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Polyploidy is common in higher eukaryotes, especially in plants, but it is generally assumed that most prokaryotes contain
a single copy of a circular chromosome and are therefore monoploid. We have used two independent methods to determine
the genome copy number in halophilic archaea, 1) cell lysis in agarose blocks and Southern blot analysis, and 2) Real-Time
quantitative PCR. Fast growing H. salinarum cells contain on average about 25 copies of the chromosome in exponential
phase, and their ploidy is downregulated to 15 copies in early stationary phase. The chromosome copy number is identical in
cultures with a twofold lower growth rate, in contrast to the results reported for several other prokaryotic species. Of three
additional replicons of H. salinarum, two have a low copy number that is not growth-phase regulated, while one replicon even
shows a higher degree of growth phase-dependent regulation than the main replicon. The genome copy number of H. volcanii
is similarly high during exponential phase (on average 18 copies/cell), and it is also downregulated (to 10 copies) as the cells
enter stationary phase. The variation of genome copy numbers in the population was addressed by fluorescence microscopy
and by FACS analysis. These methods allowed us to verify the growth phase-dependent regulation of ploidy in H. salinarum,
and they revealed that there is a wide variation in genome copy numbers in individual cells that is much larger in exponential
than in stationary phase. Our results indicate that polyploidy might be more widespread in archaea (or even prokaryotes in
general) than previously assumed. Moreover, the presence of so many genome copies in a prokaryote raises questions about
the evolutionary significance of this strategy.
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INTRODUCTION
Polyploidy, the existence of multiple copies of the normal set of

chromosomes, is widely distributed in eukaryotes. Polyploids are

common among fish and amphibian and very common among

plants. It has even been proposed that the diploid vertebrate

genomes were derived by reduction from polyploids [1]. The

advantages and disadvantages of being polyploid have recently

been reviewed [2,3]. In short, the advantages of polyploidy are

heterosis (hybrid vigour, an increased perfomance of the

allopolyploid compared with the inbred parents), loss of self-

incompatibility leading to the gain of asexual reproduction, and

gene redundancy. The specific advantages of gene redundancy

may be 1) a reduced chance that deleterious recessive mutations

become homozygous, and 2) the potential for gene diversification

and the acquisition of new functions. Disadvantages of being

polyploid are 1) a higher frequency of mitotic or meiotic problems

leading to aneuploidy and 2) epigenetic instability. Several of these

points like heterosis apply only to eukaryotic species with sexual

reproduction, while others like gene redundancy are relevant for

archaea, bacteria and eukaryotes.

In contrast to eukaryotes, prokaryotes are commonly thought to

contain one copy of a circular chromosome. The gram-negative

bacterium Escherichia coli contains one complete chromosome when

its generation time is longer than the time required for replication

and segregation of the chromosome. Unlike eukaryotes, it does not

have a G2 phase, and cell division is initiated soon after replication

has been finished [4]. Under optimal laboratory conditions, the

generation time of E. coli can become less than the replication

time, and a new round of replication is initiated before termination

of the previous round. The cells become merodiploid or

merooligoploid for the origin-proximal genes [4], and if replication

reinitiation is prevented with rifampicin, end up with 2, 4 or 8

chromosomes [5].

The best-studied gram-positive bacterium, Bacillus subtilis, also

harbors one copy of the chromosome [6]. For B. subtilis and

subsequently also for other bacterial species it was found that the

chromosome is not distributed randomly in the cell. Replication

takes place at a fixed site in the middle of the cell, and the newly

replicated regions of the chromosome are immediately transported

toward the cell poles [6,7]. Thus, the DNA-polymerases and the

replication forks are somewhat stationary and the DNA is highly

mobile (‘‘factory model of replication’’) [7].

Several bacteria are known to be polypoid. The best known

example is the radioresistant species Deinococcus radiodurans, which

harbours about 8 chromosomal copies [8]. Another example is

Azotobacter vinelandii that has been reported to contain up to 80

chromosome copies [9]. However, this is only seen in fast growing

cultures, while cultures grown in synthetic medium are not

polyploid [10]. A few other examples exist, but are thought to be

exceptions from the rule that bacteria are monoploid.

Genome copiy numbers were also determined for several

species from the third domain of life, the archaea. Two Sulfolobus

species and Archaeoglobus fulgidus were found to have an extensive

G2 phase; thus they contain two copies during most of the cell

cycle, and one copy prior to replication [11–13]. Methanothermo-
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bacter thermoautotrophicus has no G2 phase, but grows in filaments

that contain several nucleoids, each of which contains a single

chromosome. [14]. Methanococcus jannaschii contains multiple copies

of the chromosome, but has a very relaxed cell cycle control. The

division plane is not at mid-cell, and there is no even distribution

of the copies to the daughter cells [15].

The genome copy number of the haloarchaea, had not been

systematically investigated until now. It has been reported that

H. cutirubrum may contain 6–10 genome copies [16], and we have

previously shown that in H. salinarum, intracellular localization

of the DNA is highly regulated in the course of the cell cycle [17].

This prompted us to study the ploidy of H. salinarum and a second

haloarchaeal model species, H. volcanii, during growth under

different conditions. Surprisingly, it was found that both species

are polyploid, and that the genome copy number is downregulated

as cells enter stationary phase.

RESULTS

Halobacterium salinarum has multiple copies of the

chromosome
It was previously reported that H. cutirubrum contains six to ten

copies of the chromosome [16]. This was calculated after

quantitation of the total DNA content and of the cell density of

a culture aliquot. We applied a similar approach to determine the

ploidy of H. salinarum (see Materials and Methods), using E. coli

grown in synthetic medium as a control (under these conditions, E

coli is known to contain on average slightly more than one copy of

the chromosome). We confirmed that the genome copy number of

H. salinarum is significantly higher than that of E. coli, similar to H.

cutirubrum (data not shown). However, the variation in our results

was somewhat high, especially if different methods of DNA

isolation were used. We therefore wanted to confirm the results

using independent methods with internal standardization.

An overview of the first method is given in Fig. 1A. In short,

a culture of known cell density is embedded in low melting point

agarose and agarose blocks with a defined number of cells are

prepared. A genomic fragment of about 1 kbp near the origin is

visualized by Southern blot analysis. The same probe is used for

the simultaneous detection of a 0.9 kbp PCR fragment that was

added as an internal standard. A standard curve is generated by

the variation of the ratio of the molecules of internal standard per

cell (see Material and Methods). The method allows the absolute

determination of the intracellular copy number of specific DNA

fragments and is not influenced by the presence of additional

replicons.

Fig. 1 B shows the result for an exponential phase culture,

Fig. 1C shows an example of a stationary phase culture, and

Fig. 1D shows one representative standard curve used for

quantitation. The results of 20 independent biological replicates

are summarized in Fig. 1 E. It was found that stationary phase cells

contain slightly more than 10 copies of the chromosome, while the

ploidy of exponentially growing cells is considerably higher with

around 30 copies/cell. Thus the polypoidy was verified and the

results indicated that the ploidy of H. salinarum is growth phase-

regulated. However, the ‘‘agarose block method’’ is time-

consuming, inhibiting processing of large sample numbers, and

the variability is somewhat greater than desired.

The ploidy of H. salinarum is growth-phase

regulated
A second method for genome copy number quantitation is shown

in Fig. 2A, and was used to study growth phase dependent

regulation of ploidy. In short, a defined number of cells was

harvested and a specific genomic fragment was determined by

Real Time PCR. Absolute quantitation was enabled by using

external and internal standardization (see Material and Methods).

This novel method combined several advantages: it is very fast and

precise, extremely sensitive, and includes only a small number of

steps. Fig. 2B shows the Real Time PCR results using a dilution

series of the cell lysate and of the standard as templates; all curves

have virtually ideal slopes and offsets. A standard curve (Fig. 2C)

shows the high precision of DNA quantitation by Real Time PCR.

The method was used to determine the ploidy of H. salinarum

throughout its growth. Three independent experiments were

performed, and the results are tabulated in Fig. 2D and shown

graphically in Fig. 2E. Cells in the mid-exponential growth phase

contain about 25 copies of the chromosome, and this value drops

to 15 copies in early stationary phase. The two independent

methods used are in good agreement, and show that replication

and cell division can be regulated independently in H. salinarum; in

late exponential phase one round of cell division occurs while

replication has already ceased.

Ploidy of H. salinrum at different growth rates
The doubling time of H. salinarumin grown aerobically in complex

medium at 42uC is about 4 hours. This is longer than the

presumed replication time, given a genome size of 2.57 Mbp, and

therefore meropolyploidy of origin proximal regions similar to fast

growing E. coli is not expected. Nevertheless, we investigated

whether the growth rate has an effect on ploidy, as had been

reported for fast-growing E. coli and additional bacterial species

(see Discussion). Two different conditions were used that lower the

growth rate by about a factor of two, 1) cultures were grown at

30uC instead of 42uC, and 2) they were grown anaerobically by

arginine fermentation instead of aerobic respiration. In both cases,

the doubling time is around 8 hours. Samples were taken at four

time points representing early, mid- and late exponential as well as

early stationary phase. We found no reduction in ploidy in

exponential phase at lower growth rates, where cells contained at

least 25 genome copies under all three conditions (Fig. 3). The only

difference is seen in early stationary phase, where a smaller

reduction of ploidy was seen in slow-growing cells (8 hour

doubling time) than in fast-growing cells (4 hour doubling time).

As a consequence, stationary phase cells have a varying DNA

content that depends on their history and thus they seem to have

a ‘‘molecular memory’’ of what conditions they had experienced

before they became stationary.

Ploidy of different H. salinarum replicons and its

regulation
H. salinarum contains several replicons [www.halolex.de], and the

results above pertain to the largest replicon (chromosome). We set

out to quantitate the copy numbers of the additional replicons

termed pHS1 to pHS4. Since the smallest replicon pHS4 is only

present in the sequenced strain (DSM 671) but not in the strain

used for this study (DSM 670), the analysis was restricted to pHS1

to pHS3. Real Time PCR assays for the three replicons were

established, and the ploidy throughought the culture growth was

quantitated in parallel with the chromosome (Fig. 4). Surprisingly

the copy numbers of two of the plasmids, pHS 2 and pHS3, are

much lower than that of the chromosome. Furthermore, their

copy number is not regulated and is around five from early

exponential phase to stationary phase. The ploidy of the third

plasmid, pHS1, is regulated similar to that of the chromosome, but

it has a much lower copy number in early exponential phase.

Polyploidy in Haloarchaea
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Therefore at least two different mechanisms of replicon copy

number regulation exist in H. salinarum.

Ploidy of Haloferax volcanii and its regulation
To investigate whether the polyploidy is restricted to H. salinarum

or might be more widely distributed in haloarchaea, H. volcanii

was chosen as a second example. It belongs to another genus and

differs considerable from H. salinarum in morphology, metabolism

and behavior. The growth phase-dependent ploidy of H. volcanii

was quantitated using the two different methods described above.

Initial experiments were performed with the ‘‘agarose block

method’’ and show that H. volcanii is also polyploid (Fig. 5A).

Similar to H. salinarum, there is a negative correlation between the

cell density and the chromosomal copy number, indicating growth

phase-dependent copy number regulation.

The genome copy number was also determined by the

quantitative PCR method, which yielded near-identical results.

Figure 1. A. Overview of the method. A culture of known cell density is embedded in low melting point agarose (step 1), agarose blocks with
a defined number of cells are prepared, the cells are lysed and protein is digested (step 2). The blocks are melted and a restriction enzyme (step 3) as
well as an internal standard (step 4) are added. After overnight digestion, DNA fragments are size fractionated by electrophoresis and a Southern blot
is performed (step 5). A 1 kbp genomic fragment near the replication origin and the 0.9 kbp internal standard are both visualized with a single probe.
Multiple aliquots containing different standard concentration are used for quantitation. B. Quantitation of the genome copy number of exponential
cells. After gel electrophoresis and southern blotting, a genomic fragment (upper band) and different concentrations of an internal standard (lower
band) were visualized with the same probe (step 5 in A). C. Quantitation of the genome copy number of stationary phase cells. After gel
electrophoresis and Southern blotting, a genomic fragment (upper band) and different concentrations of an internal standard (lower band) were
visualized with the same probe (step 5 in A). D. An example of a standard curve generated after quantitation of the bands shown in B. and C. The
horizontal and vertical lines show the usage of the standard curve to determine the genome copy number in the biological replicate No. 9 (see E.). E.
Summary of the results of the independent cultures that were used to determine the genome copy number with the ‘‘agarose block method’’. In the
first five experiments, the standard curve ranged from 0.5 molecules/cell to 10 molecules/cell (as in B.). The signal of exponential phase cells was
much higher than the highest signal of the standard curve and could not be quantitated. Therefore the standard curve was chosen to range from 1
molecules/cell to 40 molecules/cell (as in C.) in subsequent experiments.
doi:10.1371/journal.pone.0000092.g001

Polyploidy in Haloarchaea
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H. volcanii has almost 20 genome copies in exponential growth

phase, and around 12 copies in stationary phase. Thus, it has

a slightly lower genome copy number and a somewhat lower

degree of growth phase-dependent copy number regulation than

H. salinarum.

Distribution of genome copy numbers in single cells

of the population
The two methods for genome copy number determination yielded

information about the average values in the population, but gave

no information about the variation of genome copy number in

individual cells.

As a first approach to address the ploidy of single cells, confocal

laser scanning microscopy (CSLM) was used. H. salinarum cells of

the mid-exponential as well as of the stationary growth phase were

fixed with formaldehyde and the DNA was stained with the

fluorescence dye Hoechst 33342. As a control that the physiolog-

ical state had been preserved, it was verified that all different

intracellular DNA localization patters could be found in the cells

from the exponentially growing culture, i.e. distributed DNA, one

focus in the middle of the cell, three foci, and two foci at the cell

Figure 2. A. Overview of the method. In short, a defined number of cells was harvested and lysed (steps 1 and 2). Serial dilutions of the cell lysate
(step 3) were used as templates in quantitative Real Time PCR assays (step 4). Quantitation was performed by comparison with an external and an
internal standard curve (Materials and Methods). B. Selected real time PCR results. The fluorescence intensity curves from four standard dilutions
(solid lines) and three sample dilutions (broken lines) are shown. In both cases serial tenfold dilutions of the templates were used. Note the identical
slope of all curves and the equidistance of the curves of a dilution series, which is very close to the theoretical offset of 3.32 cycles per tenfold
dilution. In addition to the selected reactions shown here, each experiment included more standards and more sample dilutions (filling the gap
between tenfold dilutions) as well as a sample dilutions including a dilutions series of the standard added as internal control of PCR efficiency. C. A
standard curve including nine standard concentrations distributed over three orders of magnitude. D. Average genome copy number values of three
independent cultures and their standard deviation. E. Growth phase-dependent regulation of ploidy of H. salinarum. E is a graphical representation of
the results tabulated in D.
doi:10.1371/journal.pone.0000092.g002
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poles [17]. Furthermore it was verified that the localization

patterns that are specific for ongoing replication were absent from

cells from stationary phase cultures (data not shown). 50 cells of

each culture were chosen randomly and the fluorescence signal

was quantitated. The average values were 163 a.u. (standard

deviation 75) for cells from the exponential phase and 83 a.u. (s.d.

18) for cells from the stationary growth phase. Thus the growth

phase-dependent regulation of the genome copy number could

also be verified on the single cell level. The high standard deviation

especially in the exponential phase provided a first indication that

the genome copy number might be variable in the population.

However, the method was not suitable to quantitate the variation

of genome copy numbers in the population since it is not exact

enough and it is difficult to characterize sufficient cells to address

the question in a statistically significant manner.

As an alternative, we used a ‘‘fluorescence activated cell sorter’’

(FACS) to determine the variation of the DNA content in a high

number of cells. Again, the growth phase-dependent regulation of
ploidy could be verified on the single cell level (Fig. 6). Thus, the

‘‘agarose block method’’ and the ‘‘Real Time PCR’’ method on

the one hand and the CLSM and the FACS analyses on the other

hand yield identical results, while they have two important

differences: 1) the former methods determine the average content

in the population, while the latter methods address single cells, and

2) the former methods quantitate a specific DNA sequence, while

the latter determine the overall DNA content with a fluorescent

dye. The FACS analysis is the only method that allows to address

the variation of DNA content in a large population of cells. Fig. 6

shows that the variation is much larger in exponentially growing

than in stationary phase cells, the latter being much more uniform

in DNA content as well as in size.

DISCUSSION
Two very different haloarchaea model species [18] were chosen

for the quantitation of the genome copy number. They are dis-

similar concerning e.g. cell morphology, optimal salt concentra-

tion, motility and taxis, utilizable electron donors and receptors,

and the presence of haloarchaeal retinal proteins and gas vesicles.

However, both species were found to be highly polyploid and

to downregulate the number of genome copies as cells enter

stationary phase. This indicates that polyploidy might be

Figure 3. H. salinarum was grown by aerobic respiration at 42oC and 30
oC and by arginine fermentation at 42oC. The doubling times were
4 hours, 8 hours and 8 hours, respectively. For each condition three
independent cultures were used. Aliquots representing early exponen-
tial phase (2–36108 cells/ml), mid-exponential phase (4–56108 cells/
ml), late exponential phase (8–96108 cells/ml) and early stationary
phase (1–26109 cells/ml) were used to determine the genome copy
number using the Real Time PCR method. Average values of the three
biological replicates and their standard deviation are shown.
doi:10.1371/journal.pone.0000092.g003

Figure 4. Three independent cultures were used to determine the copy
numbers of the chromosome and three additional replicons, i.e. pHS1
to pHS3, using the Real Time PCR method. One of the growth curves,
the average replicon copy number per cell and the standard deviations
are shown.
doi:10.1371/journal.pone.0000092.g004

Figure 5. Determination of genome copy number using the agarose
block method. Different aliquots from one culture were used to
inoculate several new cultures that were grown overnight. Through-
ouht the next day aliquots were withdrawn, the cell density was
determined with a counting chamber and the ploidy with the agarose
block method. For each aliquot, the cell density was plotted against the
genome copy number, and a trend line was calculated. B. De-
termination of the genome copy number using the Real Time PCR
method. Three independent cultures were used to determine the
genome copy number. A selected growth curve, the average ploidy
values and their standard deviation are shown.
doi:10.1371/journal.pone.0000092.g005
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widespread in the different genera of halobacteriaceae and might

even be more widespread in archaea as previously anticipated.

Until now M. jannaschii was the only archaeal species that had been

found to contain multiple copies of the chromosome [15].

However, the number of species that were found to contain one

chromosome in the G1 phase and two chromosomes in the G2

phase of the cell cycle is very limited (Sulfolobus, Archaeoglobus,

Methanothermobacter) [12–14].

The situation is similar for bacteria. It is generally assumed that

most bacterial species are monoploid and contain a single copy of

a circular chromosome. But also in the bacterial domain of life, the

number of genome copies has only be quantitated for a limited

number of species. E. coli has been characterized very thoroughly

and it is clear that slow-growing cells contain one chromosomal

copy while fast growing cells are merooligoploid for origin-

proximal regions, e.g. cells growing with at a doubling time of

24 minutes contain, on average, 6.54 origins and 1.94 termini [4].

A small number of other bacteria have also been shown to be

monoploid, i.e. Bacillus subtilis and Comamonas testosteroni [6,19].

We have shown that H. salinarum is not only highly polyploid,

but also possesses a strict cell cycle control. Upon addition of

the DNA polymerase inhibitor aphidicolin, cells stop dividing

immediately [17], although the high genome copy number should

allow several divisions without the risk of generating anucleate

cells. H. volcanii is also highly polyploid, and we have isolated

temperature sensitive mutants that stop dividing after a shift to the

restrictive temperature (unpublished data). These data indicate

that polyploidy is not just the result of the loss of proper genome

copy number control, but that it offers selective advantages that

led to its development in evolution.

Several bacterial species have been reported to contain multiple

copies of the chromosome. Probably the best known example is

the radioresistant species Deinococcus radiodurans. It contains at least

four genome copies and no monoploid stage could be detected at

different growth rates [8]. The human pathogen Neisseria gonorrhoeae

contains on average three genome copies, suggesting that nascent

Neisseria cells contain two genome copies, which are replicated in

a concerted fashion to generate a cell with four genome copies

[20]. As both species are coccal organisms, a linkage between

morphology and polyploidy has been postulated [20]. However,

species of other morphologies have also been found to be

polyploid. Desulfovibrio gigas contains about nine genome equiva-

lents in ammonia-limited chemostat cultures and about 17 genome

copies in fast growing batch cultures [21]. Borrelia hermsii, a

spirochete that causes relapsing fever, harbors about 16 genome

copies if it is grown in mice but only 1/4 to 1/2 of this number if it

is grown axenically in batch culture [22]. The case of Azotobacter

vinelandii is controversial. A gene hybridization study concluded

that this species harbors as many as 80 genome copies [9,23]. In

contrast, a genetic approach came to the conclusion that ‘‘A.

vinelandii is not a polyploid bacterium’’ [24]. One line of evidence

was that ‘‘heterozygotic transconjugants and transformants are

unstable and segregate into homozygotic colonies even in the

absence of selection’’. A subsequent study by the same group used

flow cytometry and came to the conclusion that the genetic

approach had let to erroneous results (see below) and that A.

vinelandii is indeed polyploid. Fast-growing cells in the early

exponential phase contained about the same number of chromo-

somes than E. coli, but the number of genome copies highly

increased to as many as 100 in late exponential and in early

stationary phase. However, it was also found that in synthetic

medium at lower growth rate the genome copy number did not

change and the authors concluded that ‘‘the polyploidy of A.

vinelandii may not exist outside of the laboratory’’ [10].

Figure 6. A. The forward light scatter as a measure of cell size is plotted
against the fluorescence of the DNA-specific dye acridine orange as
a measure of the DNA content. Aliquots representing early and middle
exponential phase and early stationary phase (top to bottom) were
analyzed, and the optical densities are indicated. B. The fluorescence as
a measure of DNA content is plotted against the fraction of the
population exhibiting a specific fluorescence. The three curves from left
to right represent the three aliquots shown in A from top to bottom.
doi:10.1371/journal.pone.0000092.g006
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Taken together, there are more characterized ‘‘exceptions’’

from the rule that bacteria are monoploid than species that have

been proven to follow the rule. Polyploidy might be more

widespread in prokaryotes than presently anticipated, and it will

be interesting to quantitate the genome copy number in more

archaeal and bacterial species. No common pattern has emerged

from the characterized archaeal and bacterial species that are

polypoloid. For example, the range of genome copy numbers is

extremely large (from 4 to greater 100), cells may have a higher

genome copy number in exponential phase (haloarchaea) or in

stationary phase (Azotobacter), and the genome copy number may

change with growth rate (Desulfovibrio, E. coli) or is independent

from growth rate (Halobacterium).

It has been proposed that a selective advantage of polyploidy in

prokaryotes could be a higher resistance to DNA damaging con-

ditions, especially those that induce DNA double strand breaks.

The radioresistant species D. radiodurans can survive X-ray dosages

that lead on average to more than 150 double strand breaks per

chromosome [25]. However, a study where the genome copy

number of D. radiodurans was altered by growth in different media

found no correlation between ploidy and resistance to gamma or

UV radiation [26]. H. salinarum is also extremely resistant to X-ray

irradiation. The D10 values (10% survival) are 10 kGy for D.

radiodurans and 5 kGy for H. salinarum [27,28]. For comparison, the

D10 value of E. coli is 0.25 kGy [29]. However, H. volcanii, which

has a similar genome copy number to H. salinarum, is not

particularly radioresistant (D10 = 1 kGy, unpublished data).

It is possible that polypolidy has evolved in response to

desiccation, which is known to induce DNA double strand breaks.

The hypersaline environments of haloarchaea are characterized

by high temperatures and a high intensity of sun light, therefore

the cells are always in danger of desiccation. H. salinarum was

shown to be extremely desiccation resistant; about 25% of the cells

remained viable after the exposure to high vacuum (1026 Pa) for

20 days [28].

One selective advantage of polyploidy might be that many

genome copies allow the accumulation of mutations in different

alleles of any gene without losing the wildtype allele. This might be

important in situations where growth of the cells is compromised

and alleles coding for e.g. enzymes with an altered substrate

specificity or affinity might restore the ability to grow.

While different alleles at the same locus might exist under

specific conditions, genetic evidence suggests that this is not the

case under normal growth conditions. For example, we have

found it easy to isolate haloarchaeal mutants in different metabolic

pathways, such as bacteriorhodopsin-mediated phototrophic

growth, arginine fermentation, nitrate respiration, and cell cycle

progression [30, 31, unpublished data]. Only two rounds of

selection with an enrichment factor of about 103 are necessary,

which argues against random segregation of a mutated gene from

15 to 25 wildtype alleles [30]. A second line of evidence is the ease

of replacing wildtype genes of H. salinarum and H. volcanii with

deletion mutations, indicating efficient homologous recombination

[32–35]. Thirdly, H. volcanii possesses an efficient genetic exchange

system. Mutants can be crossed and the segregation of the different

chromosomes that had been combined into one cell by cell fusion

can be followed by phenotypic markers. After a limited number of

generations, the alleles had segregated in the absence of selection,

and cells showed only one of the two parental phenotypes [36].

These results indicates that H. salinarum and H. volcanii possess

an efficient gene conversion mechanism that guarantees that all

genome copies in growing cells are equalized. It is clear that gene

conversion exists in archaea and bacteria, but it was only thought

to operate on multiple copies of a gene that are situated on the

same chromosome, e.g. ribosomal RNA genes [e.g. 37, 38].

However, it was recently demonstrated that gene conversion is

used to eliminate deleterious mutations in the genomes of plastids,

which are polyploid [39]. It will be interesting to study whether

gene conversion also operates to equalize alleles on different

chromosomes of polyploid archaea and bacteria.

An additional selective advantage of polyploidy might be that it

allows to globally control gene expression by gene dosage

regulation. The degree of regulation is nearly twofold for the

main replicon and nearly fivefold for pHS1. Under non-saturating

concentrations of regulatory proteins, which is often physiologi-

cally relevant, the occupancies of regulator binding sites in the

DNA change with altered replicon copy numbers. Depending on

the regulatory mechanism this can result in repression or induction

of gene expression. In addition, the presence of different regulons

with different ploidy and different regulary patterns allows H.

salinarum to include different gene dosages in a single cell, that vary

by a factor of 5. However, if the gene dosage would influence the

expression level of some or many genes, it would also mean that

the expression of theses genes is not uniform in exponentially

growing H. salinarum cells, since the genome content of single cells

was found to be very variable (Fig. 6). Clearly, methods for

quantitation of gene expression levels at the single cell level are

needed to clarify this question. In stationary phase, the genome

content of the cells within the population is much more uniform.

However, it depends on the history of the cells, and thus stationary

phase cells have a ‘‘molecular memory’’ of the conditions they

were exposed to during their growth phase. In another project,

the transcript level of a specific gene in stationary phase cells was

also found to vary in dependence of their history (unpublished

data).

Coda
H. salinarum and H. volcanii, representing two very different

haloarchaeal genera, were both found to be highly polyploid.

The genome copy number is higher than in any other prokaryote,

with the exception of fast-growing A. vinelandii under laboratory

conditions. Four different methods have shown that the ploidy

level is regulated and stationary phase cells habor a smaller

number of chromosomes than exponentially growing cells. The

copy numbers of different replicons were quantitated, two different

species were investigated, the average population as well as single

cells have been studied, and different growth conditions and

temperatures were used. Thus, this is one of the most thorough

reports describing the genome copy number in prokaryotes. The

results warrant a closer look at the distribution of polyploidy in

archaea and bacteria.

MATERIALS AND METHODS

Archaeal and bacterial strains and growth

conditions
H. salinarum was obtained from the German culture collection

(www.dsmz.de; strain No. DSM670). It was grown in complex

medium by aerobic respiration or by arginine fermentation as

described previously [31,40]. H. volcanii strain H26 was con-

structed and grown in complex medium as described [33]. The H.

volcanii strain WR340 was obtained from Moshe Mevarech (Tel

Aviv University, Israel) and grown in complex medium [41].

Escherichia coli strain Xl1-blue MRF’ was obtained from Stratagene

(Leiden, Netherlands) and grown in M9 synthetic medium [42].

E. coli strain MG1655 [43] was grown in LB broth or 56/2 salts

medium with 0.4% glucose or 0.2% glycerol.
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Quantitation of ploidy using isolated genomic DNA
Two different aproaches were used to isolate genomic DNA from

E. coli and H. salinarum. The first approach was to use the DNeasy

tissue kit according to the instructions of the manufacturer

(Qiagen, Hilden, Germany). The second approach was to

precipitate DNA with ethanol after cell lysis and protein digestion.

For both species, the cell density was determined using a Neubauer

counting chamber. For the isolation of DNA from E. coli, 15 ml

culture was harvested by centrifugation (15 min., 4000 g, 4uC).

The pellet was suspended in 3.6 ml lysis buffer (10 mM Tris/HCl,

pH 7.2, 1 mM EDTA, 100 mM NaCl, 0.05% SDS). 30 ml

lysozyme solution (100 mg/ml) and 400 ml proteinase K solution

(1 mg/ml) were added and it was incubated for 4 hours at 37uC.

The solution was extracted three times with an equal volume of

phenol and once with ether. DNA was pelleted by the addition of

1/10 vol. sodium acetate solution (3 M, pH 5.2) and 2.5 vol.

ethanol. After centrifugation (20 min., 12 000 g, 4uC), the pellet

was solved in TE (10 mM Tris/HCl, pH 7.2, 1 mM EDTA). For

the isolation of DNA from H. salinarum, 15 ml of culture was

pelleted (see above) and the cells were suspended in 300 ml of basal

salt solution (medium without carbon source). 2.5 ml lysis buffer

(60 mM EDTA, 0.25% sodium sarconisate, 60 mM Tris/HCl,

pH 8) were added and it was mixed until lysis was complete.

400 ml proteinase K solution were added and it was incubated for

4 hours at 37uC. Phenol extraction and ethanol precipitation was

performed as described above.

The DNA concentration was determined photometrically. To

calculate the genome equivalents, genome sizes of 4.64 Mbp and

2.57 Mbp were used for E. coli and H. salinarum [44,45], that

correspond to 5.1 fg/genome and 2.8 fg/genome for the two

species.

Quantitation of ploidy using the ‘‘agarose block

method’’
The cell density was determined with a Neubauer counting

chamber. Cells from culture aliquots were harvested by centrifu-

gation (15 min., 6000 g, room temperature) and resuspended in

1/10th volume of basal salts [31]. 4 ml of cell suspension were

quickly mixed with 4 ml of a 2% (w/v) solution of low melting

point agarose (agarose type VII with low gelling temperature,

Sigma, Steinheim, Germany). A 1 ml aliquot is transferred to an

eppendorf tube and the rest is poured into a Petri dish. The weight

of the 1 ml aliquot is determined and–together with the known cell

density of the suspension–allows to calculate the number of cells

per unit weight. After the agarose had solidified in the Petri dish,

small ararose blocks of 46464 mm were generated with a self-

constructed device. The weight of the agarose blocks were

determined and the number of included cells was calculated.

The blocks were washed twice for 30 minutes in 50 volumes TE

(10 mM Tris/HCl, pH 7.2, 1 mM EDTA). After that, they were

incubated overnight at 37uC in 20 volumes lysis buffer (60 mM

EDTA, 0.25% (w/v) sodium sarconisate, 100 mg/ml proteinase K,

60 mM Tris/HCl, pH 8.0). They were washed three times for

20 minutes in 10 volumes TE+1 mM PMSF, then they were

washed three times for 30 minutes in 10 volumes TE. Sub-

sequently they were transferred invidivually into pcr tubes. The

agarose was molten at 80uC and then cooled to 37uC. The desired

ratio of internal standard molecules per cell was added. As an

internal standard, a pcr fragment was used that was generated

with the primers SB_002_ST and SB_003_ST (Table 1) and

genomic DNA of H. salinarum as a template. It was purified using

a preparative agarose gel and the Quiaex II gel extraction kit

(Qiagen, Hilden, Germany). It represents a genomic region close

to the presumed replication origin of H. salinarum. 4.5 ml of the

restriction enzyme Sal I (10 U/ml) and 6.5 ml of 106 Sal I buffer

were added. Sal I does not cleave the internal standard, but it

generates a 1 kbp fragment from the genomic DNA that fully

includes the sequence of the internal standard. After incubation at

37uC for three hours they samples were shortly heated to 50uC
and transferred to a 1.4% (w/v) agarose gel. Gel electrophoresis,

transfer to a nylon membrane, hybridization, washing and

detection with a digoxigenin-labelled probe were performed as

previously described [46]. The probe was constructed using the

internal standard pcr fragment as a template (primers see Table 1).

Thus the probe equally recognizes the 900 bp internal standard

pcr fragment and the 1 kbp genomic SalI fragment. Hybridization

signals were visualized by using an anti-DIG-alkaline phosphatase

conjugate and the chemoluminscence substrate CDP-star accord-

ing to the instructions of the manufacturer (Roche, Mannheim,

Germany) and exposing the nylon membranes to an X-ray film.

The film was scanned and the signals were quantitated with the

software ImageJ 1.32 (NIH, Bethesda, USA). For each band the

background was determined using a field of the same surface area

directly above and below the band. The average background value

was subtracted from the signal of the band. The signals from the

internal standards were used to construct a standard curve, which

was used to determine the genome copy number using the average

signal from the 1 kbp genomic fragment.

Quantitation of ploidy using the ‘‘Real Time PCR

method’’
Overview The rationale of the ‘‘Real Time PCR method’’ is to

harvest haloarchaeal cells and lyse them completely by an osmotic

shock in low salt solution. Dilutions of the cell lysates are used

directly as templates in Real Time PCR assays. Quantitation of

the genome copy number is achieved by comparing the results

with a dilution series of a pcr product of known concentration that

is used as a standard. To ensure that the pcr amplification with the

genomic templates has the same efficiency as the amplifications

with the pcr product, a third series of Real Time PCR assays was

used. A dilution series of the pcr standard was added to the cell

lysates and it was verified that the efficiency of standard amplific-

tion was identical in the absence and presence of cell lysate.

Real time pcr method H. salinarum or H. volcanii were grown

in complex medium as described [31,33]. It was taken care that

they were growing for at least 25 generations in exponential phase

before they were used for genome copy number determinations.

At the times indicated for each experiment the cell density was

determined using a Neubauer counting chamber, and 2 ml aliquot

of the cell culture was harvested by centrifugation (5 min., 3800 g,

room temperature). The pellet was suspended in 1 ml of basal salt

solution [31,33]. 200 ml of the cell suspension was added to 1.8 ml

of a. bid., resulting in rapid cell lysis. Serial dilutions of the cell

lysate were generated in a. bid., and 5 ml aliquots were directly

used as template for Real Time PCR assays.

For the quantitation of the genome copy number by Real Time

PCR a standard was needed. A 1 kbp pcr product was generated

using genomic DNA of H. salinarum as a template (primers see

Table 1). It was purified by preparative agarose gel electropho-

resis, eluted with the Quiaex II gel extraction kit (Quiagen, Hilden,

Germany), and the concentration was determined photometrical-

ly. A series of dilutions were prepared that contained defined

numbers of standard molecules, and 5 ml aliquots were used as

templates for Real Time PCR. To ensure that pcr efficiencies of

the cell lysate dilution series and the standard dilution series were

identical, a third series of samples were prepared. A standard
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dilution series was added to one of the cell lysate samples as an

internal control.

The Real Time PCR assays contained in a 25 ml reaction

volume 5 ml of template (cell lysate, standard, or cell lysate with

added standard), 1 mM of primer qPCR_SB_001 and primer

qPCR_SB_002, 26 qPCR Master Mix (Finnezymes OY, Espoo,

Finnland), and 17.1% (v/v) glycerol. The master mix contained

Thermus brockianus DNA polymerase, SYBR GREEN I, dNTPs,

MgCl2, and buffer (concentrations not released by the manufac-

turer). The pcr reaction conditions were 10 min. at 96uC, 40

cycles of 30 sec. 96uC, 45 sec. 68uC, 80 sec. 72uC, and an

additional incubation of 5 min at 72uC. The Real Time PCRs

were performed in the ‘‘Rotor Gene 3000’’ (Corbett Research,

Melbourne, Australia). 72 samples could be analyzed simulta-

neously. At the end of the pcr, the probes were heated to 96uC and

the melting point of each sample was determined. Data analysis

was performed using the software ‘‘Rotor Gene 6.35’’ (Corbett

Research). For each sample the number of cycles was determined

until its fluorescence intensity reached a threshold determined by

the software (Ct value). The Ct values of the standards were used to

construct a standard curve (compare Fig. 2C) that was used

to quantitate the genome copy numbers in the cell lysates and to

check the pcr efficiencies in the lysates including internal

standards.

Optimization of the method As the method was established,

different steps were optimized to generate the protocol outlined

above. Different cell lysis methods was compared, and it turned

out the results were most reproducible if the cells were first

harvested and resuspended in basal salts before they were lysed

with a. bid. The cell density of the culture and of the cell

suspension after centrifugation and resuspension were determined

and it was revealed that the loss of cells was about 7% (this was be

included in the calculation). The calculated melting points of the

primers should be at least 75uC to allow an annealing temperature

of 68uC. Different pcr fragment lengths were tested (100 bp,

350 bp, and 500 bp), and the 350 bp fragment turned out to be

amplified most reproducibly without any artificial byproducts. The

addition of glycerol turned out to be important because it

abolished degradation of the genomic DNA during Real Time

PCR that was otherwise observed. Real time pcr kits of different

suppliers were tested, and the kit ‘‘DyNAmo qPCR kit 400L-Fi’’

from Finnezymes turned out to be the best.

Fluorescence microscopy
500 ml aliquots of cultures of the mid-exponential and the early

stationary growth phase were harvested by centrifugation (5 min.,

3800 g, room temperature). The pellet was resuspended in 500 ml

of fixing buffer (4% (v/v) formaldehyde, 0.1 M sodium cacodylate,

4.2 M NaCl, 220 mM MgCl2, 40 mM MgSO4, pH 7.0) and

incubated for 10 minutes at 42uC. The cells were pelleted again

under identical conditions, resuspended in 500 ml of washing

solution (20 mM MgCl2, 20 mM MgSO4, 10 mM Tris/HCl,

pH 7.5) and incubated for 10 minutes at 42uC. The dye Hoechst

33342 was added to a final concentration of 15 mg/ml and it was

incubated for 20 minutes at 42uC. Subsequently the cell

suspension was layered onto agarose-covered microscope slides.

Microscopic pictures were obtained using a confocal laser

scanning microscope (Leica TCS SP5) and TIFF images were

analyzed using the software Imaris 4.1.1 (Leica).

FACS analysis
Halobacterium salinarum DSM670 was grown in complex medium as

described [31], and the growth phase was determined by optical

density. A sample corresponding to about 16108 cells was

harvested by centrifugation (6 minutes, 3800 g, room tempera-

ture) and resuspended in 450 ml of basal salt solution. 50 ml of

acridine orange solution (Sigma, 0.1 mg/ml in basal salt solution)

was added to a final concentration of 10 mg/ml, and samples were

analyzed promptly. Sample analysis was performed with an

Table 1. Primer used for determination of the genome copy numbers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

name sequence application

SB_002_ST CCGCGTTGGGCGGTCCATAAATCCCGATTC synthesis of the 900 bp standard

SB_003_ST GCAGGCACGATCACAGCAACCCGATACCAG synthesis of the 900 bp standard

SB_003_SO CCGCGTTGGGCGGTCCATAAATCCCGATTC synthesis of the Dig-dUTP probe

SB_004_SO TTCTAGTTGCGTTCGGGCGCTGATCTTGGC synthesis of the Dig-dUTP probe

SB_005_ST_1kb CCGTTGCGCTCGATTTCGAC synthesis of the Real Time PCR standard for H.s.

SB_006_ST_1kb ACGGCCAGCAAGGCCATCAG synthesis of the Real Time PCR standard for H.s.

qPCR_SB_001_ST CCACCCGCCAGCCAAGATCAGCGCCCGAAC detection of the genome copies in H.s.

qPCR_SB_002_ST GCAGGCACGATCACAGCAACCCGATACCAG detection of the genome copies in H.s.

Phs1_1 CCCGCCCTCTATCGGTGACTCAAAGTCCTC detection of the replicon phs1

Phs1_2 GACGCTCCCGACGATTCGCAACTTCCTCTC detection of the replicon phs1

Phs2_1 GTCAGTGCCGCTCAGCGCCAAGGTGAAATC detection of the replicon phs2

Phs2_2 ACGGTGACCGACTCGCTCGGCAACAAAGTG detection of the replicon phs2

Phs3_1 CCGCGCTGAGGAAACTGGCGAAGACCTAAG detection of the replicon phs3

Phs3_2 ACGGGTGTTCAGGTTGGCCCGACTACTGAG detection of the replicon phs3

qPCR_Hv_ST1kb_001 AAGACCTCGCGTGCCACCCGTCCATCAAAG synthesis of the Real Time PCR standard for H.v.

qPCR_Hv_ST1kb_002 TACCGCTCGACGAACCGACACCGATGATGC synthesis of the Real Time PCR standard for H.v.

qPCR_Hv_SB_001 AGACCTCGCGTGCCACCCGTCCATCAAAG detection of the genome copies in H.v.

qPCR_Hv_SB_002 GCGACGAGTACGTCTGTCTGGACTGCAAG detection of the genome copies in H.v.

doi:10.1371/journal.pone.0000092.t001..
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Apogee A40 mini flow cytometer (equipped with a 50 mW

488 nm solid state laser (Coherent). A 510–580 nm bandpass filter

was used to detect acridine orange fluorescence due to DNA

binding. A PMT voltage of 415 V was used for forward light

scatter and 590 V used for emission between 510 and 580 nm

(gain = 1). The light scatter signal was used as the trigger

parameter. Latex beads of a uniform size and fluorescence were

used for calibration and adjustment of the flow cytometer.
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