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Background. Leishmaniasis defines a cluster of protozoal diseases with diverse clinical manifestations. The visceral form
caused by Leishmania donovani is the most severe. So far, no vaccines exist for visceral leishmaniasis despite indications of
naturally developing immunity, and sensitive immunodiagnostics are still at early stages of development. Methodology/

Principle Findings. Establishing a proteome-serological methodology, we mapped the antigenicity of the parasites and the
specificities of the immune responses in human leishmaniasis. Using 2-dimensional Western blot analyses with sera and
parasites isolated from patients in India, we detected immune responses with widely divergent specificities for up to 330
different leishmanial antigens. 68 antigens were assigned to proteins in silver- and fluorochrome-stained gels. The antigenicity
of these proteins did not correlate with the expression levels of the proteins. Although some antigens are shared among
different parasite isolates, there are extensive differences and no immunodominant antigens, but indications of antigenic drift
in the parasites. Six antigens were identified by mass spectrometry. Conclusions/Significance. Proteomics-based dissection
of the serospecificities of leishmaniasis patients provides a comprehensive inventory of the complexity and interindividual
heterogeneity of the host-responses to and variations in the antigenicity of the Leishmania parasites. This information can be
instrumental in the development of vaccines and new immune monitoring and diagnostic devices.

Citation: Forgber M, Basu R, Roychoudhury K, Theinert S, Roy S, et al. (2006) Mapping the Antigenicity of the Parasites in Leishmania donovani
Infection by Proteome Serology. PLoS ONE 1(1): e40. doi:10.1371/journal.pone.0000040

INTRODUCTION
Leishmaniasis is endemic in 88 countries with approximately 12

million infected and 350 million people at risk (http://www.who.

int/en/). The disease is caused by parasites of the genus Leishmania,

a group of kinetoplastid protozoans, that are transmitted by

sandflies as flagellated promastigotes. With the bite of the female

vector the parasites are injected into the host to enter and multiply

in the phagolysosomes of macrophages as amastigotes [1,2].

Dependent on the Leishmania species and the immune response of

the host, there are three basic clinical manifestations of the disease:

cutaneous, mucocutaneous and visceral leishmaniasis (VL) [3,4].

VL in India, known as Kala azar, is caused by Leishmania donovani

(LD) and is the most severe form of leishmaniasis. It is

characterized by irregular bouts of fever, substantial weight loss,

hepatosplenomegaly and anemia. VL inevitably takes a fatal

course if not treated. [5]. To worsen matters, in the endemic areas

in India treatment is increasingly failing due to resistance of the

parasites to the most common anti-leishmanial drug, pentavalent

antimony [5]. New drugs such as liposomal amphotericin B and

Miltefosin are prohibitively expensive for the most affected

populations. These facts and developments stress the urgent need

for prophylactic measures and alternative therapies.

Recent studies have revealed that during endemic outbreaks in

the endemic areas the prevalence of seropositivity for the

leishmanial antigen K39 is significantly higher than the morbidity

[6] suggesting that many may have acquired a state of immunity

and, in extension, that effective vaccines against VL may be

possible. Great efforts are undertaken in search for vaccination

strategies to elicit strong, safe and effective immune responses

against Leishmania using live or killed parasites [7–11], defined

subunit vaccines [12–14], crude fractions of Leishmania parasites

[15] or DNA-vaccination [14,16–21]. The main focus in vaccine

development is the elucidation of the range and specificity of anti

Leishmania immune responses, and the identification of defined

leishmanial antigens. Knowledge of such antigens is required for

the development of vaccines. In addition, the antigens can be

instrumental in immune monitoring of infection, disease and

resistance to disease, and be used in the development of new

diagnostics. The specificities of the antibody responses will be

determined, on the one side, by the constitution, complexity and

variability of the antigenic structures of the parasites and, on the

other side, by the immunoglobulin repertoire, and the immune

and disease history of the host, and by the specific course of the

disease in the individual patients. Given this complexity of the

host-parasite-disease relationship, antigenicity and specificity

pattern rather than individual serospecificities need to be

determined for proper assessment of the immune responses in

the patients, and for correlating these responses with the clinical

outcomes of the infections and, possibly, immune protection. As

secondary, IgG-dominated antibody responses depend on T cell

help, knowledge of immunodominant serospecificities can lead to

the specificities of anti-Leishmania T cells and to the identification

of T cell epitopes, thus providing insights into the specificities of

cellular immune responses. A number of antigens are known for
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VL. Most of them were initially described for infected or

immunized animals and later tested with human sera. Only few

were identified directly for patients. A general inventory of the

range of the serospecificities in VL patients has not been attempted

yet.

With this report we present a strategy for highly resolved

mapping of serological specificities that allows to assess the range

and specificities of immune responses to complex infectious agents

such as protozoal parasites and, at the same time, to identify

specific antigens. This strategy combines Western blot seroscreen-

ing with proteome technologies involving 2-dimensional polyacryl

amid gel electrophoresis (2D-PAGE) and mass spectrometry (here,

matrix assisted laser desorption/ionisation – time of flight mass

spectrometry, MALDI-TOF MS) for the identification of the

antigens.

RESULTS

Antigenicity of Leishmania parasites in VL patients
As established by clinical diagnostics and a number of laboratory

investigations, infection of an individual with LD induces vigorous

serological and cellular immune responses [4,5]. However, the

scope of these responses in terms of the range of parasite antigens

addressed and inter-individual variations has not been unraveled

in detail. To gain detailed insights into the antigenicity of the

parasites as detected by the serological specificities of VL patients,

to assess the range of recurring and the degree of deviating

specificities in the antibody responses, and to determine whether

there is a hierarchy of antigens as to the frequencies and

magnitudes of responses induced, we separated LD protein

extracts by 1-dimensional gel electrophoresis and probed the

respective Western blots with sera of clinically diagnosed VL

patients. All the sera of VL patients were collected on the same day

at the Kala-Azar Medical Research Center of the Banaras Hindu

University located in the city of Muzaffarpur, district of

Muzaffarpur in the Indian state of Bihar. Of the 15 patients

included in this report (Table 1), most were from highly endemic

foci around Muzaffarpur. The exceptions were patients number 1,

2 and 3 who were from Motihari in the district of Purbi

Champaran, North-West of Muzaffarpur that is also highly

endemic, and patient 6 who was from the mesoendemic district

of Siwan in Western Bihar. Control sera were from 4 healthy

housemate relatives of the patients. Ten of the patients were male,

5 female. Their average age was 25 years with a range of 7 to 45

years. They had been clinically diagnosed for VL on the day blood

was drawn for serum production or up to 66 days before. The

average time between diagnosis and blood retrieval for the study

was 26 days. The time that had elapsed since the diagnosis of VL

does not indicate the time of infection, which most likely had

occurred months before, but is a rough indication of the time of

obvious symptoms with high fever as indicator of vigorous immune

responses against the infection. Seven patients were receiving

sodium antimone gluconate for therapy, 8 had not been treated

yet.

The initial 1-dimensional Western blot analysis was done with

the established LD laboratory strain AG83 as source of

Leishmania antigens. AG83 had been isolated from a VL patient

in West Bengal about 20 years earlier and did not display the

possible antigenic variations of recent endemic parasites. The blots

were developed with the same amount and dilution of serum in

each case so that the different overall intensities of the signals

reflect the different overall anti-LD serotiters, and the presence

and intensities of the individual antigen bands the differences in

the specificity patterns of the individual immune responses. The

blots obtained with the 15 patient sera shown in Figure 1 reveals

a broad range of immune specificities and extensive heterogeneity

of the serological anti-LD responses in the individual patients.

While several antigen bands occur in the blots with all sera, in no

Table 1. Patients, sera and parasites
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

# age (yrs) sex serum code1 parasite code2 home district time since diagnosis (d) therapy

1 20 M P1 BHU1 Purbi Champaran3 27 SAG5

2 15 M P2 BHU2 Purbi Champaran 19 none

3 45 F P3 BHU3 Purbi Champaran 65 SAG

4 21 F P4 BHU4 n.a.6 0 SAG

5 32 M P5 BHU5 Muzaffarpur4 13 none

6 30 M P6 BHU6 Siwan 3 none

7 10 F P7 BHU7 n.a. 66 SAG

8 10 F P8 BHU8 Muzaffarpur 0 none

9 30 M P9 BHU9 Muzaffarpur 11 none

10 35 M P10 n.a. Muzaffarpur 5 none

12 32 M P12 BHU12 Muzaffarpur 58 SAG

13 30 M P13 BHU13 n.a. 58 none

14 7 M P14 BHU14 Muzaffarpur 31 SAG

15 35 F P15 BHU15 Muzaffarpur 18 SAG

17 19 M P17 BHU17 Muzaffarpur 9 none

1All sera were prepared from peripheral blood drawn on the same day.
2BHU1-20 are the laboratory codes for the L. donovani isolates HMOM/IN/02/BHU1-20. All parasites were isolated from splenic aspirates taken on the same day as the
sera.

3The patients from the district Purbi Champaran were all from the city Motihari.
4The patients from the district Muzaffarpur were either from the city Muzaffarpur itself or from villages around it.
5SAG: sodium antimone gluconate.
6n.a.: not available.
doi:10.1371/journal.pone.0000040.t001..
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case such shared antigens are equally dominant. In fact, the

pattern of dominant antigens reflected by the strong bands in the

blots is different for every individual VL patient analyzed. Neither

the overall intensities of the Western blot signals nor the individual

antigenicity pattern correlate with the time since diagnosis, or age

or sex of the patients. These analyses demonstrate that the

antibody responses to the parasites are highly individualized, and

that there are no uniformly dominant antigens and no recurring

hierarchies of the antigens targeted by the immune responses of

different patients.

Patterns of the anti-Leishmania serospecificities in

patients
The 1-dimensional Western blots from SDS-PAGE comprehen-

sively document the antigenicity of the parasites and the range of

the specificities of antibody responses against these parasites. The

antigen bands detected in these analysis, however, are likely to

include, depending on the specific patient serum, a varying

number of different antigens. For highly resolved analyses of the

antigenicity of LD and the specificities of the anti-parasite

antibody responses in VL patients, we ran 2-dimensional Western

blot analyses based on combinations of isoelectric focusing with

a pH range of 3 to 10 and SDS-PAGE with parasites isolated from

splenic aspirates of Patient 2 and probed the replica Western blots

with autologous serum and sera of Patients 14, 17 or 3 (Figure 2A,

B, C, D, respectively), whereby the parasites were from a patient

from Motihari as were the sera p2 and p3, whereas the sera p14

and p17 were from patients from Muzaffarpur. Since the protein

source is the same for all 4 blots shown, these analyses compare the

specificities of the antibody responses of the 4 patients. The overall

patterns of the spots are different in all 4 cases. Notwithstanding

this heterogeneity, a large number of antigens are detected by all 4

sera. The most prominent of these shared antigens are circled with

dotted lines in Figure 2A–D. The relative intensities of the signals

in the different blots differ greatly indicating that the immunoge-

nicity of the antigens differs in different patients. In addition to

recurring specificities, an even larger number of antigens is

detected by the sera of only 1 or up to 3 of the patient sera but not

by the others. The range of intensities of the divergent signals is

comparable to those of the shared ones. Some of the divergent

spots are very intense in 1 or 2 blots but completely missing from

the others. These differences are particularly noticeable in areas

with clusters of antigens where some antigens of the clusters are

detected by one serum but not by the other sera. A comparison of

the specificity patterns of the sera of patients from the 2 different

districts among each other and with the sera of patients from the

respective other district reveals no correlation, again emphasizing

the individuality of the serospecificities in responses to LD.

Differential antigenicity of LD isolates
To analyze possible variations of the antigenicity of LD parasites

we compared the 2-dimensional Western blot patterns of LD

isolates from Motihari and Muzaffarpur probed with sera from the

same or from the respective other district. This comparison is

shown with panels C–F in Figure 2. Here, BHU2 is representative

of Motihari LD isolates (Figure 2C and D) and BHU17

representative of Muzaffarpur isolates (Figure 2E and F). Both

isolates were obtained from splenic aspirates collected on the same

day. They represent the parasites of the same endemic season from

endemic foci of two adjacent districts in Bihar, India. The sera

used for the Western blots were from Patient 3 of Motihari

(Figure 2D and F) and Patient 17 of Muzaffarpur (Figure 2C and

E). Both sera produced similar antigenicity/specificity patterns

when tested with the different parasite isolates (comparing

Figure 2C with E, and D with F). These similarities of the

specificity patterns with different isolates testifies to the re-

producibility of the 2-dimensional electrophoresis. However,

despite the overall similarities of the antigen patterns detected

with the same serum, there are a number of differences which are

circled in the panels Figure 2C–F where the corresponding areas

of the antigen spots are pair-wise matched for the 2 different LD

isolates. The intensities of the antigen spots vary and some of the

weaker signals might just have dropped below detection limit in

one of the panels that are compared. However, a number of very

intense antigen spots detected in the Western blots with the BHU2

isolate are clearly missing from the Western blots with the BHU17

isolate. As it was the case for the blots with BHU2 parasites, the

antigenicity pattern of BHU17 varies with the serum (comparing

Figure 2E and F). Together, these comparisons expose differences

in antigenicity of the 2 isolates. Both isolates have clearly been

typed as L. donovani. In fact, all Leishmania parasites isolated from

the endemic regions in the Ganges plane until now were L. donovani

and were found to be of the same clade. None of the typing

protocols applied to these isolates has ever demonstrated any

species difference. Also the isolate used for the presented study had

been typed and found to be of the same species (G. Schönian et al.,

to be published shortly). The different antigenicities seen in the 2D

Western blots, thus, are antigenic variations in a closely related

cluster within the same species. The differences are particularly

Figure 1. Crude extract of Leishmania donovani AG83 cells was separated in a 12% SDS-PAGE. After transfer of the protein onto nitro cellulose each
lane was incubated separately with serum of 15 individuals with symptoms of VL (lanes 1–15) and 4 healthy donor controls (lanes 16–19).
doi:10.1371/journal.pone.0000040.g001
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noticeable in the case of the isolate BHU17 but also detected with

isolate BHU2. With both sera, the reactivities were found to be

weaker towards the LD antigens of the isolate obtained from the

patients themselves than against the other isolate. This observation

could be the result of selection processes by the immune system.

Identification of Leishmania antigens in visceral

leishmaniasis
The identification of antigens requires that the antigen spots of the

Western blots are assigned to protein spots in silver-stained 2-

dimensional electrophoresis gels. The high number of antigen

spots allows to identify patterns that can be compared to the

patterns obtained by protein staining and used to define the

coordinates of the matching spots. Nonetheless, high densities of

antigens and proteins in the two maps to be compared also raise

the problem that small uncertainties in aligning individual spots

might obscure proper assignment. Moreover, antigen detection by

Western blotting is more sensitive than protein detection by silver

staining. Antigens that produce intense signals in the Western blots

may, therefore, well correspond to minor spots in the silver-stained

gels. To enhance the resolution of the 2-dimensional separation

and, thereby, improve the alignments of Western blots and silver-

stained gels, we produced zoom gels with a pH range of 4.5 to 7,

the region in the 2-dimensional gels that is most densely populated

with protein spots. The proteome map obtained with the silver-

stained zoom gels for parasite BHU2 and shown with Figure 3B

displays 1067 clearly detectable protein spots, the corresponding 2-

dimensional immunoblot obtained with the autogeneous serum

some 330 antigen-spots (Figure 3A). It appears from the

comparison of proteome map and immunoblot that a high

fraction of the Leishmania proteome consists of antigens that

induced specific responses in VL patient.

Of the 330 antigens 68 could unequivocally be assigned to

protein spots in the silver-stained gels. In the remaining cases the

match was uncertain. These results were reproduced in 9

independent silver-stained gels and 3 Western blots. Of the 68

matched antigens the 6 indicated by arrows in Figure 3 were

identified from the silver-stained gel by mass spectrometry (see

below). To compare antigenicity with the expression levels of the

proteins we stained a 2-dimensional gel with the fluorescent dye

SyPro Ruby which produces spot intensities that are proportional

to the protein amount. Figure 3C shows a section of this gel with

the antigens assigned to protein spots in the silver-stained gel

Figure 2. 2D-Western blot analysis of the serospecificities of different VL patients and of the antigenicities of L. donovani isolates from different
endemic districts in Bihar, India. Whole protein extracts of L. donovani BHU2 (MHOM/IN/02/BHU2) (Panels A–D) isolated from a patient from Motihari
or BHU17 (MHOM/IN/02/BHU17) (Panels E–F) isolated from a patient from Muzaffarpur district were separated by 2-dimensional electrophoresis (pH-
range of first dimension: 3–10 on 18 cm IPG-strips; second dimension: 12.5% SDS-PAGE). The separated proteins were blotted onto nitrocellulose
membrane and probed with sera of different patients: A: patient No. 17; B: patient No. 2; C: patient No. 3; D: patient No. 14; E: patient No. 17; F:
patient No. 3. Patients 2 and 3 were from Motihari, patients 14 and 17 from Muzaffarpur. For comparison of the serospecificities shown with Panels
A–D, BHU2 proteins were probed with 4 different sera, 2 from Motihari, 2 from Muzaffarpur district. Dotted circles indicate antigens recognized by all
4 sera. Private specificities are not marked. For comparison of the antigenicities of different LD isolates shown with Panels C–F, proteins of BHU2
(Panels C and D) and BHU17 (Panels E and F) were probed with a serum from the same district and a serum from the respective other district. Circles
with full lines in panels C–F indicate antigens that are detected only in one of the two LD isolates but not in the other.
doi:10.1371/journal.pone.0000040.g002
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circled. For orientation, the 6 identified antigens are indicated with

arrows. A comparison of the Western blot in Figure 3A and the

SyPro Ruby-stained gel in Figure 3C reveals that the antigenicity

of the proteins does not correlate with their expression levels.

There are a large number of strongly expressed proteins that are

not or only very faintly detected as antigens in the Western blot

and, vice versa, a number of very intense signals in the Western

blot that correspond to very faint or even undetectable spots in the

SyPro Ruby-stained gel.

For identification, the six protein spots were excised from the

silver-stained gel and the proteins fragmented in the gels with

trypsin. The tryptic fragments were extracted and analyzed by

Figure 3. Mapping of the serospecificities of VL patients against L. donovani antigens. The proteins of total lysates of L. donovani isolate BHU2
(MHOM/IN/02/BHU2) promastigotes were separated by 2-dimensional gel electrophoresis with a pH gradient of 4.5–7 in the first dimension and
a 12.5% SDS-PAGE in the second. A: Western blot developed with autologous serum. 330 Leishmania antigens could be counted. B: The
corresponding silver-stained gel displaying 1067 protein spots. 68 of 330 antigens could be assigned to protein spots in the silver-stained gel. Six of
the protein spots, indicated by arrows and numbered 1–6, were processed for protein identification by mass spectrometry. C: Inner section of a SyPro
Ruby-stained gel with the same protein material. The proteins that match antigens detected by the Western blot analysis shown in Panel A are
circled. 54 antigenic proteins are thus marked, 14 antigenic proteins are outside the sections shown. The arrows again indicate the six identified
proteins.
doi:10.1371/journal.pone.0000040.g003

Leishmania Antigenicity

PLoS ONE | www.plosone.org 5 December 2006 | Issue 1 | e40



mass spectrometry. The resulting mass pattern of these fragments

(peptide mass fingerprints, PMF) are shown in Figure 4 for the 6

antigens. These patterns were used for MASCOT database

searches for corresponding PMF pattern generated from the

sequence database entries. The searches identified the antigens as

HSP70 (spots 1 and 2), gp63 (spot 3), the initiations factor EIF-4A

(spot 4), the elongation factor EF2 (spot 5) and grp78 (spot 6). The

percentages of matched masses and sequence coverage are listed

for each protein in Table 2. Remaining masses that could not be

assigned to the identified protein were extensively reanalyzed but

did not produce any evidence for proteins than the identified ones

which supports the identification of the antigens. Table 2 lists also

the theoretical masses and isoelectric points calculated for the

proteins from their sequences, and the corresponding experimen-

tal values deduced from the 2-dimensionen electrophoresis gel.

The identifications of the proteins were of sufficiently high

significance for HSP70, gp63 and grp78. To confirm the results

for EIF-4A and EF2, one of the matched fragments each was

subjected to post-source decay (PSD) analysis. The PSD spectra

for these 2 fragments, the assignments of the masses to the N- and

C-terminal fragment series and the interpretation of these signals

in terms of amino acid sequence are provided with Figure 5A and

B. In both cases the resulting fragment sequences,

HNLIQGLVLSPTR for the spot 4 fragment (Figure 4C and

5A) and AYLPVAESFGFTADLR for the spot 5 fragment

(Figure 4D and 5B) match exactly the sequences of the proteins

identified by PMF analysis, i.e. EIF-4A and EF2, respectively. For

the antigens in spots 1, 4, 5 and 6 the theoretical and experimental

values are in good agreement. The theoretical and experimental

masses of antigen spot 3 also agree very well with the sequence of

the identified protein gp63. The difference of about 1.4 pH units

in the pI values can be explained by the fact that gp63 is an outer-

membrane glycoprotein rich in sialic acids that confer additional

negative charges to the protein. The antigen in spot 2 was

identified, like spot 1, as HSP70. While its isoelectric point

corresponds well to the expected value, its mass is with 45 kDa

more than 20 kDa too small. For both spots, the identifications are

clear and 6 of the tryptic fragments are the same for both proteins.

An obvious explanation for the discrepancy would be that the

protein in spot 2 is a truncated version of the HSP70 found in spot

Figure 4. Identification of L. donovani antigens by mass spectrometry. The protein spots in the silver-stained gel that had been assigned to antigen
spots in the corresponding Western blot were excised, destained and incubated with trypsin. The resulting fragments were extracted from the gel
pieces and analyzed by MALDI-TOF-MS. Panels A–F show the peptide mass fingerprints (PMF) of the proteins in spots 1–6, respectively. Upon
processing via MASCOT, the antigens were identified as HSP70 (spots 1, panel A and spot 2, panel B), gp63 (spot 3, panel A), EIF-4a (spot 4, panel C),
Ef2 (spot 5, panel D) and grp78 (spot 6, panel E). The fragment masses that could be matched to theoretical trypsin digests of the identified proteins
are indicated by asterisks. Open circles indicate the autolytic fragments of trypsin that were used for internal calibration.
doi:10.1371/journal.pone.0000040.g004
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1. However, this explanation is excluded by the fact that the

tryptic fragments assigned to the protein sequences scatter along

the entire extend of the respective proteins, between sequence

position 73 and 610 for spot 1 and 51 and 610 for spot 2. The

alignment of the tryptic fragments of the spot 2 protein with the

sequence of HSP70 shows a stretch of 210 amino acids

Figure 5. Confirmation of the protein identifications for spots 4 and 5 by PSD mass spectrometry for peptide fragmentation fingerprint (PFF) analyses.
Panel A shows the PSD spectrum of a 1447 Da fragment of the protein in spot 4 and panel B that of a 1757 Da fragment from antigen spot 5. The
former was identified as the tryptic fragment HNLIQGLVLSPTR from EIF-4a corresponding to the L. major sequence of this protein and the latter as the
tryptic fragment AYLPVAESFGFTADLR of EF2 also of L. major. In both cases, the protein identification by PFM analyses were, thus, confirmed by PFF
analyses and homology to the sequences of the proteins in L. major.
doi:10.1371/journal.pone.0000040.g005

Table 2. Antigens in human visceral leishmaniasis identified by proteome serology.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spot # Identified protein reference species, gene identifier # Theoretical

Apparent values
calculated from the
2D-electrophoresis PMF results

pI Mw(kDa) pI Mw(kDa)

Matched
masses

Sequence
coverage

1 heat shock 70-related protein 1, L. major, gi|1170375 5.52 68.29 5.52 66 12/34 20%

2 heat shock 70-related protein 1 L. major, gi|1170375 5.52 68.29 5.36 45 13/41 22%

3 leishmanolysin (gp 63) L. chagasi, gi|539396 6.84 63.79 5.45 62 16/47 27%

4 eucaryotic initiation factor 4A (EIF-4A) L. major, gi|11466166 5.83 45.30 5.82 46 12/42 33%

5 elongation factor 2 (EF-2) L. major, gi|11244578 5.80 86.12 5.88 87 11/53 20%

6 glocose-regulated protein 78 (grp78) L. donovani, gi|16797868 5.19 68.87 5.11 71 10/23 16%

The proteins of L. donovani BHU2 (MHOM/IN/02/BHU2) were separated by 2DE, blotted onto a nitrocellulose membrane and probed with serum from the same patient
from whom the parasites were isolated. Antigenic proteins assigned to the proteome map were digested with trypsin and identified by mass spectrometry. The proteins
were identified by matching the experimental peptide mass fingerprints with fingerprints computed for sequence database entries or by sequencing selected tryptic
fragments by post-source decays and peptide fragmentation fingerprint analyses. The theoretical pI and mass values were calculated from the polypeptide sequences
of the identified proteins, the apparent values from the positions of the spots in the 2DE.
doi:10.1371/journal.pone.0000040.t002..
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corresponding to about 25 kDa without a matching tryptic

fragment. For spot 1 there are 2 fragments within this region.

Alternative explanations for the low mass of the protein in spot 2

could be that it is a homologue of HSP70, or product of trans- or

kinetoplastid-specific cis-RNA splicing mechanisms commonly

found in kinetoplastid protozoa such as Leishmania [22] but also

described for other species and phyla [23]. In fact, we have found

substantial heterogeneity in the 39 part of HSP70 mRNA from LD

including one clear case of trans-splicing [24]. These observations

do not prove but would fit the second explanation for the deviating

mass of the spot 2 antigen. Seroreactivity of the p2 serum towards

HSP70 had also been demonstrated with a recombinant bacterial

expression clone for the full length gene product [24], thus,

confirming the identification of this antigen.

The experiments for the assignment and identification of the

antigens was done 4 times, once with a silver-stained gel (shown in

the Figure 3), once with a Coomassie-stained gel and twice with

SyProRuby-stained gels (one example shown in Figure 3). Five of

the antigens were identified in all 4 gels, one, EF2 (spot 5) 3-times,

i.e. in the silver- and the two SyPro Ruby-stained gels, not in the

Coomassie-stained gel which is most likely due to the lower

sensitivity of Coomassie staining compared to the other two

techniques. To test the reproducibility of the spot pattern in the

protein-stained gels and Western blots, all together, 13 gels were

run with BHU2 proteins, 2 stained with SyPro Ruby, 2 with

Coomassie and 9 with silver. 4 Western blots were run. The

reproducibility of the spot pattern in the gels and blots was very

high and the 68 antigens could be assigned to the silver-stained

gels in nearly all cases.

DISCUSSION
The proteome-serological approach described here produces

comprehensive and highly resolved representations of the

antigenicity of L. donovani parasites and the specificities of anti-

Leishmania immune responses in visceral leishmaniasis patients

that is beyond the capabilities of previous attempts and

technologies. The numbers of antigens detected in 2-dimensional

immunoblots for individual patients exceed 330, a number that

corresponds to more than 30% of the number of protein spots

detectable in silver-stained electrophoresis gels for the same

parasites. Although these figures are far higher than any earlier

analyses have exposed, they still are likely to be low estimates of

the real complexity of the antibody responses against the parasites

in human leishmaniasis. A comparison of the specificity patterns of

sera from different patients reveals great differences in the antigens

targeted. No two VL patients develop antibody responses with

even closely similar profiles. Nonetheless, there is a large number

of shared specificities that can be instrumental in the development

of diagnostics or vaccines. But also these shared specificities are

represented in the different patients with different intensities and

hierarchies. There is no immunodominant antigen or set of

antigens, there is not even an antigen that dominates the immune

responses in a larger fraction of the patients. This holds true also

when the specificity patterns are compared within age and sex

groups or related to severity or the time since onset of the disease.

However, there still may be specificity patterns that are indicative

of immunity and protection against reinfection, or the likelihood of

cutaneous leishmaniasis, Post-Kala Azar Dermal Leishmaniasis

(PKDL), after initial VL [4]. As demonstrated by the data

presented here, diagnostic arrays based on seroresponses to the

sets of antigens that most often are targeted are expected to be far

more sensitive and indicative of the outcome of the disease than

simple monospecific diagnostics such as the currently widely

applied rK39 dipstick [6,25,26]. It will be up to long-term

proteome-serological follow-up studies to identify such patterns, in

particular, with individuals who are seropositive but disease-free

and patients who develop PKDL versus those who do not. The

identification of specificity patterns might also be guidance for the

search for candidate vaccine antigen. Currently, for development

of vaccines with defined antigenicity there is a focus on one or few

antigens such as LACK, LeIF, TSA, gp63 and LmSTI-1 (27,

www.who.int/vaccine_research/). Although some of these were

confirmed with the present study as relevant antigens in human

visceral leishmaniasis, it might be advisable to define sets of

antigens that correlate with protection, and to design vaccines that

induce broad and complex immune responses. As it becomes

increasingly clear that T cells are crucial for effective anti-

Leishmania immune responses, the composition of the vaccines

should be designed to address these cells as well. While there are

varying factors that could be responsible for the enormous

heterogeneity of the immune responses in VL patients, the

immunogenetics of the patients, i.e. HLA control of T cell

responses, is expected to have a major part in this. Future studies

will have to correlate the specificities of serological and cellular

immune responses with HLA genetics, and with individual courses

of the disease and development of immunity as exemplified by

seropositive but disease-free individuals.

In addition to the specificities of the anti-Leishmania immune

responses, the proteome serological analyses also show differences

in the antigenicity of the parasites, in particular, when the

seroresponses against parasites from different but neighboring

endemic areas in Bihar are compared. Most striking are losses in

antigenicity seen when the seroreactivities of individual patients

against parasites isolated from their own splenic aspirates are

compared to those against parasites isolated from patients of

a distant endemic area. Since the parasites in all cases are LD of

the same clade, these differences seem to indicate antigenicity

drifts in the parasites. They do not correlate with major differences

in the proteomes of the different parasite population as detectable

in silver-stained 2-dimensional electropherograms. Loss of antige-

nicity as indicated by these data suggests immune evasion by the

parasites. Such responses to the hosts immune responses have been

described for other protozoans such as plasmodia [28,29] and

trypanosomes [30–33], and related primarily to the persistence of

the infections in the individual host [34–36]. Long-term

persistence in a host is essential for the parasites as they have to

shelter and propagate for a sufficiently long time to have a chance

to be taken up by a sand fly vector again for re-starting their life

cycle and transmitting their progenies to new hosts. This need to

escape immune attacks for an extended period is particularly

important in the endemic areas in India where Leishmania donovani

infections are anthroponotic, i.e. without extrahuman vertebrate

host, and endemic outbreaks are spaced by extended periods of

low-prevalence [37,38].

The data presented here provide new insights into the quality

and identity of the antigens targeted by the immune systems of

leishmaniasis patients. Requena and colleagues had suggested that

anti-Leishmania antibody responses are preliminarily directed

against highly expressed conserved antigens that are typically parts

of multi-component complexes such as heat-shock proteins,

ribosomal proteins or proteins of the DNA replication and the

transcription machineries. These antigens were dubbed pananti-

gens [39,40]. While the antigens we identified fit this category of

proteins [41–45], the high numbers of antigens, many of them low

abundance proteins, would rather testify against such generaliza-

tion and suggest that, due to technical shortcomings such as

sensitivity of the analytical procedures for protein identification,

highly expressed proteins are more likely to be identified than
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highly antigenic but poorly expressed proteins. The number of

antigens detected, the high antigenic coverage of the proteome of

the parasite and the great variation in the specificity profiles seen

with sera from different patients strongly suggest that many

different categories of proteins can be antigens.

As illustrated with the results presented herein, proteome

serology is a powerful and highly resolving technology that

provides an overall inventory of the antigenicity of the infectious

agents and of the specificity pattern of the immune responses

against complex pathogens. At the same time it allows to identify

defined antigens as well as antigenic patterns which may advance

the development of differential diagnostics and of vaccines.

Notwithstanding these potentials, proteome serology is also

a demanding technology with a number of difficult steps [46].

Problems may arise when protein-stained gels are compared with

Western blots to assign antigen to protein spots for subsequent

identification. With large numbers and high densities of proteins

and antigens, proper assignment can be difficult. In parts, this

problem is due to the differences in sensitivity of Western blot and

protein detections. In the work presented herein, we employed

a series of measures to define the coordinates of the antigens in the

protein-stained gels exactly (see Materials and Methods). Although

pattern recognition software may facilitate the task of assigning

antigen and protein spots, manual editing of the results appears

inevitable. In addition, the identification of the proteins by peptide

mass fingerprint or peptide fragmentation fingerprint analyses is

easily obscured by a few amino acids exchanges in the protein

sequences. The L. donovani genome has not yet been sequenced so

that the present work had to be done with information of the L.

major genome sequence database and occasional L. donovani protein

sequences. Differences in protein sequences between these two

Leishmania species can be responsible for some of the failures to

identify the antigens. In cases where the amounts of proteins in the

gels permit, the limitation of the usual peptide mass or peptide

fragmentation fingerprint analyses for protein identification in

proteomics can be overcome by de novo sequencing of tryptic

fragments [47]. Also, the rapidly progressing genome project for L.

infantum which is closely related to L. donovani will improve the

success rates in protein identification from 2-dimensional electro-

phoreses. In any case, sensitivity remains a problem. Since

prominent antigens are not necessarily highly expressed proteins,

their identification often fails due to lack of sufficient amounts of

material for mass-spectrometric identification. Despite these

difficulties, proteome serology appears to be superior to other

approaches to antigen discovery and will yield substantial new

information that will be instrumental in the development of new

diagnostics and vaccines.

MATERIALS AND METHODS

Parasites and sera
LD used are MHOM/IN/02/BHU2 (BHU2), MHOM/IN/02/

BHU17 (BHU17) and AG83. BHU2 and BHU17 are recent

isolates from spleen aspirates of VL patients from highly endemic

foci in Bihar, India [24]. The time courses of growth of the isolates

and lines used in the study were established and all parasites

harvested for analyses from the same time point of late-log growth

phase of early-passage cultures. The parasites were cultured as

promastigotes in medium M199 (Gibco BRL, Heidelberg) with

20% FCS (Biochrom AG, Berlin), 20 mM HEPES, 4 mM

sodiumbicarbonate and 20 U/ml penicillin/streptomycin at

22uC. The sera used for Western blot analysis were from 15

Indian VL patients (P1–10, 12–15 and 17) and, as controls, 4

healthy housemate relatives (H1–H4) of patients. The numbering

of the patient sera matches the numbering of the parasite isolates,

thus, sera P2 and P17 were from the same patients as the parasite

isolates BHU2 and BHU17. The study had been reviewed and

approved by the institutional ethics committees of the Kala Azar

Medical Research Center, Banaras Hindu University, Varanasi,

the Indian Institute of Chemical Biology (IICB), Calcutta and the

Charité – Universitätsmedizin Berlin as well as by the Indian

national ethics committee at the Indian Council of Medical

Research (ICMR) and the Indian Health Ministry’s Screening

Committee.

Protein sample preparation
The parasites were harvested by centrifugation at 2,050 6 g for

30 minutes at 20uC, washed thrice with PBS and solubilized in

lysis buffer (7 M urea, 2 M thiourea, 2.5% Triton X-100, 2% b-

mercaptoethanol, 0.8% Pharmalyte pH 3.5–10 (LKB, Freiburg,

Germany), 200 mM PefablockH (Merck, Darmstadt), 1 mM

pepstatin (SIGMA, Munich, Germany) and 10 mM leupeptin

(SIGMA, Munich, Germany) as adapted from Görg and Chan

[48,49] by vortexing and sonicating for 10 minutes in an ice

cooled waterbath. The cell extracts were then incubated for one

hour at room temperature (RT) with 4,000 U/ml benzonase

(Merck, Darmstadt, Germany) to degrade nucleic acids and then

centrifuged at 350,000 6 g for 15 minutes at 15uC. The

supernatants were collected, incubated one more time with

Benzonase for 10 minutes at RT and cleared by ultracentrifuga-

tion as before.

Two-dimensional polyacrylamid gel electrophoresis
Isoelectric focussing (IEF) was done in immobilized pH-gradient

gel strips (IPG strips 180 mm 63 mm; Pharmacia, Freiburg) with

pH ranges of 4 to 7 or 3 to 10 [48,49]. Approximately 100 mg

protein, extract of 16108 cells, in 350 ml solubilization buffer were

applied per IPG strip. The samples were loaded overnight at RT

by in-gel re-swelling under silicon oil in a nitrogen and water

saturated atmosphere to prevent oxidation of the protein and

drying of the gel strips. The loaded IPG strips were rinsed,

mounted on a cooled ceramic plate and connected with the

electrodes via water-wetted paper bridges to the electrode buffers.

The IEF was run at 20uC under silicon oil in a nitrogen- and

water-saturated atmosphere. The electric parameter were

0.15 mA per IPG strip and voltage settings stepwise increased

18 h 50 V, 1 h 150 V, 2 h 300 V, 1 h 600 V, 24 h 3,500 V and

3 h 5,000 V for a total of 101,250 Vh for pH 4–7 IPG strips and

18 h 50 V, 1 h 150 V, 2 h 300 V, 1 h 600 V, 6.5 h 3,500 V and

3 h 5,000 V for a total of 40,000 Vh for pH 3–10 IPG strips.

After the run, the IPG-strips were stored at 220uC. For the

second dimension, the IPG strips were thawed, rinsed with

ultrapure water and equilibrated to SDS-PAGE conditions for

15 minutes in equilibration buffer (6 M urea, 30% glycerol, 2%

sodium dodecylsulfate (SDS), Tris pH 6.8 and bromophenol blue,

1% dithiothreitol (DTT)) followed by 15 minutes in the same

buffer but with 4% iodoacetamide instead of DTT. The

equilibrated IPG-strips were rinsed with de-ionized water and

placed gel-side to gel-side onto the 4.8% acryl amide, 0.13%

bisacryl amide stacking gel of a horizontal SDS polyacrylamide gel

with a 12.3% acryl amide, 0.34% bisacryl amide separation gel.

The settings for the runs were 1,000 V, 40 W and 20 mA for 2–

3 h for the pre-run to transfer the protein from the IPG strip into

the SDS polyacrylamid gel, followed by 1,000 V, 40 W and

40 mA for the separation until the running front reached the

anodic end of the gel.
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Protein staining
The gels were stained with the highly sensitive silver staining

approach according to Blum and colleagues [50]. Briefly, SDS-

PAGE gels were fixed in a solution of 40% Methanol and 10%

acetic acid for one hour or overnight. Then, the gels were washed

thrice for 20 minutes in ultrapure water, sensitized for one minute

in 0.02% sodium thiosulfate, washed three times for 20 seconds in

water and incubated for 20 minutes in silver-staining solution

(0.2% silver nitrate, 0.0074% formaldehyde). After washing thrice

for 20 seconds in water, the gels were incubated in developing

solution (6% sodium carbonate, 0.00015% formaldehyde,

0.0004% sodium thiosulfate) until protein spots are visible. The

reactions were stopped with 0.025% EDTA in water. SyPro Ruby

(Invitrogen, Heidelberg, Germany) staining was done according to

the manufacturer’s instructions.

Western blot
The proteins from unstained SDS-PAGE were transferred onto

nitrocellulose membranes (Schleicher & Schüll, Dassel, Germany)

by semi-dry blotting for 2 hours at 400 mA. Free binding sites on

the membranes were blocked with 5% low fat milk powder in Tris-

buffered saline (TBS) for one hour at room temperature or at 4uC
overnight. After blocking, the membranes were incubated with

patient sera at a 2,000-fold dilution for one hour at room

temperature, washed thrice for 10 minutes with TBS and

incubated for 30 min with alkaline phosphatase-labelled anti

human IgG (Anti-Human Ig-AP, Fab fragment; Boehringer

Mannheim) at a 5,000-fold dilution. After washing three times

for 10 minutes with TBS, the membranes were equilibrated to

developing buffer (100 mM NaCl, 100 mM Tris-HCl, pH 9.5)

and developed in the dark with 100 ml BCIP and 100 ml NBT in

100 ml developing buffer until antigen spots are visible. The

reactions were stopped by replacing the developing solution with

water. For 1-dimensional Western blots, the parasite proteins were

separated by SDS-PAGE, 12% acryl amide, 0.8% bis-acryl amide,

and blotted 1 h with 60 mA and processed as above.

Matching antigens and protein spots
To match antigen spots in Western blots with the corresponding

protein spot in the silver-stained gel, the coordinates of the blots

and the gel were defined, first, with artificial spots at the corner

points, Ponceau S staining of the blot filter and aligning the spot

pattern with the spot pattern of the silver-stained gel and partial

blotting of a master gel and definition of marker spot sets, second,

definition of spot pattern in the local environments of the antigen

spots to match blots and gels in these local regions accurately,

third, comparing the sizes and shapes of the antigen and protein

spots and considering only those that are alike in these two

parameter.

In-gel digestion of protein
The protein spots were excised manually with a self-made spot

picker and de-stained as described by Gharadaghi and colleagues

[51] with 50 ml of Farmer’s reducing solution (15 mM potassium

ferricyanide and 50 mM sodium thiosulfate, both dissolved in

water) and then washed three times for 5–10 minutes with 150 ml

water. Afterwards the gel spots were soaked in acetonitrile and

dried under vacuum. The gel pieces were re-swollen in 7.5 ml of

5 mM ammonium bicarbonate with 75 ng of modified porcine

trypsin (sequencing grade, modified; Promega; Madison, USA) to

fragment the protein. After 10 minutes, 7.5 ml of 5 mM

ammonium bicarbonate were added and the solution with the

gel pieces incubated for at least 4 hours in a 37uC water bath. For

MS analysis, 1.5 ml of the aqueous supernatants were mixed with

1 ml of 2,5-dihydroxybenzoic acid (DHB) (SIGMA, Munich,

Germany) (5 mg/ml water) directly on MALDI targets (MTP

AnchorChip 600/384, Bruker Daltonik, Bremen) and air-dried.

Mass spectrometry
The mass spectrometry (MS) was done with a Reflex IV MALDI-

TOF mass spectrometer (MS; Bruker Daltonik, Bremen) in

reflection mode at an acceleration voltage of 20 kV. The MS

was calibrated either with angiotensin II (1046.5 Da), angiotensin

I (1296.6 Da), bombesin (1619.8 Da), substance P (1347.7 Da),

ACTH 1–17 (2093.0 Da) and ACTH 18–39 (2465.1 Da) as

external standards and with the autolytic 842.50 Da and

2211.10 Da trypsin fragments as internal standards. Monoisotopic

peptide masses were measured. The spectra were processed by the

‘‘Xmass’’ software (Bruker Daltonik, Bremen) and the peaks

annotated manually. Post-source decay (PSD) analyses were done

in 12 sections for the entire mass range and data accumulated with

up to 300 shots per section.

Database analyses
The peak lists of the mass spectra were used for peptide mass

fingerprint analyses with the Mascot software (Matrix Science;

http:www.matrixscience.com/search_form_select.html) and pro-

found (prowl; http://prowl.rockefeller.edu/profound_bin/Web-

ProFound.exe) together with the NCBI sequence database. Most

proteins were identified using the following parameter: database:

eukaryota (eucaryotes); enzyme: trypsin; variable modifications:

oxidation (M), propionamide (C); mass values: monoisotopic;

protein mass: unrestricted; peptide mass tolerance: 6 100–

200 ppm; peptide charge state: 1+; maximum missed cleavages:

1. The analyses of the PSD datasets were done either by peptide

mass fingerprint or peptide fragmentation fingerprint analysis with

Mascot.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the expert technical assistance by

Arthur O’Connor. We also wish to thank Patricia Zambon for her

assistance in preparing the manuscript.

Author Contributions

Conceived and designed the experiments: PW SR SS. Performed the

experiments: MF RB KR ST. Analyzed the data: PW MF RB SS.

Contributed reagents/materials/analysis tools: SS. Wrote the paper: PW

MF.

REFERENCES
1. Chang KP, Dwyer DM (1976) Multiplication of a human parasite (Leishmania

donovani) in phagolysosomes of hamster macrophages in vitro. Science 193:
678–680.

2. Killick-Kendrick R (1990) The life-cycle of Leishmania in the sandfly with

special reference to the form infective to the vertebrate host. Ann Parasitol Hum

Comp 65 Suppl 1: 37–42.

3. Pearson RD, Wheeler DA, Harrison LH, Kay HD (1983) The immunobiology
of leishmaniasis. Rev Infect Dis 5: 907–927.

4. Davidson RN (1999) Visceral leishmaniasis in clinical practice. J Infect 39:

112–6.

5. Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin

Microbiol Rev 19: 111–126.

Leishmania Antigenicity

PLoS ONE | www.plosone.org 10 December 2006 | Issue 1 | e40



6. Kumar R, Pai K, Kumar P, Pandey HP, Sundar S (2006) Sero-epidemiological

study of kala-azar in a village of Varanasi district, India. Trop Med Int Health

11: 41–48.

7. Ghedin E, Charest H, Zhang WW, Debrabant A, Dwyer D, et al. (1998)

Inducible expression of suicide genes in Leishmania donovani amastigotes. J Biol

Chem 273: 22997–3003.

8. McMahon-Pratt D, Rodriguez D, Rodriguez JR, Zhang Y, Manson K, et al.

(1993) Recombinant vaccinia viruses expressing GP46/M-2 protect against

Leishmania infection. Infect Immun 61: 3351–3359.

9. Titus RG, Gueiros-Filho FJ, de Freitas LA, Beverley SM (1995) Development of
a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci U S A

92: 10267–10271.

10. Yang DM, Fairweather N, Button LL, McMaster WR, Kahl LP, et al. (1990)
Oral Salmonella typhimurium (AroA-) vaccine expressing a major leishmanial

surface protein (gp63) preferentially induces T helper 1 cells and protective

immunity against leishmaniasis. J Immunol 145: 2281–2285.

11. Khalil EA, El Hassan AM, Zijlstra EE, Mukhtar MM, Ghalib HW, et al. (2000)

Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis:

a randomised, double-blind, BCG-controlled trial in Sudan. Lancet 356:

1565–1569.

12. Russo DM, Burns JM Jr, Carvalho EM, Armitage RJ, Grabstein KH, et al.

(1991) Human T cell responses to gp63, a surface antigen of Leishmania.

J Immunol 147: 3575–3580.

13. Skeiky YA, Benson DR, Elwasila M, Badaro R, Burns JM Jr, et al. (1994)

Antigens shared by Leishmania species and Trypanosoma cruzi: immunological

comparison of the acidic ribosomal P0 proteins. Infect Immun 62: 1643–1651.

14. Gurunathan S, Sacks DL, Brown DR, Reiner SL, Charest H, et al. (1997)

Vaccination with DNA encoding the immunodominant LACK parasite antigen

confers protective immunity to mice infected with Leishmania major. J Exp Med

186: 1137–1147.

15. Jardim A, Tolson DL, Turco SJ, Pearson TW, Olafson RW (1991) The

Leishmania donovani lipophosphoglycan T lymphocyte-reactive component is

a tightly associated protein complex. J Immunol 147: 3538–3544.

16. Rafati S, Salmanian AH, Taheri T, Vafa M, Fasel N (2001) A protective cocktail

vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine

proteinases of Leishmania major. Vaccine 19: 3369–3375.

17. Lopez-Fuertes L, Perez-Jimenez E, Vila-Coro AJ, Sack F, Moreno S, et al.
(2002) DNA vaccination with linear minimalistic (MIDGE) vectors confers

protection against Leishmania major infection in mice. Vaccine 21: 247–257.

18. Sjolander A, Baldwin TM, Curtis JM, Handman E (1998) Induction of a Th1
immune response and simultaneous lack of activation of a Th2 response are

required for generation of immunity to leishmaniasis. J Immunol 160:

3949–3957.

19. Ghosh A, Labrecque S, Matlashewski G (2001) Protection against Leishmania

donovani infection by DNA vaccination: increased DNA vaccination efficiency

through inhibiting the cellular p53 response. Vaccine 19: 3169–3178.

20. Campos-Neto A, Webb JR, Greeson K, Coler RN, Skeiky YA, et al. (2002)
Vaccination with plasmid DNA encoding TSA/LmSTI1 leishmanial fusion

proteins confers protection against Leishmania major infection in susceptible

BALB/c mice. Infect Immun 70: 2828–2836.

21. Sukumaran B, Tewary P, Saxena S, Madhubala R (2003) Vaccination with

DNA encoding ORFF antigen confers protective immunity in mice infected with

Leishmania donovani. Vaccine 21: 1292–1299.

22. Gopal S, Awadalla S, Gaasterland T, Cross GA (2005) A computational

investigation of kinetoplastid trans-splicing. Genome Biol 6: R95.

23. Hastings KE (2005) SL trans-splicing: easy come or easy go? Trends Genet 21:

240–7.

24. Theinert SM, Basu R, Forgber M, Roy S, Sundar S, et al. (2005) Identification

of new antigens in visceral leishmaniasis by expression cloning and immuno-

blotting with sera of kala-azar patients from Bihar, India. Infect Immun 73:
7018–7021.

25. Sundar S, Maurya R, Singh RK, Bharti K, Chakravarty J, et al. (2006) Rapid,

noninvasive diagnosis of visceral leishmaniasis in India: comparison of two
immunochromatographic strip tests for detection of anti-K39 antibody. J Clin

Microbiol 44: 251–253.

26. Schallig HD, Canto-Cavalheiro M, da Silva ES (2002) Evaluation of the direct

agglutination test and the rK39 dipstick test for the sero-diagnosis of visceral
leishmaniasis. Mem Inst Oswaldo Cruz 97: 1015–1018.

27. Coler RN, Reed SG (2005) Second-generation vaccines against leishmaniasis.

Trends Parasitol 21: 244–249.
28. Cunningham DA, Jarra W, Koernig S, Fonager J, Fernandez-Reyes D, et al.

(2005) Host immunity modulates transcriptional changes in a multigene family
(yir) of rodent malaria. Mol Microbiol 58: 636–647.

29. Bull PC, Pain A, Ndungu FM, Kinyanjui SM, Roberts DJ, et al. (2005)

Plasmodium falciparum antigenic variation: relationships between in vivo
selection, acquired antibody response, and disease severity. J Infect Dis 192:

1119–1126.
30. Mansfield JM, Paulnock DM (2005) Regulation of innate and acquired

immunity in African trypanosomiasis. Parasite Immunol 27: 361–371.
31. Horn D, Barry JD (2005) The central roles of telomeres and subtelomeres in

antigenic variation in African trypanosomes. Chromosome Res 13: 525–533.

32. Morrison LJ, Majiwa P, Read AF, Barry JD (2005) Probabilistic order in
antigenic variation of Trypanosoma brucei. Int J Parasitol 35: 961–972.

33. Dubois ME, Demick KP, Mansfield JM (2005) Trypanosomes expressing
a mosaic variant surface glycoprotein coat escape early detection by the immune

system. Infect Immun 73: 2690–2697.

34. Frank SA, Barbour AG (2006) Within-host dynamics of antigenic variation.
Infect Genet Evol 6: 141–146.

35. Gupta S (2005) Parasite immune escape: new views into host-parasite
interactions. Curr Opin Microbiol 8: 428–433.

36. Hisaeda H, Yasutomo K, Himeno K (2005) Malaria: immune evasion by
parasites. Int J Biochem Cell Biol 37: 700–706.

37. Sundar S (2001) Drug resistance in Indian visceral leishmaniasis. Trop Med Int

Health 6: 849–854.
38. Berman J (2006) Visceral leishmaniasis in the New World & Africa. Indian J Med

Res 123: 289–294.
39. Requena JM, Alonso C, Soto M (2000) Evolutionarily conserved proteins as

prominent immunogens during Leishmania infections. Parasitol Today 16:

246–250.
40. Requena JM, Alonso C, Soto M (2001) More panantigens in Leishmania.

Trends Parasitol 17: 64.
41. MacFarlane J, Blaxter ML, Bishop RP, Miles MA, Kelly JM (1990)

Identification and characterisation of a Leishmania donovani antigen belonging
to the 70-kDa heat-shock protein family. Eur J Biochem 190: 377–384.

42. Skeiky YA, Benson DR, Guderian JA, Whittle JA, Bacelar O, et al. (1995)

Immune responses of leishmaniasis patients to heat shock proteins of Leishmania
species and humans. Infect Immun 63: 4105–4114.

43. Yao C, Donelson JE, Wilson ME (2003) The major surface protease (MSP or
GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function.

Mol Biochem Parasitol 132: 1–16.

44. Jensen AT, Curtis J, Montgomery J, Handman E, Theander TG (2001)
Molecular and immunological characterisation of the glucose regulated protein

78 of Leishmania donovani(1). Biochim Biophys Acta 1549: 73–87.
45. Jensen AT, Ismail A, Gaafar A, El Hassan AM, Theander TG (2002) Humoral

and cellular immune responses to glucose regulated protein 78 - a novel
Leishmania donovani antigen. Trop Med Int Health 7: 471–476.

46. Krah A, Jungblut PR (2004) Immunoproteomics. Methods Mol Med 94: 19–32.

47. Demine R, Walden P (2004) Sequit: software for de novo peptide sequencing by
matrix-assisted laser desorption/ionization post-source decay mass spectrometry.

Rapid Commun Mass Spectrom 18: 907–913.
48. Gorg A, Postel W, Gunther S (1988) The current state of two-dimensional

electrophoresis with immobilized pH gradients. Electrophoresis 9: 531–546.

49. Chan C, Warlow RS, Chapuis PH, Newland RC, Bokey EL (1999) Immobiline-
based two-dimensional gel electrophoresis: an optimised protocol for resolution

of human colonic mucosal proteins. Electrophoresis 20: 3467–3471.
50. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins,

RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93–99.

51. Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Mass
spectrometric identification of proteins from silver-stained polyacrylamide gel:

a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:
601–605.

Leishmania Antigenicity

PLoS ONE | www.plosone.org 11 December 2006 | Issue 1 | e40


