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Total Number of Individuals Affected by a Single
Sex-linked Deleterious Mutation in a Finite Population

WeN-Hsiune Lit

A deleterious mutation may cause pathological and clinical consequences extending
over several generations. A recent catalog of inherited abnormalities by McKusick
[1] lists hundreds of distinct clinical syndromes, each of which can be plausibly
attributed to the effect of single-locus mutations. From the public health viewpoint
it is important to know both the total number of individuals affected by a single
deleterious mutation before it is eliminated from the population and its extinction
time. In the case of autosomal genes, these two quantities have recently been
studied by Nei and Li [2-4] for various types of mutations and population sizes.
However, their results are not directly applicable to sex-linked deleterious mutations.
The purpose of this paper is to extend the results to sex-linked genes.

TOTAL NUMBER OF MUTANT INDIVIDUALS

Consider a population in which a mutant gene @ and its wild-type allele 4 are
segregating at a sex-linked locus. Let the relative fitnesses of genotypes in males and
females be as specified in table 1. The selection coefficients against mutant males
(s) and homozygous mutant females (s’) are positive constants but the selection
coefficient (#’) for the heterozygous females can be negative. (However, we will be
concerned only with %’ such that s 4 24’ is positive and not extremely small.) We
assume that no homozygous mutant female occurs in the whole process. This is
reasonable since we are considering only deleterious mutations in fairly large popula-
tions. We also assume equal sex ratio and equal gene frequency in both sexes so that
the genotype frequencies are as specified in table 1 for a given mutant gene fre-
quency x in a random mating population. Strictly speaking, the gene frequency is
not the same for males and females if there is selection, and there is really no justifi-
cation given of the fact that we can make a diffusion approximation to this two-
variable non-Markovian process using only one overall gene frequency (x). However,
it will be seen later that these assumptions do not affect the final result seriously. In
the following we will consider a randomly mating population of actual size N and
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TABLE 1

RELATIVE GENOTYPE FITNESS AND FREQUENCY

MALE FEMALE
GENOTYPE A a A4 Aa ae
Fitness ...........coiiiiiiine, 1 1—s 1 1—n 1—s
Frequency ..................... 1—x x 1—2x 2x 0

effective size NV,. Note that the effective population size for a sex-linked gene is
different from that for an autosomal gene (see [5, 6] for explanation).

Let x be the frequency of ¢ and ¢(p, x;¢) be the probability density of x at
generation ¢, given that x — p at ¢ — 0. Mathematically, the total numbers of
heterozygous females and mutant males can be treated in the same way. Let f(x)
be either the number of heterozygous females or that of mutant males in a popula-
tion. Explicitly, f(x) — Nx for the number of female heterozygotes and f(x) =
Nx/2 for that of mutant males, under the above assumptions. The total number of
female mutant heterozygotes or mutant males before the mutant gene becomes
extinct is given by

0 1
w0) = [ S 1) (pyxst) drae. (1)

It can be shown (see [4]) that n;(p) satisfies the equation
V&p ’’ 4
— " () + Mspn/ (p) = —f(), (2)

with boundary conditions #;(0) — 0 and #, (1) finite. The Ms, and V5, in equation
(2) are the mean and variance of gene frequency change per generation, respectively.
Approximately, Ms, = — (s + 2#’)p/3 and Vs, = p(1 — p)/2N..

1. Total number of female heterozygotes. In this case f(p) = Np, as mentioned
earlier. Therefore, equation (2) is satisfied by (d/dp) (1 — p)En,’(p) = —4N.N (1
— p)%—1 where K = 4N (s -+ 24") /3. After one integration, it becomes 7, (p) =
3N/(s+2#) + [C1—3N/(s+ 2F')] (1 — p)—E. The condition that 7,"(1) is
finite implies C; = 3N /(s -+ 24"). Therefore we obtain

m(p) =3Np/(s + 2k), (3)
since 7, (0) = 0. If initially there is only one mutant gene, then p — 2/3N and

If the mutant gene is completely dominant (%" = s), formula (4) reduces to

i, = 2/3s. (5)
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2. Total number of mutant males. By putting f(p) = Np/2 in equation (2), we
can readily obtain

na(p) =3Np/2(s + 2K). (6)
If initially there is only one mutant, then
fia=mn2(2/3N) = 1/(s + 2/'). (7
If the mutant gene is completely recessive (4" = 0), then formula (7) becomes
fia = 1/s. (8)

This is exactly as expected since in this case selection against the mutant gene occurs
only in males. If the mutant is completely dominant (%" = s), then

iy = 1/3s, 9)
and the total number of individuals affected is
ill—l—f-tz:l/s. (10)

This is also exactly as expected, since the solution is essentially the same as for an
autosomal locus [4].

It is interesting to note that #; and 7. are independent of population size for any
type of mutation and that the overdominant effect of a mutant gene is very small
for any population size. These results are quite contrary to the results for autosomal
mutations and will be discussed in more detail later.

AVERAGE EXTINCTION TIME

It has been shown by Kimura and Ohta [7] that the expected extinction time
T(p) satisfies

Vo

T7(p) + Mo T'(p) = —Uo(p), (11)

with boundary conditions T'(0) = 0 and T”(1) finite, where Uo(p) is the prob-
ability of eventual extinction. Since we are concerned only with sex-linked de-
leterious mutations in relatively large populations, there is almost no probability
for the mutant to be fixed in the population, and we can assume that U¢(p) = 1 and
the average extinction time to(p) = T(p)/Uo(p) = T(p), if p is not large. Due to
the linearity of equation (11) in T'(p), it can be shown that the solution of equation
(11) is equivalent to T'(p) = T1(p) + T2(p), where

4N U
Ty(p) = — —Nelo®) (12)

T,” _
1(#) =7 11—

and

K
T () — =5 T ) = — M. (13)
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It can be easily shown that T1(p) << 3p/(s 4 2&’), which is negligible since we
consider only small initial mutant frequencies. From equation (13), we have

Ty (p) = 4No(1 — p)—E fp1 211 — %)EU,(x)dx 4 C1 (1 — p)—X.

That T5'(1) is finite implies C; = 0. Therefore we obtain

To(p) = 4N, J, (1 — »)~Fdy [, a=1(1 — 0)<Vo(x)ds,

since T'2(0) = 0. The integrand x—1(1 — x)X Uo(x) can be roughly replaced by
x~1(1 — x)X, since Up(x) is almost 1 when x is not large and x~1(1 — x)¥ is very
small when x is large. Thus the average extinction time is given roughly by

1
to(p) = T2(p) = 4N, j: (1— y)—"dyj; 2~ (1 — x)%dx. (14)

The double integration in the above formula is complicated but it can be shown
that the influence of population size on 7, is very small compared with the case of
autosomal mutations. For simplicity, let us consider one extreme case, say, &’ =
—s/2. Then K = 4N (s + 2#’)/3 = 0 and #,(2/3N) = 8N.[1 4 In(3N/2)]/3N,
which increases very slowly with increasing N. It can be shown that #, is generally
smaller than the above expression for any given N.

DISCUSSION

The results by diffusion approximations have been seen to be exactly as expected
if the mutant gene is completely recessive or dominant [see formulas (8) and (10)].
However, in order to see whether diffusion methods are also adequate for the other
cases, let us study a discrete time model. It is expected that discrete time models
give better results than continuous time models when the selection coefficient is
large. Consider a lethal mutation with overdominant effect, that is, s =1 and
k< 0. If the mutation is first expressed in a male, obviously only one person will
be affected. On the other hand, if it occurs first in a female, in the following succes-
sive generations the numbers of mutant males will be (1 — #’)/2, (1 — 4')2/4,. ...
Therefore the total number of males affected in this case will be (1 — #’)/(1 4+ #’).
Assuming mutation occurs with probability 1/3 in males and 2/3 in females, the
average total number of mutant males is therefore 1/3 + 2(1 — %) /3(1 + #') =
(1 —#/3)/(1 4 &’). The difference between the result by the diffusion method
and that by a discrete model is therefore d = —2A"(1 — #’) /[3(1 4+ &) (1 + 2/')].
This is generally very small. To illustrate, take a rather extreme case, say 4’ =
—0.20 (20% overdominance); then d = 1/9, which is rather small. Therefore the
results by diffusion methods are seen to be simple and reasonably accurate.

In this paper we have assumed that the population size remains constant. In many
human populations, however, the size is increasing. In an increasing population the
total number of individuals affected by a single mutation will be larger and the
extinction time will be longer than those given in this paper. However, if the
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absolute fitness of mutant males in the increasing population is less than one, the
formulas for the total numbers of individuals affected given in this paper are still
applicable if we take absolute values for 1 — s and 1 — /4’. At any rate, our com-
putations may serve as minimum estimates if the population size continues to in-
crease. Of course, human populations cannot increase indefinitely and in the future
they would reach a steady state or fluctuate around some “optimal” number.

In some genetic diseases such as hemophilia, the classical concept of recurrent
mutation appears to hold. In this case it is important to know the expected fre-
quencies of female mutant heterozygotes and mutant males at steady state in finite
populations. The expected relative frequency of heterozygotes among females is
given by

fr= 2Ny + Np)u /Ny = 2(2N; + Nu)u/Ny(s + 2K'), (15)
and that of mutant individuals among males by
fo= (2N; + N,)uto/Ny = (2N; + Np)u/Nu(s + 2k'), (16)

where N; and N,, are the numbers of females and males in the population, respec-
tively, and » is the mutation rate per locus per generation, assuming equal mutation
rate in both sexes. These two formulas can be derived by following the method of
Li and Nei [4].

It is interesting to compare the mutational damage caused by a sex-linked muta-
tion and by an autosomal mutation. If the mutant gene is completely dominant, then
these two quantities are the same and equal to 1/s. This is because the death of an
individual eliminates one gene, regardless of whether it is sex-linked. If the mutant
gene is completely recessive then 7, equals 1/s for a sex-linked mutation but 1/2s
for an autosomal mutation. This is because in the former case death occurs only in
mutant males and one death eliminates only one gene, while in the latter case death
occurs in mutant homozygotes and each death eliminates two genes. If the mutant
gene shows overdominant effect, then 7, equals 1/(s 4 24") for a sex-linked muta-
tion but

[1— /7 A eaZerfc(4)]/[2(s — 2/')]

for an autosomal mutation as obtained by Li and Nei [4], where
A=MW~\/2N.(s — 2K) /s

in the present notation. Note that the former is independent of population
size while the latter is highly dependent on population size. When population size is
small, the difference between these two quantities is relatively small, but in a large
population the difference may be extremely large. For example, if #” = —0.02 and
s = 1, then 7 is only 1.04 for a sex-linked gene regardless of population size,
while it is 3.4 for an autosomal mutation if N, = N — 1,000 but 10,000 if N = N
= 10,000. This is because an autosomal deleterious mutation with overdominant
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effect may persist in the population for a very long time if the population size is
large, while a sex-linked deleterious mutation can survive only for a short period
of time even if the population is very large. To illustrate this, let us consider an
extreme case. For a sex-linked mutation with 2/ = —0.25 and s = 0.5, 1o is only
16.6 generations if N = 1,000 and N, = 3N /4. But for an autosomal mutation with
B = —0.25 and s =1, %, is 5.1 )X 1035 generations if N, = N — 1,000, as was
computed by Li and Nei [4]. Therefore, a sex-linked overdominant deleterious
mutation is much less harmful to a society than an autosomal overdominant dele-
terious mutation.

SUMMARY

The expected total numbers of heterozygous females (#;) and mutant males (7.)

affected by a sex-linked deleterious mutation and the average extinction time ()
are studied using diffusion methods. In sharp contrast to autosomal mutations [4],

71, and 7, are independent of population size, and the effect of population size on Zo
is small regardless of the degree of dominance. The effects of overdominance on
these quantities are also very small compared with the case of autosomal mutations.
When a mutation is dominant, the total number of individuals affected for a sex-
linked locus is the same as that for an autosomal locus. If a mutation is completely
recessive, the former is twice as large as the latter. For an overdominant mutation,
the former is much less than the latter, particular in large populations.

ACKNOWLEDGMENT

I would like to thank Professors James F. Crow, Masatoshi Nei, and Sewall Wright
for many discussions and valuable comments.

REFERENCES

1. McKusick VA: Mendelian Inheritance in Man. Catalogs of Autosomal Dominant,
Autosomal Recessive, and X-linked Phenotypes, 3d ed. Baltimore, Johns Hopkins
Press, 1971

2. N1 M: Total number of individuals affected by a single deleterious mutation in large
populations. Tkeor Pop Biol 2:426-430, 1971

3. N1, M: Extinction time of deleterious mutant genes in large populations. Theor Pop
Biol 2:419-425, 1971

4, L1 WH, N1 M: Total number of individuals affected by a single deleterious mutation
in a finite population. Am J Hum Genet 24:667-679, 1972

5. WRIGHT S: Evolution and the Genetics of Populations, vol 2: The Theory of Gene
Frequencies. Chicago, Univ. Chicago Press, 1969

6. Crow JF, KiMmura M: An Introduction to Population Genetics Theory. New York,
Harper & Row, 1970

7. KiMmura M, OnTA T: The average number of generations until fixation of a mutant
gene in a finite population. Genetics 61:763-771, 1969



