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Innate and adaptive immunity contribute to the pathogenesis of autoimmune arthritis by generating and maintaining
inflammation, which leads to tissue damage. Current biological therapies target innate immunity, eminently by interfering
with single pro-inflammatory cytokine pathways. This approach has shown excellent efficacy in a good proportion of patients
with Rheumatoid Arthritis (RA), but is limited by cost and side effects. Adaptive immunity, particularly T cells with a regulatory
function, plays a fundamental role in controlling inflammation in physiologic conditions. A growing body of evidence suggests
that modulation of T cell function is impaired in autoimmunity. Restoration of such function could be of significant therapeutic
value. We have recently demonstrated that epitope-specific therapy can restore modulation of T cell function in RA patients.
Here, we tested the hypothesis that a combination of anti-cytokine and epitope-specific immunotherapy may facilitate the
control of autoimmune inflammation by generating active T cell regulation. This novel combination of mucosal tolerization to
a pathogenic T cell epitope and single low dose anti-TNFa was as therapeutically effective as full dose anti-TNFa treatment.
Analysis of the underlying immunological mechanisms showed induction of T cell immune deviation.
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INTRODUCTION
Much progress has recently been achieved on our knowledge of

the immunological and molecular mechanisms, which lead to

amplification, and perpetuation of autoimmune inflammation.

This progress has been translated into a generation of biologic

therapeutic agents that target pro-inflammatory cytokines, with

the aim of interfering with their mechanism of action. This

approach is destined to progressively complement and, in some

cases, replace currently used immunosuppressive and anti-

inflammatory therapies. Despite their success[1,2], current anti-

cytokine approaches remain hampered with limitations associated

eminently with generalized immunosuppression and subsequent

increased occurrence of malignancies and infectious diseases, in

particular tuberculosis[3–6].

Conceptually, therapeutic intervention focused on modulation of

T cell function leads to the promise of higher specificity and lower

toxicity[7–16]. This objective has for long remained a challenge in

humans, particularly due to the difficulty of identifying means of

intervention that could affect T cell function in a specific fashion.

In a Phase I/IIa trial, we have recently described immunological

effects of epitope specific immunotherapy in a group of patients with

rheumatoid arthritis. The epitope employed was derived from the

heat shock protein (HSP) dnaJ. We have proposed a central role

for HSP-specific T cell responses in the physiologic mechanisms

of modulation of inflammation[17–20]. We have also suggested

impairment of such modulation as one of the mechanisms of

amplification of autoimmune inflammation[21–24]. Our treatment

sought to restore such control by inducing mucosal tolerization to

a peptide with a potential pathogenic, not necessarily etiologic

role[25]. Immunological effects of the treatment consisted of

immunodeviation from pro-inflammatory to tolerogenic type T cell

responses to the peptide employed in the treatment. Restoration of

regulatory T cell activity was also observed.

Effects of anti cytokine therapy on T cell function, both effector

and regulatory, have been suggested[13,26–28]. These interac-

tions are relevant for many different reasons, including ultimately

the design of an optimal biologic therapy based on the com-

bination of anti-cytokine and T cell epitope specific approaches.

The work presented here lays the foundation for this strategy by

exploring clinical and immunological effects of the combination of

epitope specific T cell and anti-cytokine therapy. We employed for

this purpose Adjuvant Arthritis (AA). This is an experimental form

of arthritis that is T cell dependent and can be passively

transferred by a T cell clone that is specific for the 180-188

amino acid sequence of mycobacterial HSP60[29,30]. In previous

studies we showed that nasal administration of a 15-mer peptide
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(176-190) encompassing this arthritogenic epitope leads to T cell

tolerance[31] and can prevent AA. Treatment with nasal

administration of peptide 180-188 after the induction of AA is

mildly effective. Here, we compared immunological and clinical

effects of different dose regimens, namely full dose anti-TNFa,

which is known to be effective[32], mucosal tolerization to the

peptide alone, anti-TNFa at one third of the effective dose, and the

combination of low dose anti-TNFa and epitope specific therapy.

We found that the combination of low dose anti-TNFa
associated with mucosal tolerization to the arthritogenic T cell

epitope led to a significant reduction of arthritis clinically as well as

histologically, to a degree entirely comparable with what was

achieved with full dose anti-TNFa. Interestingly, treatment

regimens differed for their influence on immune responses.

Indeed, combination therapy induced T cells with a regulatory

phenotype, consisting of CD4+CD25+ cells producing IL-10 and

expressing FOXP3. Combination treatment also induced immune

deviation in CD4+CD252 cells, which were found producing

IL-10, as well as IL-4. Such changes were not present in the full

dose anti-TNFa therapy group.

Our data provide a compelling rationale for testing the

combination of anti-cytokine and epitope specific immunotherapy

in human autoimmune disease.

METHODS

Animals
Male inbred Lewis rats (RT1B) were obtained from Harlan

(Indianapolis). Rats were 6–9 weeks old at the start of each

experiment.

Antigens and adjuvants
Heat killed Mycobacterium tuberculosis (Mt, strain H37Ra) was

obtained from Difco (Detroit, MI). Incomplete Freund’s Adjuvant

(IFA; Difco, Detroit, MI) was used as adjuvant. The peptide used

in this study was prepared in large quantities by standard solid

phase Fmoc chemistry. It was obtained as COOH terminal amide

and was analyzed and purified by reverse-phase HPLC. The

following peptide was used: Mycobacterium tuberculosis HSP60 180-

188, containing Mycobacterium tuberculosis HSP60 sequence 180-188

(TFGLQLELT). 180-188 is recognized by the arthritogenic T cell

clone A2b and is a dominant T cell epitope found after Adjuvant

Arthritis (AA) and after immunization with mycobacterial

HSP60.

Induction and Clinical Assessment of Experimental

Arthritis
Rats were lightly anesthetized using isoflurane and AA was

induced by a single intradermal (i.d.) injection in the base of the

tail with 0.1 mg Mycobacterium tuberculosis (Mt) suspended in 100 ml

of IFA (Complete Freund’s Adjuvant; CFA). Rats were examined

daily for clinical signs of arthritis in a blinded set-up. Severity of

arthritis was assessed by scoring each paw from zero to four based

on degree of swelling, erythema and deformation of the joints.

Thus the maximum score was 16. On day 23 after the induction of

arthritis the rats were sacrificed by CO2 inhalation, after which

mandibular lymphnodes (MLN), Inguinal Lymphnodes (ILN),

spleen and hind limb joints were collected.

Immunotherapy Protocols
Rats were lightly anesthetized using metofane for all nasal

treatments or isoflurane for all subcutaneous treatments. Etaner-

cept (EnbrelH, Wyeth) was administered subcutaneously (s.c.) at

a concentration of 0.3 mg/kg per rat dissolved in 100 ml PBS

using a 25-gauge needle. This was done on day 9 after the

induction of arthritis with Mt. Some rats in control groups

received additional Etanercept on day 11 and 13. 100 mg of

peptide dissolved in PBS was administered nasally in a total

volume of 10 ml (5 ml per nostril, peptide concentration 10 mg/ml)

using a micropipette. This was done on day 10, 13, 16, 19 after

arthritis induction with Mt.

Adoptive transfer
MLN, ILN and spleen of 2–3 rats per group after combination

treatment with Etanercept and 180-188 were harvested on day 23

after the induction of arthritis. Cells were cultured in vitro with

2.5 mg/ml conA for 48 hours. Subsequently, 136106 MLN,

116106 ILN and 116106 spleen cells were injected i.v. into the

tail vein of rats one week after induction of arthritis with Mt. Rats

were subsequently examined daily for clinical signs of arthritis in

a blinded set-up as described previously.

Histological assessment of hind limb joints
Hind limb joints were collected on day 23 after the induction of

arthritis, after the rats were sacrificed by CO2 inhalation.

Formalin-fixed tissues were decalcified, and glass slides stained

with H&E and Safranin O (for cartilage) were prepared and

evaluated by standard methodology (Comparative Biosciences,

Inc.). The pathologist examined all of the submitted tissue sections

in a blinded fashion by light microscopy and scored for

inflammation of the synovium, pannus formation, cartilage

damage, inflammation of the bone marrow and periostal pro-

liferation. Each of these parameters was scored for 10 days,

severity from 0 (normal) to 4 (severe). A cumulative score was

given based upon the sum of all of the parameters measured.

Intracellular Cytokine Staining
MLN cells were cultured for 72 hours with medium alone or

antigen. During the last 4 hours of culture 1 M monensin

(GolgiStopH, Pharmingen, San Diego, CA) was added. Viable

cells were harvested and washed with FACS blocking buffer (PBS

with 10% FBS) and 0.03% 1 M sodium azide) and subsequently

stained for 30 minutes on ice in 100 ml of blocking buffer with the

following conjugated monoclonal antibodies for extracellular

antigens: PE, FITC or CY-conjugated anti-rat CD4 (clone OX-

35, mouse IgG2a), FITC-conjugated anti-rat CD25 (clone OX-39,

mouse IgG1) (BD Pharmingen, San Diego CA). The cells were

washed twice in staining buffer (PBS containing 3% FBS and

0.03% 1 M sodium azide) and resuspended in 100 ml fixation

buffer (Cytofix/CytopermH, BD Pharmingen, San Diego, CA) for

20 minutes on ice. The cells were washed twice in permeabiliza-

tion buffer (Perm/WashH, Pharmingen, San Diego CA) and

resuspended in 100 ml permeabilization buffer and stained with

the following conjugated monoclonal antibodies: PE-conjugated

anti-rat IL-4 (clone OX-81, mouse IgG1), PE-conjugated anti-rat

IL-10 (clone A5-4, mouse IgG2b), PE-conjugated anti-rat TNFa
(clone TN3.-19.12, hamster IgG) and PE-conjugated anti-mouse

CTLA-4 (anti CD152) (clone UC10-4F10-11, armenian hamster

IgG, group 1k) (all antibodies from Pharmingen, San Diego, CA).

The appropriate isotype controls were used. Finally, the cells were

washed twice, resuspended in staining buffer, and transferred to

FACS tubes for analysis. Stained cells were analyzed on a FACStar

Plus cytometer (Becton and Dickinson). At least 5.000 events were

acquired from each sample and subsequently analyzed with Lysis

II software.

Epitope Specific Immunotherapy
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Sorting of CD4+CD25+ and CD4+CD252 after

magnetic bead separation
MLN were incubated for 15 hours with medium or antigen.

Viable cells were harvested and first the cell suspensions were

depleted of monocytes, phagocytes, NK cells and B cells by

magnetic bead separation using the CELLectionHBiotin Binder kit

(Dynal A.S. Oslo, Norway). In brief, cells were incubated with the

following monoclonal antibodies: biotin mouse anti rat mono-

nuclear phagocyte, (C17, Pharmingen), biotin mouse anti rat

CD161a (10/78, Pharmingen) and biotin mouse anti rat CD45RA

(OX-33, Caltag Laboratories). Positive selection was performed

using streptavidin coated magnetic Dynabeads using the Dynal

Magnetic Particle Concentrator.

The thus obtained cells were washed in FACS blocking buffer

and stained extracellularly with anti rat CD4 and anti rat CD25.

Subsequently, cells were sorted by FACS (FACS Vantage, Beckton

Dickinson San Jose, CA) into CD4+CD25+ and CD4+CD252

cells.

Real Time Quantitative PCR (Taqman)
MLN were incubated for 15 hours with medium or antigen. Cells

were sorted into CD4+CD25+ cells and CD4+CD252 cells as

described above, resuspended in Lysis buffer (Qiagen,Valencia,

CA) and frozen at 280uC until analysis. mRNA was extracted

from sorted cells by using RNeasy Mini Kit (Qiagen). mRNA was

then reverse-transcribed into cDNA with an oligo dT primer

(Oligo(dT)12-18, Invitrogen). Subsequently, single stranded cDNA

was amplified with the cytokine specific forward and reverse

primer sets for GAPDH (housekeeping gene), IL-10, TNFa and

FOXP3. mRNA levels were determined by Real Time Quanti-

tative PCR on an ABI PRISMH 7000 thermal cycler (Perkin

Elmer). The following combinations of primers and probes were

used: IL-10 Forward 59GCC TGG CTC AGC ACT GCT AT 39,

IL-10 Reverse 59CGG ATG GAA TGG CCT TTG 39, IL-10

Probe-FAM 59 TTG CCT GCT CTT ACT GGC TGG AGT

GAA 39. TNFa Forward 59ACA AGG CTG CCC CGA CTA C

39, TNFa Reverse 59TCC TGG TAT GAA ATG GCA AAC C

39, TNFa Probe-JOE 59TGC TCC TCA CCC ACA CCG TCA

GC 39. FOXP3 Forward 59CCA TTG GTT CAC ACG CAT

GT 39, FOXP3 Reverse 59TGG CGG ATG GCA TTC TTC 39,

FOXP3 Probe-JOE 59CGC CTA CTT CAG AAA CCA CCC 39.

GAPDH Forward 59TGA CTC TAC CCA CGG CAA GTT 39,

GAPDH Reverse 59TTC CCG TTG ATG ACC AGC TT 39,

GAPDH Probe-FAM 59ACG GCA CAG TCA AGG CTG AGA

ATG G 39.

To quantify the amount of mRNA for the different target genes

the standard curve method was used[33].The relative amounts of

target gene and GAPDH were quantified by a linear extrapolation

of the Ct values using the equation to the line obtained from the

standard curve of the respective target genes. Data were

normalized for target gene expression, which was obtained by

dividing the relative quantity of target gene for each sample

divided by the relative quantity of GAPDH for the same sample.

The final read outs are expressed as induction index (arbitrary

units) defined as stimulated subtracted by reference condition, i.e.

only media culture.

Statistical analysis
A two tailed, paired t-test was performed to compare clinical

scores on day 23 and to compare Area under the arthritis score

curve. Kolmogorov-Smirnov Statistics were applied for statistical

analysis of FACS histograms.

RESULTS

Combination of epitope specific therapy and a single

low dose of Etanercept (EnbrelH) has clinical efficacy

comparable to full dose Etanercept in controlling

Adjuvant Arthritis
Lewis rats were immunized with 100 mg Mt to induce AA and

randomly divided into 5 treatment groups: i) no treatment; ii) three

doses of Etanercept s.c., equivalent in this model to a full course of

Etanercept treatment; iii) one dose of Etanercept s.c.; iv) four nasal

administrations of HSP60 peptide 180-188 v) combination of one

dose of Etanercept s.c. followed by four nasal treatments with

HSP60 peptide 180-188. Three independent experiments were

performed, with 6 rats per treatment group. The lowest effective

dose of Etanercept was determined in preliminary experiments

(not shown). Two different parameters were employed to measure

clinical outcomes, in order to ascertain full evaluation of the effects

of the various treatment regimens: i) mean arthritis scores on day

23 (the day of maximum arthritis severity); ii) area under the curve

of the corresponding arthritis score curves, thus taking into

consideration the whole time course of the treatment.

A significant reduction of AA mean arthritis scores on day 23

(p = 0.0004) was achieved with epitope specific and low single dose

Etanercept combination treatment as well as with a full course of

Etanercept therapy (p = 0.004) compared to no treatment.

Similarly, when assessing the areas under the curve (AUC) of

the corresponding arthritis score curves, a significant decrease of

AA was seen after epitope specific and low single dose Etanercept

combination treatment (p = 0.02 vs. no treatment). Comparable

disease control was achieved in the full dose Etanercept treatment

group (p = 0.03 vs. no treatment).

One dose of Etanercept alone on day 9 was able to suppress

arthritis only temporarily; however, as expected, after day 17 the

arthritis revived (Day 23 p = 0.3, AUC p = 0.1 vs. no treatment).

Treatment with HSP60 peptide 180-188 alone showed a trend

towards reduction of arthritis, without achievement of statistically

significant differences (Day 23 p = 0.07, AUC p = 0.26 vs. no

treatment). Combination of treatment with an irrelevant peptide,

derived from Ovalbumin, and low dose Etanercept lacked efficacy

in suppressing arthritis, thus confirming the epitope specificity of

the treatment (Figure 1 and Table 1).

Hence, regardless of the outcome parameter employed,

combination of epitope specific and low single dose Etanercept

therapy enabled complete clinical control of the arthritic process to

a degree statistically comparable with full dose Etanercept,

a therapeutic regimen known to fully control AA.

Epitope specific and low single dose Etanercept

combination therapy leads to a decrease of damage

in the hind limb joints
Next we investigated if clinical control of AA with combination

therapy was matched in the same treatment groups by

a corresponding decrease in joint destruction by the arthritic

process. Hind limb joints were collected on day 23 after the

induction of arthritis and scored for severity of inflammation in the

synovium, pannus formation, cartilage damage, inflammation of

the bone marrow and periostal proliferation, with a maximum

total score of 20.

Epitope specific and single low dose Etanercept combination

therapy led to a significant improvement of the histological score

in the joints (p = 0.014 vs. untreated). Similarly, full course of anti-

TNFa therapy led to a significant decrease of histological damage

Epitope Specific Immunotherapy
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(p = 0.001 vs. no treatment). Single dose of Etanercept did not lead

to significant improvement (p = 0.214) (Figure 2).

Epitope specific and single low dose Etanercept

combination therapy induces immune deviation of

CD4+ T cells
We then analyzed the immune mechanism responsible for the

clinical effects of the treatments tested. We focused in this part of

our analysis on defining qualitatively CD4+ mediated T cell

responses to the inciting antigen. The rationale behind this

strategy was to identify qualitative changes in cytokine responses

induced by the treatment. To this end, we measured cytokine

production and surface marker expression of CD4+ T cells present

in the Mandibular Lymphnodes (MLN), the draining site of the

nasal mucosa where T cell immune deviation may be induced.

MLN were isolated on day 23 after arthritis induction and

cultured with HSP60 peptide 180-188 or media. It has to be noted

that HSP60 peptide 180-188 is the major immune dominant

epitope following induction of AA (due to the presence of

mycobacterial HSP65 in CFA) and thus can act as an important

surrogate parameter for (immune) therapy in AA[34,35]. After

72 hours viable cells were harvested and stained for surface

markers and intracellular cytokines and analyzed by FACS. The

results showed differences between treatment groups in the

immune mechanisms underlying sometimes comparable clinical

efficacy. In fact, only the epitope specific/low dose Etanercept

combination treatment group showed clear indication of T cell

immune deviation, as indicated by the significant difference

compared to the untreated group as well as the Etanercept groups

in the increased production of IL-10 regulatory cytokine (MFI

11.84, isotype control 7.69, p,0.001). Expression of CTLA-4,

a marker of T cells with regulatory function, also significantly

increased when compared both to untreated and Etanercept

groups (MFI 18.16, isotype control 7.10, p,0.001). An increase in

IL-4 production was seen after the combination treatment as well

as after the full course of Etanercept therapy (MFI 8.20 and 10.19,

isotype control 6.96, p,0.001) (Figure 3).

These data are, in our opinion, intriguing as they show

differences in underlying immunological mechanism between two

equally clinically effective treatments. Indeed, the marked

increases in IL-10 production and CTLA-4 expression following

combination therapy were both strongly suggestive of restored

modulation of T cell function.

Enhancement of CD4+CD25+ regulatory T cell (Treg)

function by epitope specific/low dose anticytokine

combination therapy
In this part of the project, we addressed the questions on: i)

whether certain aspects of regulatory T cell (Treg) function were

affected by the combination therapy; ii) whether such induction

would affect immune deviation in effector T cells; iii) whether

differences in these parameters between full dose Etanercept and

epitope specific and low single dose Etanercept combination

therapy could be found.

To this end, we chose to measure by real time PCR (TaqMan)

expression of two functional markers of Treg function: IL-10 and

FOXP3. FOXP3 is a forkhead transcription factor whose

expression is deemed crucial for Treg function. IL-10 is considered

among the most important soluble mediators for regulatory T cell

function. We also measured expression of TNFa, to evaluate if the

Figure 1. Combination therapy of Etanercept with mycobacterial
heat shock protein 60 (HSP60) 180-188 led to significant reduction of
Adjuvant Arthritis (AA). Arthritis was induced on day 0 with Complete
Freund’s Adjuvant (CFA). On day 9, rats were randomly divided into five
treatment groups: three doses of Etanercept s.c. on day 9, 11, 13
(equivalent to a full course of Etanercept treatment); one dose of
Etanercept on day 9; four doses of mycobacterial HSP60 peptide 180-
188 on day 10, 13, 16, 19; combination treatment of one dose of
Etanercept s.c. on day 9 followed by 180-188 nasally on day 10, 13, 16,
19; or no treatment (PBS). Arthritis scores were assessed every other day
from day 8 onward. N = 15–18 rats per treatment group. Shown are
mean arthritis scores.
doi:10.1371/journal.pone.0000087.g001

Table 1. Combination treatment as well as a full course Etanercept treatment led to significant reduction of arthritis on day 23,
when maximum score of disease is reached, as well as a significant reduction of the area under the arthritis score curve (AUC),
representative of the whole treatment period.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TREATMENT GROUPS
Mean arthritis score
on day 23

Arthritis score on day 23 vs.
no treatment (p-value)

Area under the
Curve (AUC)

AUC vs. no treatment
(p-value)

Etanercept 36 5.8 0.004 42.639 0.03

Etanercept 16 8.3 n.s. 48.858 n.s.

180-88 46 7.1 n.s. 54.726 n.s.

Etanercept 16+180-188 46 4.9 0.0004 40.396 0.02

Etanercept 16+OVA 46 9.0 n.s. 79.597 n.s.

No treatment 9.8 77.748

Statistical analysis was performed by the paired t-test. Different treatment groups were set out against no treatment.
doi:10.1371/journal.pone.0000087.t001..
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Figure 2. Combination therapy as well as a full course of Etanercept treatment led to reduction of histological damage in the ankle joints. Joints
were harvested on day 23 after the induction of arthritis. Formalin-fixed tissues were decalcified, and glass slides stained with H&E were prepared.
Submitted tissue sections were examined by light microscopy and scored for severity of inflammation of the synovium, pannus formation, cartilage
damage, bone marrow inflammation and periostal proliferation, with a maximum score of 4 per parameter. N = 3–4 per treatment group. H&E
staining is shown of one rat per treatment, representative for the whole treatment group. A: Combination therapy; B: Etanercept 16; C: Peptide Mt.
180-188 46monotherapy; D: No treatment; E: Etanercept 36.
doi:10.1371/journal.pone.0000087.g002

Figure 3. The combination therapy of Etanercept and HSP60 180-188 led to an antigen specific increase of IL-10 and IL-4 production and up
regulation of CTLA-4 expression in CD4+ T cells in draining Mandibular Lymphnodes (MLN). MLN were harvested on day 23 after the induction of
arthritis. Cells were cultured for 72 hours with medium or antigen. Intracellular production of IL-4, IL-10, and expression of CTLA-4 were measured by
FACS. Depicted are Mean Fluorescence Indexes (MFI) of MLN cells cultured with mycobacterial HSP60 peptide 180-188, of cells gated on CD4. Results
are representative of one experiment.
doi:10.1371/journal.pone.0000087.g003

Epitope Specific Immunotherapy
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different therapeutic regimens had a direct effect on the

inflammatory response of effector CD4+CD252 cells.

CD4+CD25+ cells were studied, a category of Treg that

appears functionally impaired in RA and whose efficiency might

not be entirely restored by full dose anti-TNFa treatment [26].

CD4+CD25+ and CD4+CD252 MLN cells were isolated on day

23 after arthritis induction and cultured with HSP60 peptide 180-

188 or media. After 15 hours viable cells were harvested, stained

for CD4 and CD25 and sorted by FACS. Subsequently mRNA

was extracted from sorted CD4+CD25+ and CD4+CD252 cells

and levels of FOXP3, IL-10 and TNFa measured by Real Time

Quantitative PCR. Figure 4 shows the ratio of the induction index

(cytokine/transcription factor divided by housekeeping gene

GAPDH) of stimulation with HSP60 peptide 180-188 less the

background value.

When FOXP3 expression was measured, a significant increase

was found both in the combination and full dose anti-TNFa
groups, underscoring likely effects of both therapeutic regimens on

some Treg functions, in accordance with recent findings in

Rheumatoid Arthritis patients[26]. Cytokine mediated Treg

function however might reportedly not be affected by anti-TNFa
therapy, and indeed, when IL-10 expression by CD4+CD25+ cells

was measured there was a significant increase (p = 0.002) only in

the combination therapy group. Interestingly, combination

therapy and, to a lesser degree, full dose Etanercept, also induced

immune deviation of CD4+CD252 effector cells, with higher

production of IL-10 consistent with what shown in the FACS

analysis. As expected, FOXP3 expression was not induced in

CD4+CD252 cells and TNFa expression was abolished by the

combination treatment as well as by full dose Etanercept.

These data provide evidence for enhancement of Treg function

by epitope specific and low dose Etanercept combination therapy.

Enhanced or restored function of Treg led to immune deviation in

effector CD4 cells, with production of IL-10. These immunolog-

ical changes correlated with the changes in the clinical picture

induced by the treatment.

Adoptive Transfer of MLN T cells obtained from

animals treated with epitope specific/low dose

Etanercept combination therapy was able to treat

full blown autoimmune arthritis
The purpose of this experiment was to evaluate whether the effects

of the combination therapy on T cells could induce clinical

amelioration upon adoptive transfer into sick animals. We

employed T cells from spleen, Inguinal Lymphnodes (ILN) and

MLN after combination treatment with Etanercept and 180-188

on day 23 after the induction of arthritis, cultured them for

48 hours with conA and subsequently injected them i.v. into the

tail vein of rats one week after arthritis induction with Mt.

Interestingly, only T cells derived from MLN of animals treated

with the combination therapy were able to significantly reduce

(p = 0.0305) clinical symptoms measured as mean arthritis score,

when transferred into animals in which disease had been induced

(Figure 5-A). Spleen cells from animals treated with combination

therapy transferred to diseased animals failed to exert an efficient

control of the disease process (Figure 5-B) as measured using percent

of clinical amelioration. ILN were able to induce a good level of

clinical amelioration (Figure 5-B), however differences with no treat-

ment control group did not reach statistical significance (Figure 5-A).

Figure 4. Combination Therapy led to an increase in FOXP3 and IL-10 gene transcription in CD4+CD25+ cells, whereas it also led to and increase
in IL-10 transcription in CD4+CD252 cells. TNFa transcription was abolished by the combination therapy as well as by a full course of
Etanercept treatment. Results are expressed as the induction index (marker/housekeeping gene GAPDH) of HSP60 peptide 180-188 stimulation
subtracted by media alone as measured by Real Time Quantitative PCR. IL-10 production Combination therapy vs. Etanercept treatment p = 0.002.
N = 2–4 per treatment.
doi:10.1371/journal.pone.0000087.g004
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Hence, epitope specific mucosal tolerization acts presumably on

a population of T cells that resides in the lymphnodes draining the

mucosa where the tolerization occurs (MLN) and to a lesser degree

ILN. The effect of the treatment on T cells is lasting enough to

allow efficient control of the disease process by adoptive transfer in

animals in which AA was induced.

DISCUSSION
Recent years have witnessed a dramatic progress in our ability to

understand mechanisms of autoimmune inflammation and to

translate such understanding into novel therapeutic approaches.

Particularly remarkable is the success of therapies aimed at

interfering with the pro-inflammatory role played by certain

cytokines, in particular TNFa. The broadening of clinical

applications employing anti-TNFa therapy has led, however, to

two interesting developments in clinical immunology, including: i)

the recognition of significant generalized immune suppression in

treated patients, with a sizable increase in onset or relapse of

certain infectious diseases and neoplasias; ii) the need to

understand in depth the effects of the treatment on the immune

system.

In fact, the effects of anti-TNFa treatment on cytokine

production and immunoregulation are still largely unknown and

sometimes contradicting. Schotte et al. described the reduction of

the number of PBMC producing the pro-inflammatory cytokines

TNFa, IFNc and IL-1 after Etanercept therapy, whereas the

number of IL-10 producing PBMC remained the same, possibly

indicating an immune suppression rather than active immunomo-

dulation due to Etanercept[27]. Sieper and colleagues on the other

hand investigated the effects of the treatment on the T cell

population and postulated that neutralization of peripheral TNFa

by Etanercept does not lead to a down regulation of the ability to

produce TNFa or IFNc by T cells, but rather to an up regulation,

possibly due to a counter regulatory mechanism[28]. Ehrenstein et

al.[26] found that Treg function in RA is impaired, and that

treatment with Infliximab, a monoclonal antibody directed against

TNFa, restored it only partially. Namely, Treg mechanisms based

on cell-to-cell contact were restored by Infliximab treatment, while

Treg mechanisms relying on soluble mediators such as IL-10

remained ineffective despite the treatment. A recent elegant study

by Valencia et al. added important insight into the role of TNFa
on T regulatory cells. They showed that CD4CD25bright T

regulatory cells constitutively express the TNF receptor II. An

environment with high levels of circulating TNF led to up

regulation of the TNF receptor II, which down regulated both the

quantity as well as the quality of FOXP3+ T regulatory cells.

Additionally they showed that CD4CD25bright cells of patients

with active RA expressed high levels of TNF receptor II, reduced

levels of FOXP3 and were poor suppressors, which could be

reversed by anti- TNFa treatment[13]. These studies, at times

contradicting with respect to some mechanisms, underscored that

short-term treatment with anti-TNFa may partially restore a more

tolerogenic microenvironment, which could be instrumental for

the induction of immune tolerance with epitope specific immune

therapy.

Intervention on T cell mediated adaptive immunity would be, in

theory, ideal, given the possibility of focusing the approach on one

or more possible antigens involved in the disease process, thus

sparing the patient generalized immune suppression. Progress is

therefore needed in the area of modulation, rather than

suppression, of T cells. The most important conceptual de-

velopment may, however, be the fact that the search for the one

Figure 5. Adoptive Transfer of Mandibular Lymphnode (MLN) T cells from Combination Therapy treated animals led to significant reduction of
Adjuvant Arthritis (AA) in diseased animals, measured as Mean Arthritis Score as well as percentage of Disease Amelioration.
A. Adoptive Transfer of T cells from Combination Therapy groups. Adoptive Transfer Groups received 116106 Inguinal Lymphnode (ILN) cells, 136106

MLN cells, or 116106 spleen cells. Data represent Mean6SD. Disease induction and scoring was performed as described in the legend to Figure 1.
B. Percentage of Clinical Amelioration for each treatment group in AA rats. The Area Under the Curve (AUC) of each individual treatment group was
used to score the Clinical Amelioration (CA) of the distinct treatment groups. AUC was calculated using the curves originated by scoring the disease
for the different treatment groups and plotted as percentage of CA with respect to the non-treated group. The non-treated group was considered as
having an average percentage of disease = 100%. Formula is as follows: CA = 100 - %AUC.
doi:10.1371/journal.pone.0000087.g005

Epitope Specific Immunotherapy

PLoS ONE | www.plosone.org 7 December 2006 | Issue 1 | e87



inciting and still unidentified antigen should be replaced by

approaches targeting mechanisms of control of self-reverberating

T cell mediated inflammation. This would realistically shift the

focus from etiology to pathogenesis based immune modulation.

A considerable body of evidence, to which we contribut-

ed[21,36,37], supports the concept that peptides derived from heat

shock proteins (HSP) may play a role in amplification of

autoimmune inflammation. As ubiquitous and bacterial derived

products, HSP-derived peptides are in fact perceived as a ‘‘danger’’

signal and elicit a default pro-inflammatory physiologic response.

Such response contributes in clearing a possible pathogen invasion

but also induces, through cellular stress, increased availability of

self-HSP derived peptides. These peptides are recognized by T

cells with regulatory function. Such function is impaired in

autoimmune arthritis[17,18].

We have recently reported the results from a Phase I/IIa clinical

trial in Rheumatoid Arthritis[25]. The objective of our clinical

intervention was to restore natural mechanisms of immune

modulation by exploiting the ability of the mucosal route in

inducing tolerization to a HSP-derived peptide, which we

previously described as part of the pro-inflammatory mechanisms

of RA pathogenesis[21]. Interestingly, we were able to induce in

treated patients immune deviation from pro-inflammatory to

modulatory T cell responses, leading to significant reduction in

TNFa and IFNc production and increase in IL-10 and IL-4.

These effects were mediated via restoration of function of

CD4CD25bright Treg, producing IL-10 and expressing

FOXP3[25].

The study reported here addresses the questions on whether

epitope specific and anti-cytokine therapy can be complementary,

and if such synergy may be advantageous in order to exploit

modulation of adaptive immunity while reducing generalized

immune suppression, costs and side effects. In order to explore the

concept, we chose AA, a T cell, HSP-dependent model of RA,

which can be treated with full dose Etanercept. We have

previously shown in AA that mucosal tolerization to the inciting

peptide leads to immune deviation[31,38].

Combination of epitope specific and anti-cytokine therapy

induced full clinical control of AA, to a degree comparable to full

dose Etanercept and significantly better than the other treatment

regimens, including low dose Etanercept or epitope specific

therapy alone. The comparable clinical efficacy achieved by

combination treatment as well as full course Etanercept was

obtained through distinctly different immune mechanisms in both

effector T cells as well as regulatory T cells.

In effector CD4 cells, the combination therapy induced immune

deviation while full dose Etanercept appeared to be eminently

suppressive. Combination therapy led to an increased production

of IL-10, which was not found in the other treatment regimens,

including full dose Etanercept. Both treatments induced suppres-

sion of TNFa production and an increase of IL-4 production,

which may indicate the presence of a T Helper 2 type tolerogenic

mechanism complementing the main effects of the therapy.

Increasing evidence is, however, shifting the focus of modulation

of adaptive immunity from effector to regulatory T cells[39–43].

Recent progress in Molecular Immunology has enabled the

identification of phenotypical and functional characteristics for

these T cells, such as co-expression of CD4, CD25 and CTLA-4,

as well as production of certain regulatory cytokines. Several

mechanisms of actions have been proposed for Treg, based either

on release of cytokines with a tolerogenic function (eminently IL-

10), or based on direct cell-to-cell contact by the use of receptors

and pathways not yet fully elucidated[7,39,44–46].

When we sought to analyze the effects of combination therapy

and full dose Etanercept therapy, it appeared evident that different

functions of regulatory T cells were affected by the two treatments.

Both treatments significantly increased the expression of the

forkhead transcription factor FOXP3, a functional marker of

Treg, which act eminently by cell-to-cell contact. A similar

observation was described in human RA by Ehrenstein et al.[26].

However, CTLA-4 expression and IL-10 production were induced

only by combination therapy regimens, and not by anti-TNFa
treatment alone, again in agreement with what was found by

Ehrenstein. Here we provide evidence that restoration of such

function can be achieved by adding epitope specific immunother-

apy to low dose Etanercept.

Undoubtedly, anti-TNFa therapy creates an environment in

which epitope specific immunomodulation can be induced more

efficiently. Further evidence for this concept was recently obtained

by Bresson et al., who showed that combination of peptide therapy

with anti CD3 enhanced the clinical improvement in experimental

diabetes compared to anti-inflammatory therapy alone, also

through the induction of CD25+FOXP3+ Tregs, as well as insulin

specific Tregs producing IL-10 and TGFb[47].

Recently, it was elegantly shown by Zanin-Zhorov et al, that

HSP60 peptides enhance CD4+CD25+ regulatory T cell function

via TLR2 signaling [48], thereby providing an additional explana-

tion for the regulatory effects observed after combination therapy.

Further underscoring the profound immunological differences

in mechanisms of action between full dose Etanercept and

combination therapy, only cells derived from MLN of animals

treated with combination therapy were able to control disease

when transferred in sick animals. Cells with regulatory properties

have been recently described as residing in the MLN [49].

This work lays the foundation for a swift translation of this novel

immunotherapeutic concept in human Rheumatoid Arthritis. The

implications, should this approach succeed, range from increasing

the range of success and utilization of epitope specific immuno-

therapy, to reducing significantly the costs and undesirable effects

of current first generation biologics.
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