment. Science, 262, 208–214.

33. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs. Nucleic Acids
Res., 25, 3389–3402.

34. Benson,D.A., Karsch-Mizrachi,I., Lipman,D.J., Ostell,J. and
Wheeler,D.L. (2006) GenBank. Nucleic Acids Res., 34, D16–D20.

35. Lichtarge,O. and Sowa,M.E. (2002) Evolutionary predictions of
binding surfaces and interactions. Curr. Opin. Struct. Biol., 12, 21–27.

36. Baldi,P., Brunak,S., Chauvin,Y., Andersen,C.A. and Nielsen,H. (2000)
Assessing the accuracy of prediction algorithms for classification: an
overview. Bioinformatics, 16, 412–424.

37. Jeong,E., Kim,H., Lee,S.W. and Han,K. (2003) Discovering the
interaction propensities of amino acids and nucleotides from
protein–RNA complexes. Mol. Cells, 16, 161–167.

38. Kloczkowski,A., Ting,K.L., Jernigan,R.L. and Garnier,J. (2002)
Combining the GOR V algorithm with evolutionary information for
protein secondary structure prediction from amino acid sequence.
Proteins, 49, 154–166.

39. Ho,D.N., Coburn,G.A., Kang,Y., Cullen,B.R. and Georgiadis,M.M.
(2002) The crystal structure and mutational analysis of a novel
RNA-binding domain found in the human Tap nuclear mRNA export
factor. Proc. Natl Acad. Sci. USA, 99, 1888–1893.

40. Zhao,R., Shen,J., Green,M.R., MacMorris,M. and Blumenthal,T.
(2004) Crystal structure of UAP56, a DExD/H-box protein involved in
pre-mRNA splicing and mRNA export. Structure, 12, 1373–1381.

41. Shi,H., Cordin,O., Minder,C.M., Linder,P. and Xu,R.M. (2004) Crystal
structure of the human ATP-dependent splicing and export factor
UAP56. Proc. Natl Acad. Sci. USA, 101, 17628–17633.

42. Bear,J., Tan,W., Zolotukhin,A.S., Tabernero,C., Hudson,E.A. and
Felber,B.K. (1999) Identification of novel import and export signals
of human TAP, the protein that binds to the constitutive transport
element of the type D retrovirus mRNAs. Mol. Cell. Biol., 19,
6306–6317.

43. Kang,Y. and Cullen,B.R. (1999) The human Tap protein is a nuclear
mRNA export factor that contains novel RNA-binding and
nucleocytoplasmic transport sequences. Genes Dev., 13, 1126–1139.

44. Katahira,J., Strasser,K., Podtelejnikov,A., Mann,M., Jung,J.U. and
Hurt,E. (1999) The Mex67p-mediated nuclear mRNA export pathway
is conserved from yeast to human. EMBO J., 18, 2593–2609.

45. Cullen,B.R. (2003) Nuclear RNA export. J. Cell Sci., 116, 587–597.
46. Coburn,G.A., Wiegand,H.L., Kang,Y., Ho,D.N., Georgiadis,M.M. and

Cullen,B.R. (2001) Using viral species specificity to define a critical
protein/RNA interaction surface. Genes Dev., 15, 1194–1205.

47. Fleckner,J., Zhang,M., Valcarcel,J. and Green,M.R. (1997) U2AF65
recruits a novel human DEAD box protein required for the U2
snRNP-branchpoint interaction. Genes Dev., 11, 1864–1872.

48. Luo,M.L., Zhou,Z., Magni,K., Christoforides,C., Rappsilber,J.,
Mann,M. and Reed,R. (2001) Pre-mRNA splicing and mRNA export
linked by direct interactions between UAP56 and Aly. Nature, 413,
644–647.

49. MacMorris,M., Brocker,C. and Blumenthal,T. (2003) UAP56 levels
affect viability and mRNA export in Caenorhabditis elegans.
RNA, 9, 847–857.

50. Staley,J.P. and Guthrie,C. (1998) Mechanical devices of the
spliceosome: motors, clocks, springs, and things. Cell, 92, 315–326.

6460 Nucleic Acids Research, 2006, Vol. 34, No. 22


