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The Effective Number of a Population with Overlapping
Generations: A Correction and Further Discussion

JAMES F. CROW' AND MOToo KIMURA2

The concept of effective population number, introduced by Wright [1 ], com-

presses a great deal of the relevant information about the genetic structure of a

population into a single number and has been widely used to measure random
drift in natural populations. Various ways in which the effective number can be
defined for populations with discrete generations have been discussed [1-9]. The
problem is much more troublesome when generations overlap, as in the human
population, and until recently only a few tentative steps have been taken toward
a general solution [5, 10, 11]. In particular, we are now convinced that the
formula that we put forth in 1963 [5, p. 286] is wrong or, at best, irrelevant to
the more important problems in human evolution. Unfortunately, it has been re-

ferred to and used by others, most recently by MacCluer and Schull [12]. We
should like to retract it before it does further mischief.
Our formula, for a population with a stable age structure and constant size,

gave the effective number as NC = NEIT, where N is the census number, E is the
mean length of life, and T is the mean age of reproduction. This is an appropriate
number in answering a question such as proposed in the following. Suppose a
human population is censused at two periods separated by 30 years. What size
population with discrete generations and binomial distribution of progeny would
have the same amount of gene frequency drift as the change in gene frequency
in the censused population? Many individuals will be included in both censuses,
and their gene frequency does not change; so the average change will be less and
therefore equivalent to that which would occur in a larger population with com-
plete turnover. However, one is usually more interested in the long-range effects
of random drift, and the duration of life in postreproductive ages is irrelevant.
A much more useful formula is that given by Nei and Imaizumi [ 11]. They

define the effective number for a stable population as

NC = Ninth, (1)

where Nmw is the number born per year who are "able to reach the mean repro-
ductive age or, more accurately, participate in the reproduction."
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A detailed study has been made by Felsenstein [13, 14]. For a haploid popu-
lation at equilibrium for age distribution and total size, he gives the effective
number as

Ne-,1B (2)

where B is the number of births per census period (e.g., per year), T is the mean
age of mothers of newborns, and

00

K = sidivd+v1. (3)
i=1

In this formula 4 is the probability of surviving to age i, si is the probability of
surviving from i to i + 1, di is the probability of dying during this interval, and
vi is Fisher's [15] reproductive value at age i. K is roughly the probability of
death of an individual while it still has reproductive value.

If there is no death in the reproductive period, the two formulas are in agree-
ment. Felsenstein [14] has extended his formula to include populations that are
growing but have reached a stable age distribution and has also discussed diploid
populations.

ANOTHER DEFINITION OF EFFECTIVE POPULATION NUMBER

We should like to suggest a formula which is more precisely defined than that
of Nei and Imaizumi (although very similar to it), which is usually somewhat
simpler to apply than that of Felsenstein, and which should serve as a useful
approximation for populations where there is not a large departure from a stable
age distribution and where death rates during the reproductive period are
moderate. The definition we suggest for Ne is

Nelj I yvydy IV, (4)
where Ny is the number in the population of age y, vy is Fisher's reproductive
value at age y, V is the total reproductive value of the population, and 1 is the
probability that a newborn will survive into the reproductive period. A more pre-
cise definition of I will be discussed later. This may also be written as

N Not 1, (5)

where No is the number of births in one census unit (say, 1 year), and X is the
average age of reproducing mothers. Note the similarity between formula (5)
and Nei's formula (1).
The formulas apply strictly to populations in a stable age distribution, although

formula (4) may be useful as an approximation for not-too-wide departures from
this. We justify the formulas on somewhat intuitive grounds. A precise formu-
lation and derivation would require such procedures as were used by Felsenstein.
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DERIVATION OF THE FORMULAS

For convenience of reference, we give here the definitions of the various symbols
that will be used.

Nydy = the number of individuals in the age interval y to y + dy at time t;

Iv = the probability of surviving from birth to age y;

bydy = the expected number of births to an individual in the age interval y to
y + dy;

1 (ro
v, I e,-ffl ,bdx, Fisher's measure of reproductive value at age y;

m the Malthusian parameter of population increase, defined by

1 JO e-nlxb, x;

T JOfNybyydy/fJ Nybydy, the mean age of reproduction in the popula-
tion at time t; and

1 fO lbye-mydy, the probability of surviving into the reproductive pe-
riod (this definition will be discussed later).

We assume that the population has attained a stable age distribution and there-
fore implicitly assume that the age-specific birth and mortality rates remain con-
stant. Later, we shall discuss the situation when these assumptions are removed.
The population is enumerated at time t, at which time there are N, individuals

of age y. The probability of surviving from birth to age x is 4, and from birth to
age y is 1y, so the probability of surviving from age y to age x is 4,/ly. The proba-
bility of surviving from age y to age x and reproducing at that time is lxbx/ll,, of
which a fraction I of those born will survive to the reproductive period. Therefore,
during the remainder of their lifetimes, the N. individuals who were age y at
time t are expected to have

,,J blJb dx Nywyl

births who survive into the reproductive period.
The sampling variance of the number of A genes contributed by parents of age

y at time t is approximately 21Nywypy(1 - py), where p, is the frequency of
allele A in parents of age y. Summed over all ages, the variance of the number of
A genes contributed is

nt= 21 J} NYwpy,( 1 - py)dy. (6)

The value of py is not exactly constant because of random differences in gene
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frequency in the individuals dying between time t and the time of reproduction.
More important, the value of P. is not the same for different y. However, if N is
moderately large, these differences are small. Furthermore, the differences in gene
frequency in the different age cohorts become randomized in future generations
because of differences in the ages of reproduction. So, to a good approximation,
we can replace pv by p, leading to

VIA = 2p(1- p)ljl Nvw dy. (7)
This is the variance associated with sampling genes from the population alive

at time t. It is equivalent to the variance of the gene frequency change if the
parent genes were completely replaced by a random sample of 2fNvwvl dy progeny
genes. The variance-effective number is the size of a progeny population with dis-
crete generations and binomial sampling of gametes that has an equivalent sam-
pling variance. So we equate (7) with 2p(1 - p)Nev, where Nev is the variance-
effective number, leading to

Nev IJoNvwdy. (8)
This, however, is the variance-effective number appropriate not to the time t,

but to the times of the various future births to individuals alive at time t. If the
population is growing exponentially at rate m (or decreasing at a rate -m), it
will have changed by a factor em($-Y) during the time that a cohort ages from y
to x. We can adjust for this by computing for each future birth its "present
value," that is, the number of births occurring now that would make the same
average contribution to later generations as a birth x units later. In the changing
population, the appropriate weight is e-mf(-Tv).

Using this, equation (8) is modified to become
00 Nv 00

Nev - e-tfm(x-Y)lvbxdx dy

rX Ny co

I I I)'! e-tnxlxbxdx dy (9)Nl,,e (ilyJ

= Nvvdy,

where vy, is the reproductive value at age y. Alternatively,

Nei, =V, ( 9a)

where V is the total reproductive value of the population.
Since the population is assumed to have a stable age distribution, Nv - NolyemV,

and
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Nev = NolJfL e-mxlwbxdx dy
00

=NoO e- mylvbyy dy (10)
= NJr x,

where X is the mean age of reproduction in the population at time t, providing
another way of expressing the formula. This is very similar to the formula of Nei
and Imaizumi.

It remains to define T. We suggest that this be defined as the average probability
in a cohort of surviving to age x, weighted by the proportion of total reproduction
that occurs at that age and with each birth expressed as its present value. Thus,

00

fol(lxboemxf2-)dx

tolxbe-mxdx

This definition is rather arbitrarily chosen, and we make no claim for its exact-
ness. A more rigorous and exact definition would require a detailed treatment
such as that of Felsenstein [14]. Later, we shall show that in numerical examples
the formulas are in approximate agreement.

Equations (9), (9a), and (10) give the variance-effective number at time t.
The variance-effective number applies to the progeny generation rather than the
parent; in other words, it measures the gene-frequency drift in the period immedi-
ately prior to time t. This is apparent in discrete-generation models where, under
idealized assumptions, the effective number is the same as the population number in
the progeny generation (cf., [5]).

Therefore, the sampling variance given by P(l - p)/2Nev is the variance of
gene-frequency drift during the generation just before time t, that is, from t - -r

to t, since -r is approximately the average number of years since the birth of indi-
viduals who reproduce at time t. Usually (as in the human population), time is
measured in units that are shorter than a reproductive lifetime. The variance of
gene-frequency drift from time t - bt to t is given by

VrVp i2pbt (12)

In discrete-generation models, the inbreeding-effective number is the same as
the variance-effective number if the expectation of progeny is the same for each
individual at birth [4, 51. We might therefore expect that the formulas developed
here would also give the inbreeding-effective number. There are complications,
however.
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Mating is not at random among the age groups because of a tendency for mates
to be near the same age; but, because of differences in the age of reproduction,
the age stratification of the descendants of a particular individual disappears in a
few generations. If we take a fairly long view over several generations, the corre-
lation in age between descendants of a single ancestor is not great enough to
affect significantly the probability that a mating pair come from the same remote
ancestor. The inbreeding-effective number is then the number of parents weighted
by their expectation of producing progeny who survive to the reproducing ages.
So equations (9), (9a), and (10) are also appropriate as approximations to the
inbreeding-effective number.
On the other hand, the inbreeding- and variance-effective numbers apply to

different generations. The variance-effective number, as we have said, is appro-
priate to random gene-frequency drift in the past, the present generation being
regarded as offspring. The increase in homozygosity measured by the inbreeding-
effective number occurs in future generations. The present generation is regarded
as the parent generation (or the grandparent if self-fertilization is prohibited),
and the actual increase in homozygosity begins one (or two) generation later.

If the census is taken periodically (yearly, say) the discrete-time analogues of
equations (9) and (11) are

00

Nev ZZN yVy, (13)
Zv X +(

00

1 = Z~2b X-(v+l), (14)
vY=o

00

1 -E ~lybyX.- (Y + ) ( 15)
Y=o

00

vs =- xIbx-(x+') (16)

where Ny is the number of individuals of age y, 1 is the probability of surviving
to age x, bx is the probability of giving birth in the interval from age x to age
x + 1, and X is defined by equation (15). The value of lo is taken as one and bo
is the probability of giving birth between the time of birth and the first birthday.
When the population is of constant size, m - 0 or X 1, and the formulas are

simplified accordingly. In most human populations, the death rate during the
reproductive period is low, the age-specific birth rate is not greatly skewed, and
the growth rate is a few percentage points per year. In these circumstances, I is
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well approximated by the probability of surviving to the mean age of reproduc-
tion, and we have the same formula as Nei. In some of the numerical examples
that were tried, a somewhat better approximation was obtained by using for 7 the
probability of surviving to the median age of reproduction, that is, to the age
when half the reproduction of a cohort has occurred.

COMPARISON WITH FELSENSTEIN 'S FORMULA

As would be expected, there is very little difference among the formulas when
the proportion of deaths during the reproductive period is small. In the United
States, where current survival during the reproductive period appoaches 100%o
our formula, Felsenstein's, and Nei's give results that are practically identical.
The formulas would be expected to be most discrepant when the reproductive

age extends over a large period and when most of the deaths occur during this
period. We have compared our formula with Felsenstein's in a few models where
births and deaths occur at all ages. In the first comparison, survival was assumed
to be exponential with death at a rate 1/N for each time unit. If the birth rate is
constant, 1/N, this is equivalent to Moran's [10] model. He showed that in this
case the effective number is N/2; both our formula and Felsenstein's agree. In
this case, 1 -e-/N by-_ dy/N, T =1, 1 1/2, and Nev Not/2 = N/2.
With the same death rates but with birth rate 2/N, the population grows con-
tinuously, and both formulas give Ne= (2/3)Not.
When birth is an exponential function of age such that N remains constant,
b= (2/N)e- 1/N, we get (1/3)Not and Felsenstein gets (3/8)NoT. If by,
(4/N) e-1/N, so that the population is growing, the Felsenstein formula gives
(5/6)NoT and ours gives (4/5)NoT. Finally, if l = e-Y2IN and by = (2y/N)dy,
both formulas give NoT/2.

NONEQUILIBRIUM AGE DISTRIBUTION

In human populations, the conditions determining the equilibrium are usually
changing faster than the rate of approach to equilibrium, so that most populations
are not in the age ratios that have been assumed in the foregoing discussion. Is
there anything that we can do to get a reasonable approximation under these
circumstances?
One possibility is to replace e-m(x-y) in equation (9) by B/Bx-y, where B is

the number of births per time unit at time t, and Bo,y is the number x - y units
later. Equation (9) then becomes

Nev Blf N dy. (17)
0 y y X-Yi

The equation for I would require a corresponding modification, but, unless there
are a number of deaths during the reproductive period, this is not likely to make
much difference.

If the records are available, then 4, and b,, can be taken directly from the vital
statistics for the appropriate years. In most experimental or observational studies,
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the uncertainties of the data make it unnecessary to have further refinements in
the formulas.

OTHER COMPLICATIONS

One assumption which we have made and which is very likely to be incorrect
is that the expectation of progeny is the same for each individual in the popu-
lation of a given age. Departure from this assumption appears to be the major
reason for the discrepancies pointed out by MacCluer and Schull [12], as noted
by Nei [16]. The proper correction for the continuous case has not been worked
out, but approximate answers can be gotten by considering the situation in a
population with discrete generations. For this case, the correction for nonequal
expectation of progeny has been given for a population of constant size by Wright
[27], but can be extended to more general cases. The variance-effective number
of generation t is given by

NeV 2Nt -(k/2) (18)
1 + (Vk/k)

and the inbreeding-effective number by

N Nt-lk 1 (19)

where k and Vk are the mean and variance of the number of progeny per parent
[5]. Slight modifications are required if there are separate sexes. If the mortality
is small during the reproductive period, this correction could be applied to the
effective numbers obtained by equations (9), (10), and (17) to give an approxi-
mation of the effective number.

If the parameters k and Vk are different in the two sexes, as might be true in
a polygamous or promiscuous population, then a separation of equations (18) and
(19) can be made for each sex and the two combined by Wright's well-known
formula

4NefNem (20)Ne -Net±+Nem'

where Nef and Nem refer to the numbers computed for the male and female sexes
separately.

Finally, if the mean and variance of family size are known only for children
counted at the time of birth (or some other early age) and with their subsequent
survival not recorded, as is frequently the case with census data, then the key
ratio Vk/k may be corrected to its expected adult value, provided we assume
equal expectation of survival for each individual. Let the subscript b refer to the
time of birth (or age of enumeration) and a to the adult. Then the adult ratio is
obtained by

8



EFFECTIVE POPULATION SIZE

Vka [a Vkb ]
+= _-: I. (21)

ka kb kb

This can also be used to correct for emigration from the population [16]. For a
derivation and discussion of modifications when the survival within a sibship is
correlated, see Crow and Morton [4].
Nei [16] has applied these principles to the data of MacCluer and Schull [12]

and has shown that they provide estimates of the effective population number
that agree satisfactorily with the computer simulations.

SUMMARY

An approximate formula is proposed for the effective number, Ne, of a popu-
lation such as the human population where generations overlap and reproduction
occurs at various ages. When y is the age (e.g., in years), the variance-effective
number is given by

Nev JO N1vvdy = Iv,

where Ny, is the number of age y and vy is Fisher's [15] reproductive value at
age y; V is the total reproductive value of the population, and 1 is the weighted
mean probability of surviving into the reproductive period,

I 2=JO myyemdy.
The formula can also be written

Nev N01-r,

where -r is the mean age of reproduction. These are also a good approximation to
the inbreeding-effective number.

These formulas all assume that the population has attained a stable age ratio
and that the age-specific birth and mortality rates are constant. Modifications
when these conditions are not met are discussed. We also retract an earlier, in-
correct formula.
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