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Caveolin-1 (Cav-1) was first identified as a marker protein
for the purification of caveolae organelles.1–3 Subse-
quently, it was later determined that Cav-1 expression is
essential for caveolae formation.4,5 Thus, Cav-1(�/�)-de-
ficient mice morphologically lack caveolae organelles.
Surprisingly, these mice are viable and fertile.4,5 In strik-
ing contrast, zebrafish (Danio rerio) lacking Cav-1 display
important developmental abnormalities and embryonic
lethality. These novel findings by Fang et al are described
and highlighted in this issue of The American Journal of
Pathology.6

Caveolin-1 Isoforms: Structure and Tissue-
Specific Expression Patterns

The gene encoding Cav-1 has the same organization,
with three exons and two introns, in human,7 mouse,8 and
zebrafish.6 This suggests an important and conserved
role for Cav-1 in whole-organismal biology. In fact, se-
quence alignment reveals that the Cav-1 protein is highly
evolutionarily conserved, from Caenorhabditis elegans to
humans (Figure 1).

Interestingly, a single Cav-1 gene encodes two protein
isoforms that differ slightly, only by their N-terminal se-
quence.9 More specifically, Cav-1� is a 178-amino acid
protein, whereas Cav-1� is 147 amino acids and lacks
the first 31 N-terminal residues of Cav-1�. These two
Cav-1 isoforms have been shown to be translated from
distinct mRNA species.10 Until now, the specific func-
tional role of each Cav-1 isoform had not been clearly
defined. Nonetheless, Cav-1� and -1� have different
subcellular distributions, as demonstrated by recent
studies.9,11,12 Moreover, Cav-1� has been shown to form
caveolae more readily than Cav-1�.13

In zebrafish, Cav-1 mRNAs are detected during the
very early stages of development. Late in development,
the Cav-1� mRNA is the only isoform detectable in intes-
tinal epithelium, whereas both Cav-1� and -1� mRNAs
are produced in the heart, pharyngeal vasculature, noto-
chord, somites, skin, and neuromast tissues. Interest-
ingly, these data are similar to those obtained in Xenopus
laevis.14

In the mouse, Cav-1� protein expression is detected
early in the embryo (E15).12 Maximal expression is ob-
served in the vasculature, the lungs, the kidneys, and the
gut. Interestingly, in the lungs, Cav-1� expression first
appears in endothelial cells. The importance of Cav-1 in
the vasculature has also been highlighted by Bullejos et
al, who observed high levels of Cav-1 mRNA in the de-
veloping ovaries but not testes.15 This difference is due to
the formation of a more dense and more complex vascu-
lar network in the ovaries.15

Roles of Caveolin-1 during Development

In mice, Cav-1 expression does not appear to be as
essential as in zebrafish, since its elimination is not
lethal.16,17 However, its role in the vasculature and
other tissues is clearly important, since its absence has
been associated with many disease-related pheno-
types, most notably in the lung, vasculature, heart,
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adipose tissue, and the mammary gland. However,
the detailed developmental progression of the Cav-1-
deficient mouse embryo has yet to be determined.
For example, alterations observed in Cav-1-defici-
ent murine lungs could result from developmental
abnormalities.

In zebrafish, Cav-1 down-regulation, in the case of
both isoforms (Cav-1� and Cav-1�), is associated with
important defects occurring by 12 hours after fertilization.
This time point is normally associated with a remarkable
increase in Cav-1 mRNA levels. As expected, reductions
in the Cav-1 protein are also associated with a major
reduction in the number of caveolae.

One of the first proteins shown to associate with caveo-
lae is actin.18,19 This “anchoring” interaction appears to
be responsible, at least in part, for the extremely reduced
mobility of caveolae at the cell surface.20 In addition,
during cellular migration, Cav-1 has been shown to as-
sume a polarized distribution in migrating endothelial
cells.21,22 Moreover, it was also shown that this specific
polarization during trans-migration requires the presence
of the Tyr14 residue within Cav-1 for phosphorylation,
since the distribution of other forms of Cav-1 (Cav-1�
(Y14A) and Cav-1�) are not polarized.22

It is important to note that phosphorylation of Cav-1� at
Tyr14 has been associated with its subcellular localization

Figure 1. Evolutionary conservation of the caveolin-1 (Cav-1) protein. Alignment of the Cav-1 protein sequences from C. elegans (accession no. Q94051), D. rerio
(accession no. Q6YLH9), and Homo sapiens (accession no. Q2TNI1) was produced using CINEMA.25 Note that the �-isoform uses an internal methionine (M32
in humans; M34 in zebrafish) as an initiation codon, as indicated (� versus �). As such, only the �-isoform undergoes tyrosine phosphorylation [Y14 in humans
and zebrafish; see asterisk], since the �-isoform lacks tyrosine 14. The positions of the caveolin-signature-sequence (SQ) and the caveolin-scaffolding-domain
(CSD) are highlighted. Palmitoylated cysteine residues have been boxed, in the case of the human and zebrafish sequences. Color coding is as follows: white,
hydrophobic residues; blue, positively charged residues; red, negatively charged residues; green, small hydrogen bonding residues; brown, glycine/proline
residues; yellow, cysteine residues; and cyan, aromatic residues.
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in close proximity to focal adhesions,23 as well as caveo-
lae-mediated endocytosis.24 Interestingly, in zebrafish, a
deficiency in Cav-1� cannot be rescued by a mutant form
of Cav-1� (Y14F) that cannot undergo phosphorylation.
In addition, Cav-1 deficiency is associated with severe
disruption of the actin cytoskeleton. These findings sug-
gest that Cav-1 plays a critical role in cell migration
and/or endocytosis in zebrafish. Likewise, overexpres-
sion of the full-length Cav-1� isoform could not rescue the
phenotype induced by the absence of the Cav-1� iso-
form, and visa versa. Taken together, these data suggest
for the first time that Cav-1� and Cav-1� have nonover-
lapping functions and that these differences may be re-
lated to the ability of the Cav-1� isoform to undergo
tyrosine phosphorylation at residue 14.

Replacement of zebrafish Cav-1 by the corresponding
human Cav-1 isoform could complement the phenotypes
associated with the absence of each isoform. This finding
further suggests that the function of the Cav-1 protein is
highly conserved throughout evolution. In mammals,
however, the absence of Cav-1 may not be as lethal as in
zebrafish because of the existence of redundant com-
pensatory mechanisms.

Conclusions

Clearly, the mouse and human systems are more com-
plicated than zebrafish. However, the zebrafish model of
development will provide, for the first time, a genetically
tractable system to perform rapid and detailed mutagen-
esis of both Cav-1� and Cav-1� isoforms. As such, the
zebrafish system is a new experimental tool for investiga-
tors to directly dissect the relationship between the pri-
mary structure of Cav-1 and its essential developmental
and whole organismal functions.
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